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Chapter 1

Introduction

Most of the chapters in this dissertation result from economic relationships that can
often be modeled as networks, mainly through bilateral ties of agents (dyadic models,
Graham (2020)), where connections occur between pairs of units. Economists are often
interested in studying the outcomes generated from these connections. Relevant exam-
ples include models for international trade 
ows (Helpman et al., 2008), �rm-level trade
(Alfaro-Urena et al., 2023), micro�nance loans (Banerjee et al., 2013), and earnings in
employee-employer data (Bonhomme et al., 2019). Properly considering the underlying
trade network is crucial when estimating the e�ects of observed explanatory variables on
outcomes, such as trade barriers on trade 
ows. While network data has some similarities
to traditional panel data, estimating network models poses added challenges demanding
new econometric techniques.

A crucial aspect of network models from a pseudo-panel data perspective, and dyadic
models in general, is the inclusion of unit-speci�c e�ects for each pair of units, which
controls for the unobserved heterogeneity of units. Moreover, such models’ unit-speci�c
e�ects account for part of the network dependence structure. Omitting these e�ects can
yield biased parameter estimates. For example, when modeling international trade 
ows,
an exporter and an importer unobserved unit-speci�c e�ect captures the multilateral
resistance terms, i.e., the barriers to trade each country faces with all its trading partners
that are not observable, and that can be correlated with the covariates of interest. Another
important aspect is that many interesting network models are inherently non-linear. For
instance, network formation models are, by de�nition, discrete-choice models indicating
the likelihood of units forming a link (i.e., a connection); and even when modeling the
outcomes of a network (such as trade-
ows), we might observe only positive and numerous
zero outcomes, inducing non-linearities in the model. Treating unobserved unit-speci�c
e�ects as estimable �xed e�ects (such that the conditional distribution of the unobservable
heterogeneity given the covariates is left unrestricted) in non-linear models leads to the
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incidental parameter problem (Neyman and Scott, 1948). This problem occurs since, in
non-linear models, the estimates of the coe�cients of the covariates of interest depend on
the estimates of the �xed e�ects, and the latter converges at a slower rate than the �rst,
resulting in asymptotic biases in the estimates and consequently, invalid inference.

Despite the existence of econometric methods that can account for both aspects, for
most settings, they break down when the network is sparse, where very few links between
units are observed. While for linear models with the two-way unobserved heterogeneity
and the idiosyncratic error term entering additively in the speci�cation, it is possible to es-
timate the coe�cients of observable covariates of interest consistently and asymptotically
unbiasedly using the two-way �xed e�ects estimator (as long as the model is correctly
speci�ed; see Juodis (2021)) even when the network is sparse, this is not the case for most
non-linear models.

For instance, for the estimation of gravity models for international trade 
ows, the
current literature proposes to handle the zero outcomes in two ways: (i) through a sample
selection model (Helpman et al., 2008) using Heckman’s two-stage estimator (Heckman,
1979), which estimates the gravity equation after a log-linearization; or (ii) through a
Poisson pseudo-maximum likelihood estimation (Silva and Tenreyro, 2006), which esti-
mates the gravity equation in its original multiplicative form. The sample selection model
consists of two stages: in the �rst stage, a network formation model is estimated, where
the outcome variable is set to one if countries trade and zero if not; and the second
stage models trade 
ows, incorporating the �rst stage’s estimation because the trading
decision correlates with trade amount. While the �rst stage estimation of the sample se-
lection model and the Poisson pseudo-maximum likelihood estimator face the incidental
parameter problem due to non-linearities, methods relying on analytical and jackknife
bias-corrections exist to eliminate the asymptotic biases arising from this (for instance,
Fern�andez-Val and Weidner (2016), Dzemski (2019) and Yan et al. (2019)). However,
these methods provide consistent estimates and valid inference only under dense net-
works. Given that a lot of relevant applications display sparsity (e.g., �rm-level trade

ows and earnings models in employee-employer data), the development of econometric
methods that are robust to it is crucial and is the primary object of interest in the second
and third chapters of this thesis.

One exception is on the estimation of network formation models, for which a condi-
tional maximum-likelihood approach under a logistic speci�cation that is applicable to
sparse settings1 was proposed concurrently by Charbonneau (2017) and Graham (2017),
for directed and undirected networks respectively. The conditioning sets in these ap-

1One drawback of this approach is that, since the �xed e�ects are di�erenced out from the objective
function, there are no available estimates for them. Therefore, as described before, this estimation method
cannot be employed as the �rst stage of a sample selection model.
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proaches translate to models where the di�erences of di�erences of pairs of outcomes (and
covariates) are taken such that the two-way �xed e�ects are di�erenced out from the
objective function, eliminating the incidental parameter problem. However, when taking
such di�erences between pairs of outcomes, the summands of the in
uence functions will
not be independent anymore, displaying dependence on the unit level and, therefore, the
usual law of large numbers and central limit theorems do not apply.

To overcome such obstacle, U-statistics tools are generally applied (see Graham (2017)
and Jochmans (2018)) such that one can show the asymptotic properties of those estima-
tors. Although the properties of U-statistics are, in general, well-known for single-index
variables (see Ser
ing (2009, Chapter 5) and Van der Vaart (2000, Chapters 11 and 12)),
those of double-indexed variables, such as in networks’ models, are far less understood
and generally not exposed in an accessible manner, with a few exceptions such as Graham
(2019, Chapter 4). Hence, the primary purpose of the second chapter of this disserta-
tion is to illustrate, in a step-by-step manner, how to obtain the asymptotic properties
of estimators for network (dyadic) models that rely on such di�erences of di�erences of
pairs of outcomes using tools from the literature on U-statistics. More speci�cally, I show
how to accommodate such tools to double-indexed variables. For the sake of simplicity,
I consider a linear dyadic model with two-way unobserved heterogeneity for a network
that can be directed, undirected, or bipartite. This model can be seen as a model for the
outcomes generated by the pairs of units that form a link (i.e., that are connected in the
network) conditional on the realized network. That is, an underlying assumption is that
the network formation is exogenous. The estimates for the coe�cients of the covariates
of interest are also obtained after taking the di�erences of di�erences of the outcomes of
pairs of units, such that the two-way �xed-e�ects are di�erenced out.

A key result provided in the chapter is that there can be di�erent ways of de�ning
the H�ajek projection, which will lead to distinct but equivalent, consistent estimators
for the asymptotic variance of the proposed estimator. Notably, the arguments in this
chapter can be generalized (with additional regularity conditions) to non-linear models
and/or models with multiplicative individual heterogeneity and error structure (as shown
in Jochmans (2017)). Finally, even though the traditional two-way �xed e�ects estimator
delivers consistent and asymptotically unbiased estimates for linear models, there are
gains when employing the estimator I propose in Chapter 2. As pointed out by Bonhomme
(2020), inference in linear models with a large number of incidental parameters may not
be standard, especially in sparse settings, while the method proposed is free of incidental
parameters, and the use of U-statistic tools delivers valid inference.

A natural follow-up question is how to model and estimate the outcomes generated
by connected dyads (pairs of units) without assuming network exogeneity and allowing
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for sparse settings, which is the main research question of the third chapter of this dis-
sertation. For instance, in the example for international trade 
ows mentioned above,
where a positive outcome is observed if units form a link and zeros are observed in the
absence of links, instead of considering the zeros through a sample selection model, I
proposed to model and estimate the conditional cumulative distribution function (CDF)
of the outcome of interest via a distribution regression method. The CDF describes the
likelihood of a random variable taking on a value less than or equal to a particular value.
In trade applications, it translates to the probability of trade 
ows being smaller or equal
to a certain threshold. By varying the value of these thresholds, an entire characterization
of the distribution of the trade 
ows is obtained. Therefore, distribution regressions can
be modeled by a sequence of binary response regressions for di�erent threshold values.
This setting naturally accommodates (many) observed zero outcomes in outcomes such
as trade 
ows since it describes a point-wise approximation of the CDF.

While this approach was initially proposed for the cross-sectional case with indepen-
dent observations by Foresi and Peracchi (1995), I extended this method to accommodate
network models. This extension accounts for the two-way �xed e�ects in the model and
the correlations in variables induced by the network structure. That is, the dyadic struc-
ture is incorporated in the model. Since the model to be estimated for each threshold is
non-linear and includes two-way �xed e�ects, standard maximum likelihood estimators
(such as probit and logit) will su�er from the incidental parameter problem, as mentioned
earlier. To address this issue, I proposed to employ the conditional maximum-likelihood
approach of Charbonneau (2017) to estimate the single binary choice models for each
of the thresholds of values in the support of the dependent variable (for instance, trade

ows). As mentioned before, the estimator of Charbonneau (2017) was initially proposed
for a network formation model; however, since the structure of those is that of a binary
choice model with two-way �xed e�ects, it is also suitable for each of the thresholds of the
distribution regression framework. Notably, the method applies not only to the example
of outcomes bounded below at zero but also to outcomes with any point masses in their
distributions. Moreover, one of the main advantages of this method (apart from handling
sparse networks), as opposed to sample selection models, is that it avoids explicitly mod-
eling the link formation and the outcomes jointly, avoiding strong assumptions concerning
it. In this chapter, I show that this method yields consistent and asymptotically unbiased
estimates even when the underlying network is sparse, being also suitable for the estima-
tion in the extreme quantiles of the distribution of the outcome of interest. These last two
features are the reasons why this chapter stands out from the literature, and are the main
di�erence with respect to Chernozhukov et al. (2020), which also proposed an estimation
method for distribution regressions in a network framework. To derive the asymptotic
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properties of the estimator proposed, I mainly relied on results from Jochmans (2018)
and on the second chapter of this dissertation.

Besides addressing zero outcomes and sparse networks, this method also estimates
covariates’ coe�cients that can vary across the outcomes’ distribution, which holds sig-
ni�cance. For instance, in trade applications, one might be interested not only in the
e�ects of trade costs on the mean level of trade 
ows but also in how this e�ect may vary
for di�erent quantiles of the distribution of trade 
ows and to statistically test whether
heterogeneity exists in these e�ects. This is relevant because, for instance, the analysis
of welfare e�ects of trade can vary substantially if the trade elasticities vary across the
trade 
ow distribution. Hence, this method is not only valid in the speci�c case of sparse
networks but also provides valuable outputs for dense networks. In this chapter, I nat-
urally consider an application to international trade 
ows. However, even if the model
considered in the paper re
ects a directed network, this method applies to a wide range
of settings with few modi�cations, such as bipartite networks (where one of the many
relevant applications considers employee-employer datasets).

Finally, the fourth chapter of this dissertation focuses on a di�erent topic in econo-
metrics of panel data models, namely, the estimation of treatment e�ects and the use of
the synthetic control (SC), demeaned synthetic control (DSC), and synthetic di�erence-in-
di�erences (SDID) methods. In a nutshell, such methods aim to construct a counterfactual
trajectory for the outcome of the treated unit in the absence of treatment by weighting
the untreated units. More speci�cally, this chapter re-evaluates the e�ect of the Brexit
referendum on the GDP of the UK, which was initially estimated by Born et al. (2019)
using a particular implementation of the SC approach with matching on covariates (where
the covariates also play a role in determining the weights assigned to the untreated units).
However, recently proposed extensions of the SC method robustify the approach towards
more general underlying Data Generating Processes (DGP). One such suggestion is the
SDID proposed by Arkhangelsky et al. (2021a). In contrast to the SC method, the SDID
additionally allows for both unit �xed-e�ects in the model for the outcome of interest
and time weights in the construction of the counterfactual, automatically bias-adjusting
counterfactual estimators. Moreover, Doudchenko and Imbens (2016) and Ferman and
Pinto (2021a) proposed the DSC method, constituting a natural middle ground between
the SC and the SDID methods. However, the results in both papers are somewhat limited
with regard to the setup where additional covariates are available for matching. Thus,
one of the aims of the fourth chapter of this dissertation is to �ll this gap.

Moreover, this chapter further investigates the bias reduction properties of the SDID
estimator. In particular, we show that the SDID estimator minimizes both interpolation
and extrapolation biases, while the SC method only minimizes the latter. On the empirical
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side, besides using these di�erent methods, we introduce several speci�cations with respect
(i) to the treatment date (more speci�cally, we consider that the treatment can start to
materialize either in 2016Q2 or 2016Q3 due to the ambiguity in the date of the Brexit
referendum), (ii) the possibility of matching on the average of the covariates or its last
value pre-treatment, (iii) the possibility of matching the time weights of the SDID based
on the �rst period post-treatment, or the average of the post-treatment periods up to the
period when the treatment e�ect is evaluated, or the period when the treatment e�ect is
evaluated, to take into account the possible trending behavior of the variables considered
in the analysis and (iv) the inclusion of a penalty regularization in the methods.

Strikingly, the SDID methods, in general, suggest a bigger e�ect of Brexit on the UK’s
GDP compared to other methods and estimates in previous studies. We investigate further
with an in-sample placebo analysis that indicates that the SDID methods perform better
than the remaining methods, suggesting that the e�ects of the Brexit referendum are
bigger than previously thought, which is relevant for policymakers. Of equal importance,
considering covariates when matching does not lead to improvements in this framework.
We complement the in-sample placebo analysis with a Monte Carlo study under a DGP
with a factor structure, for which we control the relative strength of the idiosyncratic and
the common (factor) components as well as covariates. The results indicate that the SDID
approach is more bene�cial when the common component is non-negligible in comparison
with the idiosyncratic component. At the same time, it performs similarly to the other
methods when the common component is negligible.

While this dissertation’s second and third chapters contribute to improving econo-
metric methods for sparse networks, there are still many open questions and challenges.
For instance, one might be interested in obtaining estimates for average marginal ef-
fects in sparse network formation models, which, at the current state of the literature,
is an impossible task when considering the unobserved individual heterogeneity as �xed
e�ects to be estimated since the methods of Charbonneau (2017) and Graham (2017)
relies on di�erencing out the �xed e�ects from the objective function. Moreover, borrow-
ing arguments from the standard panel data literature, those marginal e�ects are only
set-identi�ed when considering sparse settings. Thus, in future work, it is of interest to
propose bounds on these set-identi�ed estimates by extending the approach of Pakel and
Weidner (2021) to the network setting. Additionally, the method presented in the third
chapter of this dissertation can be further re�ned to incorporate fundamental properties
of CDFs, such as monotonicity. This can be achieved by proposing a global estimation of
the distribution regression coe�cients, in the same manner as in Spady and Stouli (2020),
however, accommodating for the two-way �xed e�ects structure of dyadic models.
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Finally, a very natural question on the topic of the estimation of treatment e�ects,
given the contents of this dissertation, is how to take into account network dependencies
and spillover e�ects when estimating treatment e�ects. One of the key assumptions of
the SC, DSC, SDID, and many other estimators for treatment e�ects is that there are
no spillovers. In the treatment e�ects literature, spillovers appear when the outcomes of
units are a�ected by the treatment status of others. Therefore, spillovers might amplify
or diminish the overall e�ect of treatments, a crucial aspect to consider in estimating
treatment e�ects. While there is a relatively broad literature on how to take into account
such spillovers in the setting of a randomized control variable (for instance, in Zhang
(2020), Cai et al. (2015), and Carter et al. (2021)), or in settings where methods such as
regression discontinuity designs can be applied (Dahl et al., 2014); this question remains
open (to my knowledge) in more challenging settings where there is not a clear source of
exogeneity of the treatment status.





Chapter 2

On the use of U-statistics for linear
dyadic interaction models1

Abstract

Even though dyadic regressions are widely used in empirical applications, the (asymptotic)
properties of estimation methods only began to be studied recently in the literature. This
chapter aims to provide in a step-by-step manner how U-statistics tools (Ser
ing, 2009) can
be applied to obtain the asymptotic properties of pairwise di�erences estimators for a two-
way �xed e�ects model of dyadic interactions. More speci�cally, I �rst propose an estimator
for the model that relies on pairwise di�erencing such that the �xed e�ects are di�erenced
out. As a result, the summands of the in
uence function will not be independent anymore,
showing dependence on the individual level and translating to the fact that the usual law
of large numbers and central limit theorems do not straightforwardly apply. To overcome
such obstacles, I show how to generalize tools of U-statistics for single-index variables to the
double-indices context of dyadic datasets. A key result is that there can be di�erent ways of
de�ning the H�ajek projection for a directed dyadic structure, which will lead to distinct, but
equivalent, consistent estimators for the asymptotic variances. The results presented in this
chapter are easily extended to non-linear models, as in Graham (2017) and Jochmans (2018).

1I would like to thank my advisors Frank Kleibergen and Art�uras Juodis for all comments and sugges-
tions. Moreover, I grateful for comments from Bo Honor�e and Timo Schenk. I also thank Andrea Titton
for his advice on optimizing the codes for the MC implementation and participants at the University of
Amsterdam PhD Seminar Lunch for their helpful discussions.
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2.1 Introduction

Dyadic regression analysis is a common practice in several applications for network
models. For instance, it has been used to estimate gravity models for international trade

ows since its establishment by Tinbergen (1962). As de�ned by Graham (2020), a
dyadic dataset corresponds to a situation where the outcome of interest re
ects a pairwise
interaction among the sample units. Therefore, it is natural that a dyadic structure
characterizes datasets on trade 
ows, as the value of imports and exports are determined
by both the importer and the exporter countries. Other examples of applications of dyadic
settings are, for instance, the estimation of models of �rm-level trade (Alfaro-Urena et al.,
2023), micro�nance loans (Banerjee et al., 2013), earnings in employee-employer data
(Bonhomme et al., 2019), and information 
ows (Jackson and L�opez-Pintado, 2013).

Even though dyadic regressions are widely used in empirical applications, the (asymp-
totic) properties of some estimation methods for this type of data have only recently
begun to be studied in the literature. Key features of dyadic models are (i) the presence
of two-way unit-speci�c e�ects, one for each individual in the dyadic interaction, and (ii)
the outcome variable (and, in most cases, explanatory variables) being double-indexed.
Moreover, in many cases, it is desirable to treat the two-way unobserved heterogeneity as
�xed e�ects to be estimated. For linear models with the two-way unobserved heterogene-
ity and the idiosyncratic error term entering additively in the speci�cation, it is possible
to estimate the model consistently and (asymptotically) unbiasedly using the two-way
�xed e�ects estimator (as long as the model is correctly speci�ed; see Juodis (2021)).

However, many economic models in the context of networks are non-linear, such as
network formation models, or when modeling outcomes that are bounded below at zero
(such as trade 
ows). More speci�cally, network formation models are naturally discrete
choice models (where the outcome of interest is binary, indicating the presence of a link,
or connection, between two nodes in the network) and could be estimated with a pro-
bit or a logit estimation. Also, the estimation of models for trade 
ows, for instance,
which is bounded below at zero and contain many zeros, can be done through a Poisson
pseudo-maximum likelihood estimation (Silva and Tenreyro, 2006), or through a tradi-
tional Heckman sample selection method (Helpman et al., 2008), such that the zeros are
taken into account in the estimation. The challenge is that, while it is desirable to treat
the unit-speci�c e�ects as parameters to be estimated (i.e., �xed e�ects, such that the
conditional distribution of the unobserved heterogeneity given the covariates is left un-
restricted), as Fern�andez-Val and Weidner (2016) show, even if both dimensions of the
(pseudo-)panel dataset grow with the sample size, these estimators su�er from the inci-
dental parameter problem (Neyman and Scott, 1948) in the presence of two-way �xed
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e�ects. This problem occurs since, in non-linear models, the estimates of the coe�cients
of the covariates depend on the estimates of the �xed-e�ects, and the latter converges at a
slower rate than the �rst, resulting in an asymptotic bias in the estimates (and, therefore,
invalid inference).

To address the incidental parameter problem in estimates for non-linear models with
two-way �xed e�ects, such as logit, probit, and Poisson pseudo-maximum likelihood es-
timators, Fern�andez-Val and Weidner (2016) proposed analytical and jackknife bias cor-
rection methods. However, for network formation models (discrete choice models), other
studies propose a conditional maximum-likelihood approach under the logistic speci�ca-
tion, such as in Charbonneau (2017), Jochmans (2018) and Graham (2017). The con-
ditioning sets in this approach translate to a model where pairwise di�erences of the
outcomes (and covariates) are taken such that the two-way �xed e�ects are di�erenced
out from the objective function, eliminating the incidental parameter problem.

The advantage of the conditional maximum-likelihood approach as opposed to the
bias-correction methods is that it accommodates sparse networks in the case of a network
formation model (Jochmans, 2018), which is a situation where, for instance, very few
links between nodes are formed2. However, when taking such di�erences in the model,
the summands of the in
uence functions will not be independent; therefore, the usual law
of large numbers and central limit theorems do not straightforwardly apply.

To overcome such obstacles, U-statistics tools are generally applied such that one can
show the asymptotic properties of those estimators. Although the U-statistics properties
are well-known for single-index variables (see Ser
ing (2009, Chapter 5), and Van der
Vaart (2000, Chapters 11 and 12)), those of double-indexed variables are generally not
treated (up to my knowledge) in textbooks, with few exceptions related to applications
for dyadic contexts, such as Graham (2019, Chapter 4).

The main purpose of this chapter is to illustrate, step-by-step and in a comprehensive
way, how to obtain the asymptotic properties of pairwise di�erences estimators (such
that the �xed e�ects are di�erenced out) for models of dyadic interactions using tools
from the literature on U-statistics. More speci�cally, I show how to accommodate such
tools to double-indexed variables, as the outcome and the covariates are indexed by both
individuals in the interaction. I consider a linear model with two-way �xed e�ects for
simplicity, even though, as mentioned earlier, the classical two-way �xed e�ects estimators
deliver consistent and (asymptotically) unbiased estimates in the linear model (such that
the pairwise di�erencing approach is not needed). However, the main arguments and tools
can be generalized (with additional regularity conditions) to non-linear models or models

2One common mathematical de�nition of sparsity is that the probability of two nodes forming a link
approaches zero or one.
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with multiplicative individual heterogeneity and error structure (as shown in Jochmans
(2017)). One advantage of di�erencing out the �xed e�ects, even in linear models, relates
to inference. As pointed out by Bonhomme (2020), inference in �xed e�ects linear models
with a large number of incidental parameters may not be standard, especially in sparse
network settings. At the same time, the method proposed in this chapter is free of
incidental parameters, and the use of U-statistic tools delivers valid inference. Moreover,
the linear model proposed in this chapter can be of interest in situations where one is
interested in modeling the outcomes generated by links formed in a network under the
assumption that the network formation process is exogenous.

A U-statistic for single-indexed variables is formally de�ned as an unbiased estimator
that is in the form of an average of a function (kernel) of i.i.d. random variables. The
main idea to determine the asymptotic properties of this estimator is to recognize that
the average of the scores of the proposed estimator is not formally a U-statistic but
shares properties thereof. Thus, it is possible to use tools from this literature to show
under which conditions it is possible to establish consistency and the limit distribution
of the score. To derive such results, an essential step is to de�ne a projection of the
average scores based on the so-called H�ajek projection. This projection is an average
of the conditional expected value of the score, such that, via conditional independence
arguments, the H�ajek projection is characterized as a simple average of i.i.d. random
variables, to which (versions of) laws of large numbers and central limit theorems can be
applied. Finally, it is possible to show that the projection and the average of the scores
are asymptotically equivalent, such that the limit distribution of the �rst carries over to
the latter.

A key result provided in this chapter is that, for a directed dyadic structure, there
can be di�erent ways of de�ning the H�ajek projection, which will lead to distinct but
equivalent, consistent estimators for the asymptotic variance of the proposed estimator.
More speci�cally, I provide two possible projections depending on which random variables
one conditions the expected value of the scores. Central to both possibilities is that
the summands of the in
uence function have a conditional independence structure once
conditioned on dyad-level attributes and the individual heterogeneity of both individuals
forming a dyad (a fundamental di�erence with respect to single-index contexts). This is
intuitive to dyadic settings, where the dependence across the dyads arises only through
the individual �xed e�ects and the possible correlated observations for the same individual
in di�erent pairwise interactions and thus, outcomes and covariates.

The organization of this chapter is as follows: in Section 2.2, I de�ne the linear model
of directed dyadic interactions; in Section 2.3, I propose a pairwise di�erences estimator;
in Section 2.4, I explain how some tools of U-statistics can be employed in this context
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and extended to dyadic settings; in Section 2.5, I discuss the asymptotic properties of
the estimator and possible consistent estimates of its asymptotic variance; and, in Sec-
tion 2.6, I demonstrate a Monte Carlo simulation exercise to investigate the �nite sample
properties of the estimator.

Notation
Random variables are denoted by capital letters, speci�c realizations thereof are de-

noted by lowercase, and their support is provided by blackboard bold capital letters. That
is, Y , y, and Y respectively denote a generic draw of, a speci�c value of, and the support
of Y .

Calligraphic letters denote sets. For instance, denote by N = f1; 2; :::Ng the set
of indices for N individuals (or nodes in a network). Denote by C(N ; 4) the multiset
containing all sets of combinations of four individuals from the sampled N individuals
or units. Moreover, denote jC(N ; 4)j =

�N
4

�
the number of obtained combinations, and

denote by C an unordered set formed by a given combination, say C = fi; j; k; lg.
Set P(C; 4) to be the multiset containing all sets of permutations containing four

elements of a given combination C. Also, let jP(C; 4)j = 4! to be the number of possible
permutations for a given combination, and � to be the ordered set formed by a given
permutation, where �1, �2, �3 and �4 denotes its �rst, second, third and fourth elements.
For instance, given a permutation � = fk; l; j; ig, then �1 = k, �2 = l, �3 = j and �4 = i.

2.2 A linear model of dyadic interactions

I consider a linear model of dyadic interactions between N agents, in which I assume
that all variables of all pairwise interactions are observed (i.e., a situation where all
outcomes of a complete network are observed or a situation where the outcomes from
pairs forming a link are observed, and the network formation is exogenous). Let (yij; xij)
denote the realizations of the random vector of outcomes and covariates (Yij; Xij) for the
dyad (i; j), i.e., the outcomes generated by the interaction between agents i and j, and
its covariates. Importantly, Yij is an outcome variable generated by the interaction of the
individuals, and it is continuous in this setting. I allow for directed interactions, such
that (Yij; Xij) need not be equal to (Yji; Xji), and I do not include self links3. Therefore,
for a set N = f1; 2; :::Ng of N agents, there are N(N � 1) observed dyads. Following the
notation of Graham (2020), denote that the �rst subscript on Yij or Xij to be the ego, or
sending agent, and the second to be the alter, or receiving agent.

3However, the method in this chapter can be employed in undirected or bipartite settings.
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Consider the following linear model of dyadic direct interactions, taking into account
two-way �xed e�ects:

Yij = �1Xij + �i + �j + Uij: (2.1)

For simplicity, I consider only one regressor Xij (which can easily be extended to a vector).
I assume that an agent-level attribute Ai (which also can be extended to a vector) and
an attribute Bj are observed, such that Xij = f(Ai; Bj) is a constructed dyad-level
attribute. On the other hand, the sequences of individual-level heterogeneity f�igNi=1 and
f�igNi=1 (for the ego, or sender, and for the alter, or receiver, respectively) are unobserved
and I treat them as �xed-e�ects. In particular, there are no restrictions on correlations
between �i, �j, and Xij. In other words, the joint distribution between the observed
and unobserved agent-level characteristics, fAi; Bi; �i; �ig is left unrestricted, such that
the model is semiparametric. Importantly, both the unobserved heterogeneity and the
attributes generating the covariates need not be the same for senders and receivers, i.e.,
Ai need not be equal to Bi, and �i need not be equal to �i. Finally, Uij is an idiosyncratic
component that is also not necessarily equal to Uji.

Taking, for instance, the classical gravity model for international trade 
ows given by
Anderson and Van Wincoop (2003), the variable Yij would refer to the log of the value
of exports from country i to country j, Xij refers to characteristics of the dyad (i; j),
for instance, the distance between the two countries, and �i and �j refers to the so-called
unobserved multilateral resistance terms. The latter terms refer, for example, to the
unmodeled export orientation of an economy, undervalued currencies, and consumption
taste. Notice that in this example, an implicit assumption is that the network formation
is exogenous; that is, countries’ decision of whether to trade is exogenous. Therefore, this
example follows only for illustration purposes.

I impose the following standard assumptions on this model:

Assumption 2.1. The error term Uij is i.i.d., independent of the sequence fAi; Bi; �i; �igNi=1

for any i and j, and satis�es:
E[Uij] = 0

E[UijUlk] =

8
<

:
�2
u if i = l; j = k

0 otherwise.

Assumption 2.2. The dyad-level observed variable Xij is given by:

Xij = f(Ai; Bj)
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where f is a measurable function, Ai and Bj are observed individual-level characteristics
of the ego and the alter, respectively. Moreover, Ai, Bi are i.i.d. and the sequences
fAi; BigNi=1 are mutually independent.

Assumption 2.3. (Analogous to Graham (2017)) Random sampling: Let i = 1; :::N
index a random sample of agents from a population satisfying Assumption 2.1. It is
observed (Yij; Xij) for i = 1; :::N , j = 1; :::N , j 6= i (i.e., all sampled dyads).

Given the presence of the two-way �xed e�ects, namely �i and �j, the conditional
independence between the outputs of di�erent dyads given the sequences of Ai and Bj

(or, given the covariates Xij) is unlikely to hold. Even when conditioning on the sequence
of covariates, outcomes that share the same ego or alter indices are likely to not be
independent. For instance, the outcomes Y12 and Y34 are independent of each other, but
the outcomes Y12 and Y13 are likely to be dependent, even after conditioning on X12 and
X13. As pointed out by Graham (2020), in the international trade example, exports from
Japan to Korea will likely covary with exports from Japan to the United States, even
after controlling for covariates, due to the Japan exporter e�ect. Graham (2020) denotes
these patterns as dyadic dependence.

However, after conditioning also on the �xed-e�ects, that is, conditional on fX12; X13; �1; �2; �3g,
or, equivalently from Assumption 2.2, conditional on fA1; B2; B3; �1; �2; �3g, the outcomes
Y12 and Y13 are independent. This result follows from Assumption 2.1. This conditional
independence structure will be essential for the asymptotic properties of the estimator
proposed in the following section, mainly because this structure is well-suited for apply-
ing the tools of U-statistics. Shalizi (2016) denotes such models of dyadic interactions
with such independency structure as conditionally independent dyad models (CID).

2.3 A pairwise di�erences estimator

Even though the model given by Equation (2.1), under Assumptions 2.1-2.3, and some
additional standard assumptions could be consistently and (asymptotically) unbiasedly
estimated with a two-way �xed-e�ects estimator, I propose an estimator that di�erences
out the �xed e�ects through pairwise di�erences. This estimator builds up on di�erencing
arguments similar to the estimator of Charbonneau (2017) for network formation models,
hence, a non-linear model. She considers a model where the outcome variable Yij is binary,
indicating whether an individual i forms a directed link with individual j.

As mentioned before, Fern�andez-Val and Weidner (2016) shows that maximum likeli-
hood estimators for non-linear models with two-way �xed e�ects, such as probit or logit,
su�er from the incidental parameter problem even if both dimensions of the (pseudo-
)panel dataset tend to in�nity. This is a consequence of the dimensions of the vectors of
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nuisance parameters (how the �xed e�ects are treated in both Charbonneau (2017) and
in this paper) growing with the number of observations. At this point, it is important to
notice that datasets of dyadic interactions can be seen as pseudo-panel data, where both
dimensions of the panel tend to in�nity as the number of individuals grows. Fern�andez-Val
and Weidner (2016) proposes analytical bias corrections to reduce the incidental parame-
ter (asymptotic) bias, which was implemented by Dzemski (2019) in a network formation
context. However, as explained by Jochmans (2018), the problem with the bias correction
approach is that for sparse networks, the individual-speci�c parameters (the �xed e�ects)
may not be consistently estimable or may be estimable only at a very slow rate, resulting
in asymptotic biases in the estimation of the slope parameters.

The approach proposed by Charbonneau (2017) becomes very attractive for sparse
networks since it delivers an estimator that di�erences out the �xed-e�ects through a
conditional maximum likelihood approach for logistic models. The estimator is based on
a set of conditions that translates to a transformation of the dependent and covariates,
where pairwise di�erences are taken, such that the �xed-e�ects in the model are canceled
out. Even though a classic logit estimation can be used to obtain the estimates of the
coe�cients of the covariates, inference does not follow the textbook’s usual procedures
since unit-level dependencies arise when taking such pairwise di�erences. The asymptotic
properties of this estimator are studied by Jochmans (2018) and are obtained by employ-
ing tools of U-statistics. He shows that this estimator is consistent and asymptotically
unbiased, and the estimated variances deliver correct sizes for the t-test.

The estimator introduced in this section is based on a similar pairwise di�erences
methodology for transforming the dependent variable and covariates to di�erence out
�xed-e�ects as presented by Charbonneau (2017), however, for a linear model. The pur-
pose of introducing this estimator is to provide a better understanding, through a simpler
model, of how to apply the tools of U-statistics to derive the asymptotic properties of
estimators based on such pairwise di�erences for dyadic data.

First, I de�ne the following notation for the random variable obtained by taking the
pairwise di�erences among di�erent dyads’ outputs for quadruples of nodes fi; j; k; lg in
the network:

~Yijkl � (Yij � Yik)� (Ylj � Ylk); (2.2)

and analogously for ~Xijkl and ~Uijkl.
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By substituting the expressions for each of the outcomes Yij, Yik, Ylj and Ylk given by
the model in Equation (2.1) to the expression for ~Yijkl in Equation (2.2), it follows that:

~Yijkl = �1 ~Xijkl + ~Uijkl; (2.3)

where the �xed e�ects are di�erenced out. The equation above is simply a linear regression
with the transformed variables obtained by taking the pairwise di�erences between the
dyads (i; j), (i; k) and (l; j), (l; k).

This form of di�erencing out the �xed e�ects depends heavily on the fact that the
individual-speci�c heterogeneity parameters (i.e., the �xed e�ects themselves) enter the
model additively. For more general speci�cations, this transformation fails to di�erence
out the �xed e�ects. However, other studies, such as Jochmans (2017), consider cases
with interactive �xed-e�ects.

Inspired by the same methodology of Charbonneau (2017) that is further developed by
Jochmans (2018), it is possible to estimate �1 with an ordinary least squares estimator by
taking into account the transformed variables ~Yijkl and ~Xijkl. Notice that the model given
by Equation (2.3), where the �xed e�ects are di�erenced out, holds for all combinations
of quadruples of indices from the set N = f1; : : : ; Ng and its permutations. Therefore,
one can write the pairwise di�erences OLS estimator as:

�̂1;PD =

"
NX

i=1

X

j 6=i

X

k 6=i;j

X

l 6=i;j;k

~Xijkl ~X 0ijkl

#�1 " NX

i=1

X

j 6=i

X

k 6=i;j

X

l 6=i;j;k

~Xijkl ~Yijkl

#

(2.4)

=
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~X 0�1�2�3�4
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C2C(N ;4)
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4!

X

�2P(C;4)

~X�1�2�3�4
~Y�1�2�3�4

3

5 ;

where, in the second line, I use the fact that summing over all possible permutations of
quadruples is equivalent to summing over all possible combinations of quadruples and
then all permutations of such combinations. Therefore, looking at a speci�c combination
given by C, then the multiset denoted by P(C; 4) corresponds to all permutations of those
indices. Then, given a permutation, � = fi; j; k; lg, it follows that �1 = i, �2 = j, �3 = k
and �4 = l, such that �1 refers to the index occupying the �rst position in the permutation
set, and analogously for �2, �3 and �4.

To obtain the properties of the estimator �̂1;PD, it is useful, as shown in the regular
textbook case, for OLS estimators to rewrite the previous expression in terms of its
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in
uence function:

�̂1;PD = �1+
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X

C2C(N ;4)
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X

�2P(C;4)

~X�1�2�3�4
~X 0�1�2�3�4
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�1 2

4 1
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C2C(N ;4)
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X

�2P(C;4)

~X�1�2�3�4
~U�1�2�3�4

3

5 :

(2.5)

In order to derive the asymptotic properties of this estimator, it is necessary to �rst derive
the asymptotic properties of the last term in the equation above, that is, the average of
the scores of the estimator:

2
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�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~U�1�2�3�4

3

5 :

Notice that the transformed error terms ~U�1�2�3�4 � (U�1�2 � U�1�3) � (U�4�2 � U�4�3)
are not independent over the dataset obtained when applying the transformation over all
possible combinations and its permutations of quadruples, since the same units and dyads
will appear in di�erent terms, leading to a correlation amongst the terms. Therefore, the
traditional application of LLNs and CLTs does not hold straightforwardly.

From now, denote the last term in Equation (2.5) by:

UN =
1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~U�1�2�3�4 (2.6)

=
1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

((X�1�2 �X�1�3)� (X�4�2 �X�4�3))((U�1�2 � U�1�3)� (U�4�2 � U�4�3)):

Even though this term resembles a U-statistic, it is not strictly speaking. However,
recognizing that it shares some of the properties of a U-statistic is key to establishing
convergence in probability and its limit distribution (and, therefore, of the proposed es-
timator), and which are the conditions necessary for it. Namely, the shared properties
relate to (i) this term being an average over combinations, (ii) Uij being i.i.d., (iii) and
the conditional independence structure associated with dyadic models. Under these prop-
erties, de�ning a H�ajek projection for UN is possible. This device is key when establishing
the asymptotic properties of the proposed estimator since it is possible to show the limit
distribution of the projection even in the presence of dependencies across the summands
of UN , which occurs partly from Xij not being i.i.d.. Moreover, by showing that this
projection is asymptotically equivalent to the term above, one can establish the limit
distribution of UN , which is the ultimate goal. Another important tool for establishing
the asymptotic equivalence is using a Hoe�ding decomposition (Hoe�ding et al., 1948) to
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obtain the variance of the term UN . The use of this tool is also possible due to the shared
properties that UN has with U-statistics, as listed above.

A key result in the following sections is that one can propose two possibilities of
H�ajek projections in this setting. In this chapter, I consider asymptotics under one single
network growing, i.e., I consider that N (the number of individuals in a network) tends
to in�nity when obtaining the asymptotic properties of the proposed estimator.

2.4 Using U-statistics Tools In Dyadic Settings

2.4.1 The U-statistics

According to Ser
ing (2009), the U-statistic is a generalization of the sample mean,
i.e., a generalization of the notion of forming an average. The formal de�nition of the
U-statistic is the following:

De�nition 2.1. (Ser
ing, 2009) Let W1;W2; :::Wn be independent observations on a
distribution F (which can be vector-valued). Consider a parametric function � = �(F )
for which there is an unbiased estimator:

�(F ) = E[h(W1; :::Wm)] =
Z
:::
Z
h(w1; :::; wm)dF (w1):::dF (wm)

for some function h = h(x1; :::; xm) called a kernel. It is assumed without loss of generality
that h is symmetric. Then, for any kernel h, the corresponding U-statistic for estimation
of � on the basis of a sample X1; :::Xn of size n � m is obtained by averaging the kernel
symmetrically over the observations:

Un = U(W1; :::Wn) =
1�n
m

�
X

c

h(Wi1 ; :::;Wim)

where
P

c denotes summation over the
�n
m

�
combinations of m distinct elements fi1; :::; img

from f1; :::; ng. An important property is that Un is an unbiased estimate of �.

The term UN , as de�ned in Equation (2.6), contains elements of a U-statistic, resem-
bling one at �rst glance. However, it is not formally one given the de�nition above. The
shared properties to a U-statistic are related to having a similar dependence structure,
such that it consists of an average over all combinations of quadruples of individuals,
evaluated at some given function, analogous to a fourth-order U-process. De�ne the
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symmetric kernel for a given combination C = fi; j; k; lg in this case to be:

sijkl :=
1
4!

X

�2P(C;4)

((X�1�2 �X�1�3)� (X�4�2 �X�4�3))((U�1�2 � U�1�3)� (U�4�2 � U�4�3));

(2.7)

which is essentially the score of the proposed estimator (being the reason why I denote
by s, and not h). Notice once again that the indices �1; �2; �3; �4 denote the elements of
the permutations of a given combination of individuals i; j; k; l. Another shared property
with the U-statistic is that the kernel is permutation invariant and that the arguments of
it, namely, the random variables Xij and Uij, are identically distributed, and Uij is i.i.d.,
from Assumptions 2.1 and 2.2.

Another important property that the term UN has in common with a U-statistic is
that by de�ning a parametric function � to be:

U = �(F ) (2.8)

= EF
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5

= 0;

then, in this context, UN is an estimator of �, and it is also unbiased, since,

EF [UN ] = EF
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~X�1�2�3�4
~U�1�2�3�4

3

5

= � = 0;

where the second equality follows from the linearity of expectations.
Despite these similarities, the statistic UN is not a U-statistic as conventionally de�ned

since its kernel includes random variables at both the individual (since Xij = f(Ai; Bj))
and dyad level (Uij). Therefore, the single-index U-statistics de�ned above are not well-
suited. Hence, the tools need to be slightly modi�ed to accommodate the dyadic structure.

Even more crucial is the fact that the observations fXijgNi=1;j 6=i are not independent
due to the common individual characteristics Ai or Bj. However, because Uij is i.i.d.
and is independent of Xij, it is still possible to employ tools of U-statistics, such as the
Hoe�ding decomposition to obtain the variance of UN , and the possibility to de�ne an
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H�ajek projection to obtain the asymptotic properties of this term (since I will demonstrate
that UN and the projections are asymptotically equivalent). Importantly, to apply LLNs
and CLTs to the H�ajek projection, I will exploit the conditional independence structure
of the projection. The conditional independence arguments extend straightforwardly to
CID models, making them well-suited for using U-statistic tools.

2.4.2 Calculating the variance of UN using a Hoe�ding decom-
position

To derive the variance of the term UN , I �rst use some arguments provided by Ser
ing
(2009), employed by, for instance, Graham (2017). First, de�ne:

De�nition 2.2. Consider two sets of combinations, say fi; j; k; lg and fm;n; o; pg, each
containing four distinct individuals from the setN = f1; : : : ; Ng. Then, let q 2 f0; 1; 2; 3; 4g
be the number of common individuals in the two combinations. Then, it follows by sym-
metry of the kernel function s, and by Assumptions 2.1 and 2.2, that:

�q := Cov[~sijkl; ~smnop] = E[~sijkl~smnop];

where ~sijkl = sijkl � �.

Notice that independently of which pairs of combinations of quadruples are considered
from the sampled individuals, the covariance between the two kernels evaluated at such
combinations will only depend on the number of common individuals that the combina-
tions share, namely, q. This follows since, from Assumptions 2.1 and 2.2, Uij, Ai, and
Bj are i.i.d. and the kernel (score) s is symmetric on its arguments. By working out
further the expression for the covariance �q, one can see that the covariance between the
idiosyncratic errors mainly drives the nonzero terms in the expression. This is due to
(i) fUijgNi=1;j 6=i being independent of fXijgNi=1;j 6=i, and (ii) the idiosyncratic errors being
independent of each other, while, for instance, Xij is correlated with Xik due to the com-
mon individual factor Ai. Therefore, if there is no common dyad in the expressions of the
kernels for both combinations, the covariance between them will be zero since Uij is i.i.d.
(thus, importantly, Uij and Uik are independent). This argument will become clearer in
Appendix 2.A.

Due to the dyadic structure and to Uij being i.i.d., Cov(sijkl; smnop) = 0 whenever
the quadruples share zero or only one individual in common, say, i = m and j = n.
Therefore, �0 = �1 = 0 indicates that UN exhibits degeneracy of order one. As long
as the combinations have two or more indices in common since the kernels sum over all
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permutations of the combinations, the same idiosyncratic error (with the same indices i
and j) appears in both terms sijkl and smnop, leading to a nonzero covariance.

Assuming further that:

Assumption 2.4. The symmetric kernel sijkl satis�es:

E[s2
ijkl] <1:

Since the covariances �q are constant across pairs of combinations sharing q individuals
in common, the variance of UN can be obtained through the Hoe�ding decomposition
(Hoe�ding et al., 1948), as the following Lemma states:

Lemma 2.1. The variance of UN is given by:

Var(UN) =
�
N
4

��1 4X

q=0

�
4
q

��
N � 4
4� q

�
�q:

And it satis�es, given Assumption 2.4:

Var(UN) <1:

Proof. Provided in Appendix 2.B.1.
Given the result provided by Lemma 2.1, I rescale the statistic UN by the factor

p
N(N � 1), and by taking into account that �0 = �1 = 0, and denoting:

�sij = E[sijkljAi; Bj; Uij] and �sji = E[sijkljAj; Bi; Uji];

�2 = E[�s2
ij] = E[�s2

ji];

the following result holds:

Theorem 2.1. Given the result in Lemma 2.1, and under Assumptions 2.1-2.3 and 2.4:

Var(
p
N(N � 1)UN) = O(1) +O

�
1
N

�
+O

�
1
N2

�
:

The term related to �2 asymptotically dominates the expression, such that the variance
of the rescaled statistic UN converges to:

Var(
p
N(N � 1)UN) N�!1����! 72�2 = 144�2:

Proof. Provided in Appendix 2.B.2.
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Where the terms of order O(1) in the above expression relates to the term �2, O
� 1
N

�

relates to the term �3 and O
� 1
N2

�
relates to the term �4. Furthermore, given this

simpli�ed model, it is possible to further pin down the expression for �2. This result can
be found in Appendix 2.C.

2.4.3 Deriving the H�ajek projection of UN

As explained by Ser
ing (2009), the appealing feature of a U-statistic, as given by
De�nition 2.1, is its simple structure as a sum of identically distributed random vari-
ables. However, even in the more straightforward context of a single-index U-statistic,
if the kernel h has a dimension m > 1, then the summands in the statistic UN are not
all independent, as the sample sampled observations are taken into account in di�erent
combinations. Therefore, it is not possible to employ LLNs and CLTs directly for averages
of independent random variables, as it is customarily done. However, Ser
ing (2009) and
other textbooks on U-statistics show that it is possible to obtain a projection to which
the U-statistic can be approximated to. The advantage is that such projection is a sum
of i.i.d. random variables, to which classical limit theory can be applied.

In the following, I will present the formal de�nition of this projection, the H�ajek pro-
jection, and explain how this concept can be applied in this context. I also highlight con-
siderable di�erences between this approach and the classical textbook projection. Again,
the main di�erence is that while the standard de�nitions account for single-index vari-
ables, in the present framework of a dyadic setting, the random variables forming the
U-statistics have double indices. Moreover, the pairwise di�erences structure in the ker-
nel is formed by random variables re
ecting the dyadic interactions originated by four
individuals.

Therefore, to obtain the H�ajek projection, instead of conditioning on a single-indexed
random variable alone as it is done in textbooks, I condition on both the individual
and dyad-level random variables given by the dyad indices. I show that by doing so,
I still obtain a projection where the summands are conditionally independent, even if
the sequence fXijgNi=1;j 6=i is not formed by independent variables, since the idiosyncratic
errors Uij are i.i.d. and independent of the former sequence. This relies on the previously
mentioned arguments of conditional independence of CID models.

Besides, in the general textbook case or single-index variables, it is stated that the
projection has no purpose in the case where �1 = 0. However, in this setting, the
projection proves to be useful due to the dyadic structure even when �1 = 0 holds.

The most important result in this section is that I can propose two di�erent forms of
H�ajek projections, depending on whether I condition on all random variables generated
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by the combination fi; jg of a dyad, or if I condition on the random variables generated
by the permutation fi; jg, where the ordering of the indices matter.

According to Ser
ing (2009), and following the same notation and framework as in
De�nition 2.1, have the following textbook de�nition for a H�ajek projection is given:

De�nition 2.3. Assume EF jhj<1: The projection of the U-statistic Un is de�ned as

Ûn :=
nX

i=1

EF fUn j Wig � (n� 1)�:

In the context of Ser
ing (2009), this is exactly a sum of i.i.d. random variables.

It is important to notice that, in the de�nition of Ûn above, when taking the expec-
tation of Un conditioning on each di�erent Wi for each summand, we are left with a sum
of i.i.d. random variables, since Wi are i.i.d. themselves.

First H�ajek projection, ÛN;1

I denote the �rst proposed H�ajek projection by ÛN;1. In this context, it is already
derived before that � = E[sijkl] = 0 (see Equation (2.8)). Therefore, I only focus now on
deriving the �rst term of the similar projection proposed in De�nition 2.3. In addition,
in this chapter, the context is that of a dyadic structure. Consequently, the sum is over
the expected value of the statistic UN conditional on each of the dyad characteristics,
namely, for a given dyad fi0; j0g I condition on fA0i; B0j; Ui0j0g. Accordingly, I sum over all
the possible dyads N(N � 1). Notice that the order of the indices in the dyad matters
since I consider a directed network.

De�nition 2.4. Given the statistic in Equation (2.6), de�ne the �rst H�ajek projection
as:

ÛN;1 =
NX
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X

j0 6=i0
E[UN jAi0 ; Bj0 ; Ui0j0 ] (2.10)
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X
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E[sijkljAi0 ; Bj0 ; Ui0j0 ]:
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The main idea behind this projection is that the double sum
PN

i0=1
P

j0 6=i0 �xes the
two indices of a dyad and refers to the individual-level fAi0 ; Bj0g and the dyad level
characteristics Ui0j0 , which the statistic UN is conditioned on. In this case, the order of
the indices (i0; j0) matters to determine which random variables I condition on.

For each summand of the double sum,
PN

i0=1
P

j0 6=i0 , the expectation of the statistic
UN conditional on the variables described above is taken. The statistic is essentially an
average of the scores sijkl evaluated at all possible combinations of quadruples fi; j; k; lg
from the set N . From Assumption 2.1, and more precisely, since Uij is independent from
the sequence fXijgNi=1;j 6=i, the only non-zero summands are the ones where the combination
C contains the elements i0 and j0, and any other two remaining elements. Since the kernel
contains all permutations of the combination, inevitably the term Ui0j0 will appear in the
expression for the kernel sijkl in this case (where fi0; j0g � fi; j; k; lg, with, for instance,
i = i0 and j = j0), leading to a non-zero conditional expectation.

The expression of the projection ÛN;1 can be further pinned down by �rst noting that,
as shown in Appendix 2.C, for a given combination fi0; j0; k; lg for any value of k and l,
the conditional expected value of the kernel evaluated at such combination is of the form:

E[si0j0kljAi0 ; Bj0 ; Ui0j0 ] = 8[(Xi0j0 �E[Xi0j0 jAi0 ]�E[Xi0j0jBj0 ] +E[Xi0j0 ])Ui0j0 ]:

Moreover, there will be
�N�2

2

�
possible combinations of four elements of the set N con-

taining the individuals i0 and j0. Then, one can rewrite the projection as:

ÛN;1 =
NX

i0=1

X

j0 6=i0

1
�N

4

�
1
4!

�
N � 2

2

�
8[(Xi0j0 �E[Xi0j0 jAi0 ]�E[Xi0j0jBj0 ] +E[Xi0j0 ])Ui0j0 ]

(2.11)

=
4

N(N � 1)

NX

i0=1

X

j0 6=i0
[(Xi0j0 �E[Xi0j0 jAi0 ]�E[Xi0j0 jBj0 ] +E[Xi0j0 ])Ui0j0 ]:

In order to show, in the following sections, that the statistic UN and the projection ÛN;1
are asymptotically equivalent, I �rst derive the variance of the projection.

Lemma 2.2. Under Assumptions 2.1 and 2.2, the variance of the �rst H�ajek projection
given by De�nition 2.4 is:

Var(ÛN;1) =
144

N(N � 1)
�2:

Therefore, by rescaling the projection by the factor
p
N(N � 1):

Var(
p
N(N � 1)ÛN;1) = 144�2:
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Proof. Proof provided in Appendix 2.B.3.

Second H�ajek projection, ÛN;2

Before de�ning the second possibility for the H�ajek projection, notice �rst that con-
ditioning on individual and dyad-level random variables related to a directed dyad (i0; j0)
is di�erent from conditioning on all individual and dyad-level random variables related to
a combination fi0; j0g. More speci�cally, the �rst comprises of the elements Ai0 , Bj0 and
Ui0j0 , while the second comprises of Ai0 , Aj0 , Bi0 , Bj0 , Ui0j0 and Uj0i0 .

Therefore, in this second proposed projection, instead of summing over all possible
directed dyads, I sum over all possible combinations of indices i0 and j0, which amounts to
N(N�1)

2 combinations. I, therefore, condition on all characteristics of these both indices:

De�nition 2.5. Given the statistic in Equation (2.6), de�ne the second H�ajek projection
as:

ÛN;2 :=
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Again, the double sum,
PN

i0=1
P

j>i, �xes two indices i0 and j0 of the possible tetrads,
and it runs over the conditioning terms. Then, the expectation of the statistic UN con-
ditional on the above terms is taken. The structure of the second H�ajek projection is
essentially the same as the �rst, apart from which terms it is conditioned on. Therefore,
again, for all combinations of quadruples for which the average of the conditional expecta-
tion of the score function (kernel) is taken, only

�N�2
2

�
combinations will lead to non-zero

expected values. Those combinations refer again to the ones containing the elements i0

and j0.
The di�erence with respect to the previous projection, that is induced by the extra

conditioning terms, boils down to the terms in the score function sijkl (where fi0; j0g �
fi; j; k; lg, with, for instance, i = i0 and j = j0) that will be non-zero, since now the
permutations that both the terms Ui0j0 and Uj0i0 will have non-zero terms.
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Once again, the expression of the projection ÛN;2 can be further pinned down by
�rst noting that, as shown in Appendix 2.C, for a given combination fi0; j0; k; lg, and
for any value of k and l, the conditional expected value of the kernel evaluated at such
combination is of the form:

E[si0j0kljAi0 ; Bj0 ; Ui0j0 ; Aj0 ; Bi0 ; Uj0i0 ]

= 8[(Xi0j0 �E[Xi0j0 jAi0 ]�E[Xi0j0jBj0 ] +E[Xi0j0 ])Ui0j0 ]

+ 8[(Xj0i0 �E[Xj0i0jAj0 ]�E[Xj0i0 jBi0 ] +E[Xj0i0 ])Uj0i0 ]:

Such that the expression for the projection can be further simpli�ed:

ÛN =
NX

i=10

X

j0>i0

1
�N

4

�
1
4!

�
N � 2

2

�h
8[(Xi0j0 �E[Xi0j0 jAi0 ]�E[Xi0j0jBj0 ] +E[Xi0j0 ])Ui0j0 ]

+ 8[(Xj0i0 �E[Xj0i0 jAj0 ]�E[Xj0i0jBi0 ] +E[Xj0i0 ])Uj0i0 ]
i

(2.13)

=
4

N(N � 1)

NX

i0=1

X

j0>i0

h
(Xi0j0 �E[Xi0j0jAi0 ]�E[Xi0j0jBj0 ] +E[Xi0j0 ])Ui0j0

+ (Xj0i0 �E[Xj0i0 jAj0 ]�E[Xj0i0jBi0 ] +E[Xj0i0 ])Uj0i0
i
:

Again, I proceed by deriving the variance of this second projection, which should be
equivalent to the variance of the �rst proposed projection.

Lemma 2.3. Under Assumptions 2.1 and 2.2, the variance of the second H�ajek projection
given by De�nition 2.5 is:

Var(ÛN;2) =
72

N(N � 1)
�2:

Therefore, by rescaling the projection by the factor
p
N(N � 1):

Var(
p
N(N � 1)ÛN;2) = 72�2:

Proof. Provided in Appendix 2.B.4.

2.4.4 Showing the asymptotic equivalence of UN and ÛN;1 or ÛN;2

The main idea of de�ning an H�ajek projection is to obtain a statistic that is approx-
imately and asymptotically close enough to the U-statistic and to which central limit
theorems and laws of large numbers can be applied.

Ser
ing (2009) provides readily applicable results for the asymptotic equivalence of
the U-statistic given by De�nition 2.1 and the H�ajek projection given by De�nition 2.2,
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and, consequently, to the asymptotic properties of the U-statistics, since in this case the
projection is an average of i.i.d. random variables. However, in the case of this chapter,
as the statistic UN is not formally a U-statistic, such results cannot be immediately used.

To derive the asymptotic equivalence between UN and the two proposed projections,
ÛN;1 and ÛN;2, I closely follow the arguments in Graham (2017).

Remark 2.1. According to Graham (2017), the asymptotic equivalence4 of
p
N(N � 1)UN

and of
p
N(N � 1)ÛN follows if:

N(N � 1)E[(ÛN � UN)2] is o(1)

.

Following up on this Remark, the following result holds:

Theorem 2.2. Given the de�nitions of the statistic UN given by Equation (2.6) and the
proposed H�ajek projections ÛN;1, in De�nition 2.4, and ÛN;2, in De�nition 2.5, UN is
asymptotically equivalent to ÛN;1 and ÛN;2 under Assumptions 2.1-2.4.

Proof. Provided in Appendix 2.B.5.
Hence, even though the statistic UN is not properly de�ned as a U-statistic, it is

still possible to show that under the assumptions needed for the results above, its limit
distribution coincides with that of the proposed H�ajek projections. This property is key
to de�ning the asymptotic properties of the pairwise di�erences estimator in the next
section.

2.5 Asymptotic properties of the Pairwise Di�erences
estimator and estimated variances

2.5.1 Asymptotic properties of the Pairwise Di�erences estima-
tor

Considering the rewritten estimator, as de�ned before:

�̂1;PD = �1+

2

4 1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~X 0�1�2�3�4

3

5
�1 2

4 1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~U�1�2�3�4

3

5 :

(2.14)

4This result is also provided in Ser
ing (2009).
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Notice that to obtain the asymptotic properties, it is key to obtain the convergence of the
Hessian:

2

4 1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~X 0�1�2�3�4

3

5 : (2.15)

While in most of the studies on dyadic regressions and U-statistics tools associated with
it, the convergence of this Hessian is assumed (for instance, in Graham (2019)), I, instead,
prove such convergence result. Even though this term resembles a U-statistic or at least
a term to which U-statistic tools can be applied, it is not the case. This follows from not
having a term such as Uij, which is i.i.d. in the dyad level in such statistic, and which
would guarantee the conditional independence of summands. Therefore, the same tools
applied to the statistic UN cannot be carried over here. Instead, this approach relies on
deriving the variance of such a term and proving the convergence in probability through
Chebyshev’s inequality.

Proposition 2.1. Under the assumption that :

E[jXijXi0j0 j] <1 8 i; i0; j; j0

It follows that:
2

4 1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~X 0�1�2�3�4

3

5 p�! � := E[ ~X�1�2�3�4
~X 0�1�2�3�4

];

where � is �nite and invertible.

Proof. Provided in Appendix 2.B.6.
Given the result of the Proposition above, by rescaling the expression of the rewritten

estimator by
p
N(N � 1):

p
N(N � 1)(�̂1;PD � �1) = ��1

p
N(N � 1)UN + op(1); (2.16)

which follows by the continuous mapping theorem. Therefore, the asymptotic sampling
properties of

p
N(N � 1)(�̂1;PD � �1) will be driven by the behaviour of

p
N(N � 1)UN .

From Theorem 2.2, the statistic UN is asymptotically equivalent to the projections
ÛN;1 and ÛN;2. Therefore, the asymptotic properties of those carry over to the asymptotic
properties of UN . Notice that, from Equation (2.B.12) and its analogous for the second
proposed projection, the summands of the projections are uncorrelated but not necessarily
independently distributed. The dependence structure remains since the same individual
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characteristics Ai and Bj for a given i and j are still present in di�erent summands, as
for instance, one can have terms such as E[Xij0jBj0 ] in one summand and E[Xik0jBk0 ] in
another summand.

However, as pointed out by Graham (2017) and Jochmans (2018) in their contexts,
by law of iterated expectations:

ÛN;1 =
NX

i0=1

X

j0 6=i0

1
�N

4

�
X

C2C(N ;4)

E[sijkljAi0 ; Bj0 ; Ui0j0 ]

=
NX

i0=1

X

j0 6=i0

1
�N

4

�
X

C2C(N ;4)

E[E[sijkljAi0 ; Bj0 ; Ui0j0 ]A;B]: (2.17)

Such that the summands of the projections are conditionally independent when condi-
tional on all indices fAigNi=1 and fBjgNj=1, which is a characteristic of CID models, and
that carries over to this context. Given this conditional independence of the random
variables:

Lemma 2.4. From a conditional version of the strong law of large numbers and a condi-
tional version of Lyapunov’s central limit theorem, given by Rao (2009), it follows that:

(i) ÛN;1
p�! 0 and ÛN;2

p�! 0
(ii)

p
N(N � 1)ÛN;1

d�! N(0; 144�2) and
p
N(N � 1)ÛN;2

d�! N(0; 72�2):

Since the expectation of the H�ajek projections are zero, and their variances are de�ned by
Lemma 2.2 and Lemma 2.3.

Moreover, since UN and the projections are asymptotically equivalent, that is, jjÛN;1�
UN jj

p�! 0, and jjÛN;2 � UN jj
p�! 0:

(i) UN
p�! 0

(ii)
p
N(N � 1)UN

d�! N(0; �2
U), where �2

U = 144�2 = 72�2.

Following Proposition 2.1 and Lemma 2.4, I can establish �rst the consistency of the
estimator, which is provided in the following theorem.

Theorem 2.3. Given the results of Proposition 2.1 and Lemma 2.4, and its associated
assumptions, �̂1;PD is a consistent estimator of �1:

�̂1;PD
p�! �1:

Proof. Provided in Appendix 2.B.7.
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From the same Proposition and Lemma, the estimator’s asymptotic normality and
the associated asymptotic variance can be established. Also, note that the estimator is
asymptotically unbiased according to the following theorem.

Theorem 2.4. Using the representation in Equation (2.16):

p
N(N � 1)(�̂1;PD � �1) = ��1

p
N(N � 1)UN + op(1):

And under the results of Lemma 2.4, it follows by the Slutsky theorem:

p
N(N � 1)(�̂1;PD � �1) d�! N(0;��1144��1) = N(0;��172�2��1):

Therefore, the estimator �̂1;PD is normally distributed and asymptotically unbi-
ased.

2.5.2 An estimator for the asymptotic variance of �̂1;PD

From Theorem 2.4, it trivially follows that:

�̂1;PD
a� N

�
�1;

1
N(N � 1)

��1144�2��1
�

�̂1;PD
a� N

�
�1;

1
N(N � 1)

��172�2��1
�

Therefore, the asymptotic variance of the estimator �̂1;PD can be estimated as:

AVar dAVar(�̂1;PD) =
1

N(N � 1)
�̂�1144�̂2�̂�1

AVar dAVar(�̂1;PD) =
1

N(N � 1)
�̂�172�̂2�̂�1;

where:
�̂ =

1
�N

4

�
X

C2C(N ;4)

1
4!

X

�2P(C;4)

~X�1�2�3�4
~X 0�1�2�3�4

;

where the asymptotic variance can be estimated using either a consistent estimator for �2

or a consistent estimator for �2. In the following subsections, I will propose consistent
estimators for both.
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A consistent estimator of �2

As mentioned before, the de�nition of �2 is:

�2 = E[�sij�s0ij];

where:
�sij = E[sijkljAi; Bj; Uij]

Importantly, the elements which I condition on, namely, Ai; Bj; Uij have indices i and j
that necessarily are in the combinations fi; j; k; lg for any other elements k and l. This is
given because the term �2 originates from the expression of the variance of the statistic
UN , which considers the components in such variance that have two elements in common.
To obtain a consistent estimator �̂2, a consistent estimator �̂sij is also needed.

Graham (2017) suggests that for an undirected network, the consistent estimators are:

�̂2;G =
1
n

X

i<j

�̂sij �̂s0ij;

�̂sij;G =
1

n� 2(N � 1) + 1

X

k<l;fi;jg\fk;lg=;

sijkl;

where n = N(N�1)
2 is the number of undirected dyads, therefore the expression for �̂2;G

considers the average over all undirected dyads. The sum
P

k<l;fi;jg\fk;lg explicitly means
that, given two �xed indices i and j for the �rst dyad, I take the sum over all possible
remaining di�erent indices k and l, such that k < l, since in the context of Graham (2017)
I have an undirected network, and therefore only the di�erent combinations fk; lgmatters,
but not its di�erent permutations. Moreover, notice that n� 2(N � 1) + 1 coincides with
the

�N�2
2

�
tetrads that contain a �xed i and j. Therefore, the expression for �̂sij;G averages

over all the kernels of the combinations that contain i and j.
As I consider a directed network in this chapter, some adjustments are necessary.

Especially, notice that, for a directed network, not necessarily �sij = �sji, since:

E[sijkljAi; Bj; Uij] 6= E[sijkljAj; Bi; Uji]

That means that in the expression for the consistent estimator of �2, one should average
over all possible directed dyads:

�̂2 =
1

N(N � 1)

NX

i=1

X

j 6=i

�̂sij �̂s0ij: (2.18)



2.5 Asymptotic properties of the Pairwise Di�erences estimator and estimated variances33

One possibility is to work out further the expression for �sji, such that it does not simply
boil down to the average over the kernels when estimated.

To be more precise, when taking the expectation over the kernel sijkl conditioning on
the characteristics of a single dyad fi; jg, only some of its permutations (that are inside
the kernel, and namely the ones that contain the idiosyncratic error term Uij) will have a
conditional expectation di�erent than zero:

�sij = E[sijkljAi; Bj; Uij] (2.19)

= E[
1
4!

X

�2P(C;4)

((X�1�2 �X�1�3)� (X�4�2 �X�4�3))((U�1�2 � U�1�3)� (U�4�2 � U�4�3))jAi; Bj; Uij]

=
1
4!

�
E[((Xij �Xik)� (Xlj �Xlk))((Uij � Uik)� (Ulj � Ulk))jAi; Bj; Uij]

+E[((Xik �Xij)� (Xlk �Xlj))((Uik � Uij)� (Ulk � Ulj))jAi; Bj; Uij]

+E[((Xkj �Xkl)� (Xij �Xil))((Ukj � Ukl)� (Uij � Uil))jAi; Bj; Uij]

+E[((Xlk �Xlj)� (Xik �Xij))((Ulk � Ulj)� (Uik � Uij))jAi; Bj; Uij]

+E[((Xkl �Xkj)� (Xil �Xij))((Ukl � Ukj)� (Uil � Uij))jAi; Bj; Uij]

+E[((Xlj �Xlk)� (Xij �Xik))((Ulj � Ulk)� (Uij � Uik))jAi; Bj; Uij]

+E[((Xij �Xil)� (Xkj �Xkl))((Uij � Uil)� (Ukj � Ukl))jAi; Bj; Uij]

+E[((Xil �Xij)� (Xkl �Xkj))((Uil � Uij)� (Ukl � Ukj))jAi; Bj; Uij]
�
;

which is di�erent than:

�sji = E[sijkljAj; Bi; Uji] (2.20)

= E[
1
4!

X

�2P(C;4)

((X�1�2 �X�1�3)� (X�4�2 �X�4�3))((U�1�2 � U�1�3)� (U�4�2 � U�4�3))jAj; Bi; Uji]

=
1
4!

�
E[((Xji �Xjk)� (Xli �Xlk))((Uji � Ujk)� (Uli � Ulk))jAj; Bi; Uji]

+E[((Xjk �Xji)� (Xlk �Xli))((Ujk � Uji)� (Ulk � Uli))jAj; Bi; Uji]

+E[((Xki �Xkl)� (Xji �Xjl))((Uki � Ukl)� (Uji � Ujl))jAj; Bi; Uji]

+E[((Xlk �Xli)� (Xjk �Xji))((Ulk � Uli)� (Ujk � Uji))jAj; Bi; Uji]

+E[((Xkl �Xki)� (Xjl �Xji))((Ukl � Uki)� (Ujl � Uji))jAj; Bi; Uji]

+E[((Xli �Xlk)� (Xji �Xik))((Uli � Ulk)� (Uji � Uik))jAj; Bi; Uji]

+E[((Xji �Xjl)� (Xki �Xkl))((Uji � Ujl)� (Uki � Ukl))jAj; Bi; Uji]

+E[((Xjl �Xji)� (Xkl �Xki))((Ujl � Uji)� (Ukl � Uki))jAj; Bi; Uji]
�
:
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Therefore, taking the sample analog of those expressions applied to a given combination
fi; j; k; lg that contain the �xed elements i; j and any elements k; l:

�̂sij =
1

n� 2(N � 1) + 1

X

k<l;fi;jg\fk;lg=;

1
4!

�
((Xij �Xik)� (Xlj �Xlk)) ~̂Uijkl

+ ((Xik �Xij)� (Xlk �Xlj)) ~̂Uikjl + ((Xkj �Xkl)� (Xij �Xil)) ~̂Ukjli

+ ((Xlk �Xlj)� (Xik �Xij)) ~̂Ulkji + ((Xkl �Xkj)� (Xil �Xij)) ~̂Uklji

+ ((Xlj �Xlk)� (Xij �Xik)) ~̂Uljki + ((Xij �Xil)� (Xkj �Xkl)) ~̂Uijlk

+ ((Xil �Xij)� (Xkl �Xkj)) ~̂Uiljk
�
;

�̂sji =
1

n� 2(N � 1) + 1

X

k<l;fi;jg\fk;lg=;

1
4!

�
((Xji �Xjk)� (Xli �Xlk)) ~̂Ujikl

+ ((Xjk �Xji)� (Xlk �Xli)) ~̂Ujkil + ((Xki �Xkl)� (Xji �Xjl)) ~̂Ukilj

+ ((Xlk �Xli)� (Xjk �Xji)) ~̂Ulkij + ((Xkl �Xki)� (Xjl �Xji)) ~̂Uklij

+ ((Xli �Xlk)� (Xji �Xjk)) ~̂Ulikj + ((Xji �Xjl)� (Xki �Xkl)) ~̂Ujilk

+ ((Xjl �Xji)� (Xkl �Xki)) ~̂Ujlik
�
:

In the expressions above, I plugged in the estimates of the idiosyncratic error terms,
obtained from the estimated coe�cient �̂1;PD, such that:

~̂Uijkl = ~Yijkl � �̂1;PD ~Xijkl;

for any indices i; j; k; l.
Then, for these proposed consistent estimators, �̂sij 6= �̂sji.

A consistent estimator of �2

In this case, the previous de�nition of �2 is:

�2 = Cov(sijkl; sijmp) = E[sijkls0ijmp]�E[sijkl]E[sijmp]0 (2.21)

= E[E[sijkls0ijmpjAi; Aj; Bi; Bj; Uij; Uji]]

= E[�sij;2�s0ij;2]

= E[�s2
ij;2]:

As the H�ajek projection was obtained by summing all combinations (and not permuta-
tions) of indices i and j, the consistent estimator of �2 should average over all these
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possible combinations:

�̂2 =
2

N(N � 1)

NX

i=1

X

j>i

�̂s2
ij;2: (2.22)

Moreover, remembering that �sij;2 is the kernel conditioning on all characteristics of i and
j, its estimator, �̂sij;2, is given by:

�̂sij;2 =
1

n� 2(N � 1) + 1

X

k<l;fi;jg\fk;lg=;

1
4!

�
((Xij �Xik)� (Xlj �Xlk)) ~̂Uijkl

+ ((Xik �Xij)� (Xlk �Xlj)) ~̂Uikjl + ((Xkj �Xkl)� (Xij �Xil)) ~̂Ukjli

+ ((Xlk �Xlj)� (Xik �Xij)) ~̂Ulkji + ((Xkl �Xkj)� (Xil �Xij)) ~̂Uklji

+ ((Xlj �Xlk)� (Xij �Xik)) ~̂Uljki + ((Xij �Xil)� (Xkj �Xkl)) ~̂Uijlk

+ ((Xil �Xij)� (Xkl �Xkj)) ~̂Uiljk + ((Xji �Xjk)� (Xli �Xlk)) ~̂Ujikl

+ ((Xjk �Xji)� (Xlk �Xli)) ~̂Ujkil + ((Xki �Xkl)� (Xji �Xjl)) ~̂Ukilj

+ ((Xlk �Xli)� (Xjk �Xji)) ~̂Ulkij + ((Xkl �Xki)� (Xjl �Xji)) ~̂Uklij

+ ((Xli �Xlk)� (Xji �Xi0k)) ~̂Ulikj + ((Xji �Xjl)� (Xki �Xkl)) ~̂Ujilk

+ ((Xjl �Xji)� (Xkl �Xki)) ~̂Ujlik
�
;

where, again, in the expression above, I plugged in the estimates of the idiosyncratic error
terms, obtained from the estimated coe�cient �̂1;PD, such that.

With both consistent estimates of the covariances, it is then possible to conduct valid
inference. Moreover, in the next section I investigate the �nite sample performance of
both analytical estimates.

2.6 Simulations

In this section, I explore the �nite sample properties of the estimator �̂1;PD through a
Monte Carlo simulation exercise. I also aim to evaluate the �nite sample properties of the
estimator of the asymptotic variance of �̂1;PD, and the associated t-tests using both the
consistent estimator �̂2, based on the �rst obtained H�ajek projection, and the consistent
estimator �̂2, based on the second. In a nutshell, I �nd that (i) the estimated slope
parameters are unbiased in general, even when the �xed e�ects are correlated with the
covariates; (ii) the estimated asymptotic variances using either estimator are very close
to each other, which was expected; and (iii) the size of the t-tests are correct, indicating
a valid inference procedure.
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2.6.1 Data Generating Processes

For simplifying purposes, I consider the case of a single regressor Xij in the di�er-
ent proposed designs. In general, I closely follow the DGP speci�cations proposed by
Jochmans (2018) and Charbonneau (2017), who also consider a directed network model.
However, in their cases, they consider a binary outcome variable, while I consider a con-
tinuous dependent variable since it is a linear model.

The DGP, in general, follows:

Yij = �1Xij + �i + �j + Uij

In all di�erent designs, I take �1 = 0. The idiosyncratic error terms Uij are indepen-
dently drawn from a standard normal distribution, Uij � N(0; 1). In this setting of a
directed network, I speci�cally have that Uij 6= Uji, therefore for a simulation considering
N nodes, I draw from the standard normal N(N � 1) idiosyncratic errors. The �xed
e�ects �i and �j are also drawn from standard normal distributions.

The di�erence among the designs relies on how the regressor Xij is drawn.

Design 1

Here, I follow essentially the same DGP as proposed by Jochmans (2018). The single
regressor is generated as:

Xij = �jAi �Bjj

where Ai = Vi � 1
2 , for Vi � Beta(2; 2), and the same for Bj. Thus, The covariate is

generated in a way that is dependent across both senders and receivers in the dyadic
relation. The di�erence to the DGP proposed by Jochmans (2018) relies on the fact that
I consider the individual e�ect of the alter, Ai, to be di�erent and drawn independently
from that of the ego, Bj. In contrast, Jochmans (2018) considers Bj = Aj.

Design 2

I introduce a correlation between the regressor Xij and the �xed e�ects �i and �j, such
that:

Xij = �jAi �Bjj+ �i + �j

where Ai = Vi� 1
2 , for Vi � Beta(2; 2). Also, Bj is drawn independently from Ai, such that

Bj = Vj � 1
2 , for Vj � Beta(2; 2). Notice that the way in which the correlation between

the regressor and the �xed e�ects is introduced is similar to that of Charbonneau (2017).










































































































































































































































































































































































