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Many soft-matter systems show a transition between fluidlike and mechanically solidlike states when

the volume fraction of the material, e.g., particles, drops, or bubbles is increased. Using an emulsion as a

model system with a precisely controllable volume fraction, we show that the entire mechanical behavior

in the vicinity of the jamming point can be understood if the mechanical transition is assumed to be

analogous to a phase transition. We find power-law scalings in the distance to the jamming point, in which

the parameters and exponents connect the behavior above and below jamming. We propose a simple two-

state model with heterogeneous dynamics to describe the transition between jammed and mobile states.

The model reproduces the steady-state and creep rheology and relates the power-law exponents to

diverging microscopic time scales.

DOI: 10.1103/PhysRevLett.111.015701 PACS numbers: 64.60.�i, 47.50.�d, 47.57.Bc, 83.50.�v

Understanding and ultimately predicting the flow behav-
ior of complex fluids is a subject of considerable funda-
mental and practical importance [1]. Most frequently,
complex fluids are dispersions of one material in a con-
tinuous phase, e.g., suspensions of particles or polymers,
foams, and emulsions. The common denominators in the
mechanical behavior are the emergence of a yield stress for
volume fractions higher than some critical value �c and
Newtonian flow for lower volume fractions, with shear
thinning in either case for high shear rates. This generic
behavior is mostly described by empirical equations. For
concentrated systems with �>�c, flow curves are often
successfully described by the phenomenological Herschel-
Bulkley equation [2], � ¼ �y þ K _��, where � is the

stress, �y is the yield stress, _� is the shear rate, and K

and � are adjustable model parameters. For �<�c the
flow behavior is usually described by a Cross-type equa-
tion [3],� ¼ �1 _�=ð1þ C _�1��Þ, where�1 is the low-shear
viscosity, and C and � are again adjustable parameters.
Additionally, it is customary to describe the influence of
the volume fraction on the low-shear viscosity using
the—again phenomenological—Krieger-Dougherty equa-
tion [4], �1 ¼ �sð1��=�cÞ�m, where we identify the
low-shear viscosity of the Cross equation as �1, �s is the
viscosity of the suspending medium, and m is a free-fitting
parameter with a value 1:5 & m & 2 [5]. Thus, all these
phenomenological expressions employ a variety of expo-
nents and amplitudes to describe the flow behavior.

Especially for concentrated suspensions, it has proven
very difficult to deal with the long-range hydrodynamic
interactions and derive such behavior from first principles
[1]. This is why in recent years a generic framework has
been proposed for concentrated complex fluids based on
jamming, which denotes the transition between a flowing

and a stagnant state [6,7]. A material is said to be jammed
when for �>�c the system will not flow unless �y is

overcome. Only a few models, simulations, and experi-
ments have been proposed or carried out for describing
how flow properties of such systems behave with respect to
� or the distance to �c (j��j) [7–11]. These models
depend on the interaction potential between the dispersed
particles, and some of them lead to master curves when
flow curves are rescaled with respect to �� [8–10,12];
however to which degree the rescaling and corresponding
exponents are universal is not yet clear. A recent simulation
study [13], considering also the interaction potentials,
was able to give a unified picture of glass and jamming
rheology; in particular, glassy arrest of thermal systems
and athermal jamming were shown to be unrelated. In [13],
the athermal jamming transition is found at �c � 0:64,
well above the glass transition, as we find here.
The central question we ask in this Letter is whether

the ‘‘zero-temperature jamming transition’’ for athermal
particles can be understood in a way that is analogous to a
usual phase transition, which happens here as a function of
�. If this could be done, the behaviors above and below�c

should be connected, and consequently a measurement of
the flow curve above �c would give predictions on the
behavior in the unjammed state and vice versa. We con-
sider jamming in a simple material made of soft repulsive
particles that exhibits a jamming transition. Such repulsive
systems are the best model systems since interparticle
attractions induce thixotropy, which makes the yield stress
ill defined [14,15].
We use an emulsion as our model system to show how

the rheological properties at �>�c and �<�c scale
with respect to j��j, the distance to jamming. These data
show that the scalings and the corresponding scaling
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exponents are interconnected, and that the values above
and below jamming can be interrelated experimentally.
Subsequently we propose a simple structure-based model,
with the aim of understanding the transition across�c from
a microscopic picture of heterogeneous dynamics.

Our experimental system is an emulsion of castor
oil in water, stabilized using sodium dodecyl sulfate
(SDS) [14]. A batch of emulsion with � � 0:8 (mean
drop diameter ¼ 3:2 �m and 20% polydispersity) is pre-
pared by dispersing the oil in a 1 wt% SDS solution;
at this surfactant concentration, emulsions have a yield
stress that is due only to repulsive forces between the
droplets [14–16]. From this batch, samples with lower �
are obtained by dilution with the 1 wt% SDS solution.
Rheological measurements are performed using the
following three rheometers, two of which have a cone-
plate geometry (with roughened surfaces) [17]: (i) a
controlled-shear-rate rheometer [Rheometrics ARES],
(ii) a controlled-shear-stress rheometer (CSS) [Anton
Paar MCR 300]; and (iii) another controlled-shear-stress
rheometer (CSS) [Stresstech] with a vane-in-cup geometry
and roughened cup. Before carrying out any experiment,
samples are presheared at 100 s�1 for 30 s and left to relax
for 30 s in order to assure the same initial condition for all
measurements.

A first experiment consists in obtaining flow curves of
all the samples using the controlled-shear-rate rheometer,
by performing shear-rate sweeps as shown in Fig. 1(a).
From these flow curves we determined that �c � 0:645 as
linear extrapolation of the yield stress to zero gives �c ¼
0:648� 0:004, whereas a quadratic fit �y ¼ Að���cÞ2
gives �c ¼ 0:645� 0:005. On the one hand, flow curves
with �>�c are fitted to the Herschel-Bulkley equation.
These curves show that samples with �>�c have a yield
stress and behave like shear-thinning fluids; i.e., the expo-
nent � is lower than 1. On the other hand, samples with
�<�c do not have a yield stress; these emulsions exhibit
a Newtonian-flow behavior at low shear rates, while at high
shear rates they exhibit shear-thinning behavior near �c.
The value of �c is close to the expected value for random
close packing, �RCP � 0:64.

We rescale all flow curves for different volume fractions
onto a single master plot by plotting �=j��j� versus
_�=j��j�, which allows us to collapse all flow data above
�c by fitting � ¼ 2:13 and � ¼ 3:84, see Fig. 1(b).
Interestingly, this procedure automatically collapses also
the flow data below �c, onto a different master curve that
merges with the one above �c for high shear rates. The
branch corresponding to fractions above�c can be fitted to
a Herschel-Bulkley equation with � ¼ �=� ¼ 0:55 and
K ¼ 0:87. In addition, the branch corresponding to frac-
tions below �c can be fitted to a Cross-type equation in a
particular form that, by considering the Krieger-Dougherty
equation, takes into account both the low-shear Newtonian
regime and the shear-thinning regime at high shear rates,

�0 ¼ �s�
m
c _�0=ð1þ ð�s�

m
c =KÞ _�01��Þ, where�0 and _�0 are

the rescaled stress and shear rate, respectively. The fit of
the master curve for �<�c is then given by the same
parameters � ¼ 0:55 and K ¼ 0:87 as in the Herschel-
Bulkley equation, giving an excellent fit with a viscosity
�s ¼ 2:1� 10�3 Pa � s for the suspending medium, i.e.,
the water-SDS mixture. The rescaling of flow curves below
�c also implies that for the low-shear regime, the Krieger-
Dougherty equation can be written in the form�=j���j ¼
�s�

m
c _�=j��j�þm, whence � ¼ mþ �. Therefore, the

Krieger-Dougherty exponent m can also be calculated
only from the exponents � and � (m ¼ �� � ¼ 1:71).
An independent fit of the low-shear viscosities to

FIG. 1 (color online). (a) Flow curves of emulsions with differ-
ent internal volume fractions, showing Herschel-Bulkley fittings
for samples with �>�c. (b) Master curve showing collapse of
flow curves onto two branches, one for samples with�>�c and
one for samples with �<�c when plotted as �=j��j� versus
_�=j��j�; the red lines in the supercritical and the subcritical
branches represents the Herschel-Bulkley and the Cross fit of the
master curve, respectively, both with � ¼ 0:55 and K ¼ 0:87.
Black symbols correspond to samples with �>�c, and blue
symbols correspond to samples with �<�c. Inset: Fit of the
low-shear viscosity to the Krieger-Dougherty equation, giving
�s ¼ 2:2� 10�3 Pa � s and m ¼ 1:71 with �c ¼ 0:645.
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the Krieger-Dougherty equation gives m ¼ 1:71 and
�s ¼ 2:2� 10�3 Pa � s, all in excellent agreement
[Fig. 1(b), inset].

The scaling of the yield stress is interesting; however
most models in this area focus on elastic moduli [18–20],
notably the shear modulus G0 since usually systems are
incompressible. For very different systemsG0 is reported to
vary as a power of the distance to jamming. An exponent
d� is suggested for dense repulsive gels [21]; with the
spatial dimension d ¼ 3 and a correlation exponent � �
0:7 [7] this would give an exponent around 2. However,
from simulations with, e.g., harmonic or Hertzian interac-
tions, different shear-modulus exponents are reported
[7,20]. To quantify this for our system and see how it is
related to the yield stress, we carry out oscillatory mea-
surements using the CSS-MCR 300 Rheometer, which
allows us to measure the storage (G0) and the loss (G00)
moduli for samples with �>�c. We also measure both
the stress and strain at which G0 and G00 cross, which are
measures for the yield stress and strain [Figs. 2(a) and 2(b)]
[1]. This is because at high stresses and deformations the
viscous contribution is observed to dominate the elastic
one, indicating that the material is indeed flowing.
Therefore, the crossover point defines both a yield stress
and a yield strain (�y). In Fig. 2(c) we show that yield

stresses obtained by means of the Herschel-Bulkley equa-
tion (Fig. 1) and from the crossover of G0 and G00 give very
similar results, scaling as j��j2:1. In the linear regime, the

yield stress should obey the relation: �y ¼ G0
plateau�y

[22–24]. In Fig. 2(b) we observe that �y is approximately

constant for all samples (�y � 0:2); therefore, G0
plateau

should scale with j��j the same way �y does, which

indeed is the case as also shown in Fig. 2(c). In addition,
in agreement with the models quoted above, the exponent
for the variation of G0 with j��j is indeed close to two.
Based on the experimentally obtained scalings, we now

propose a simple model of heterogeneous dynamics. The
observed phenomena are common to many experimental
and simulated systems for which such dynamics has been
reported (see, e.g., [25–29]). It has been suggested recently
that the underlying cause is a generic critical transition
in the dynamics, between a stagnant and a fluid phase
(see, e.g., [27,28,30]). Here we follow this suggestion
and attempt to explain the data from a simple and ad hoc
two-state model for such a transition.
Since under stress the emulsions with �>�c start

flowing, we assume that under stress only a fraction s of
the particles remains arrested in cages while the fraction
1� s becomes fluidized. The time-dependent heteroge-
neous pattern of stagnant and mobile regions is character-
ized by a length scale 	 that increases when s approaches
a critical value sc. In the spirit of critical transitions we
assume 	 to be the dominant variable, so 	� j1� s=scj��,
while other variables exhibit a power-law dependence on
	. We assign a local viscosity �f to the fluidized phase and

treat the arrested domains as a dispersed solid phase.
Hence we postulate a viscosity � ¼ �fð1� s=scÞ�m,

with the same exponent m as in the low-shear limit below
�c. The associated diverging time scale 
�ðsÞ is much

shorter than the lifetime of the heterogeneity pattern, i.e.,
the time 
A in which mobile particles get arrested again;
hence 
AðsÞ � ð1� s=scÞ�n with n > m. Following this,
the competition between stress-induced relaxation out of
the cage and fluctuation-induced arrest reads: ds=dt ¼
�s=
R þ ð1� sÞ=
AðsÞ. The relaxation rate 1=
R can be
determined as the sum or maximum of either an Eyring-
type rate for stress-induced escape out of a cage or the rate
_� ¼ �=� at which the average cage vanishes. The Eyring-
type rate has a very deep minimum at � ¼ 0 and a steep
increase towards a plateau value for increasing�. The ratio

Að0Þ=
Rð0Þ is a very small number and is effectively zero
above �c; below �c it rapidly increases.
The full flow curve then follows from the steady-state

solution ds=dt ¼ 0, which gives s vs. � and subsequently

the shape of the flow curve via �ð�Þ � 
AðsÞm=n. In par-
ticular the limiting cases when s approaches sc from below
and s approaches 0 can be recognized directly from 
R �

Að0Þ and 
R � 
Að0Þ, respectively. For � approaching 0

we then find �=�f ¼ ½
Rð0Þ=
Að0Þ	m=n, implying an

infinite viscosity and hence a yield stress above �c. For
�>�y the function 
R equals _��1, from which it is easy

to derive the shear-thinning regime � ¼ K _�� of the

FIG. 2 (color online). Storage (G0) and loss (G00) moduli as a
function of the shear stress (a) and the strain (b). Black lines and
symbols correspond to G0, while gray lines and symbols corre-
spond to G00; blue circles represent crossover points. (c) Scaling
of the yield stress (�y) with j��j, as determined from the

Herschel-Bulkley equation (hollow black symbols) and from
the crossover of G0 and G00 (filled black symbols); scaling of
G0

plateau with j��j (blue symbols). (d) Behavior of a sample with

� ¼ 0:66 of the viscosity (�) in time under different imposed
stresses; the red line indicates that �� t�, with � ¼ 0:6.
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Herschel-Bulkley expression, with K ¼ �f=½
Að0Þ	m=n

and � ¼ 1�m=n; since m ¼ ��� we can now make
the identification n 
 �. The yield stress itself follows self-
consistently from 1=
Rð�Þ ¼ _�, with the result that the
crossover rate to shear thinning decreases to effectively
zero for decreasing j��j and �y.

Below �c a very similar analysis holds as above, except
that now the ratio 
Rð0Þ=
Að0Þ and hence the low-stress
viscosity is finite and rapidly decreases with decreasing �.
Shear thinning now starts at _� ¼ 1=
Rð0Þ, which increases
again with increasing j��j.

To understand the origin of the heterogeneity time scale
and the associated exponent n > m, we make a variation on
Mott’s argument for explaining creep via dislocation mo-
tion in metals [31] and consider a collectively rearranging
region of N particles that share one collective free volume
v to make rearrangements possible. In a time 
� the N

particles will on average each have moved to a neighboring
position. Associated with this, each particle will experi-
ence an individual free-volume change �v, which will
typically scale as v=N. The fluctuations �v will be of
either sign and if we assume them to be random, we have
for the average over this time hP �vi ¼ 0, hPð�vÞ2i �
Nðv=NÞ2. To have a finite probability that the free volume
vanishes and the region is arrested we should have
hPð�vÞ2i � v2. To that end the process should be repeated
N times, whence 
A ¼ N
�. With N � 	d, we then find

n 
 � ¼ mþ d� or � ¼ d�. Note that � is the yield-
stress exponent and that we derived it here from the rheol-
ogy, without considering the elastic interactions; when �y

is indeed constant (as it is in the experiments)� is then also
the exponent of the shear modulus. So the model explains
the experimentally observed yield-stress (�>�c) versus
Newtonian-liquid behavior (�<�c) at low rate as well as
the continuity across �c in the power-law shear-thinning
regime at high rate, with microscopic interpretations for
the scaling exponents.

So far, we have only considered the steady-state rheol-
ogy. However, one of the key issues in the behavior of
yield-stress fluids is the creep behavior. Over the past
decades, there has been a discussion about whether the
yield stress marks a transition between two liquidlike
materials with very different viscosities, or whether the
transition is truly between a liquid and something that
behaves mechanically like a solid [32]. The distinction
between the two is not a priori evident, since over long
time scales a solid may creep. It was demonstrated
recently [33] that the creep was the reason for the
(wrongly interpreted) ‘‘liquidlike behavior’’ of yield-
stress materials below �y; in fact the creep is so slow

that a steady state is never achieved and so the apparent
‘‘viscosity’’ keeps on increasing in time.

From the model, a power-law creep behavior at
stresses lower than �y follows naturally. In the nonequi-

librium regime where s is already close to sc so that in

the equation for ds=dt, approximately constant fractions
sc and 1� sc can be assumed and where � is so low
that the rate of cage escape can still be neglected
compared to the arrest rate, the rate equation can be

integrated straightforwardly. The result is ð1� s=scÞ �
½t=
Að0Þ	�1=ðn�1Þ, which directly gives the Andrade law
�� ½t=
Að0Þ	� with � ¼ m=ðn� 1Þ [34]. Note that in
this creep, with a rate ds=dt that is independent of

Rð�Þ, the system is far from equilibrium, so that �
differs from the linear-response exponent 1� � ¼
m=n. From the measured exponents in steady state, the
model then predicts for the Andrade-creep exponent
m=ðn� 1Þ 
 � ¼ 0:60. To test this prediction, we carry
out creep measurements using a vane-in-cup geometry
in the CSS-rheometer Stresstech: the shear stress is
imposed and the resulting deformation in time is
recorded. Due to the rheometer’s resolution, the strain
increase could be measured reliably only for samples
with � ¼ 0:66 and � ¼ 0:67. Figure 2(d) shows that
when a stress below �y is imposed the material creeps

and the apparent viscosity indeed increases as �� t�,
with � � 0:6, in line with the model and earlier obser-
vations on a range of different systems [33].
The model thus predicts both the fully steady-state

Herschel-Bulkley and Cross regimes and the continuous
transition between them. It makes use of only two inde-
pendent exponents m and n, which characterize the diver-
gence of two time scales: one for the particle fluidity and
one for the heterogeneity fluctuations. Similar time scales
and their power-law behavior have been demonstrated in
simulations of glasses [35]. The shear-thinning exponent
(0<�< 1) is a direct consequence of the assumed expo-
nent inequality n > m, for which a microscopic explana-
tion is given here. Finally, the model describes the transient
creep behavior under sub-critical stresses, giving a theo-
retical basis for the Andrade-creep equation and accurately
reproducing its exponent value.
In conclusion, we demonstrated experimentally that by

rescaling the shear stress and the shear rate with respect to
j��j it is possible to obtain master curves for the flow
properties both above and below jamming, with a continu-
ous transition between the two in the shear-thinning region.
The curves above and below �c are not only accurately
described by the Herschel-Bulkley and Cross equations,
respectively, but we also show that the continuity across�c

implies that the parameters are common between the two
models. In addition, not only are the scaling exponents for
stress and shear rate interconnected via the shear-thinning
exponent, but the rescaling also predicts the Krieger-
Dougherty exponent for the divergence of the viscosity
when approaching �c from below. All this behavior and
the Andrade creep can be captured by a simple and generic
two-state model based on heterogeneous dynamics.
We thank Martin van Hecke and Brian Tighe for very

helpful discussions.
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