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ABSTRACT
This paper uses the convolution theorem of the Laplace transform to
derive an inverse Laplace transform for the product of two parabolic
cylinder functions inwhich the orders aswell as the arguments differ.
This result subsequently is used to obtain an integral representation
for the product of two parabolic cylinder functions Dν(x)Dµ(y). The
integrand in the latter representation contains the Gaussian hyper-
geometric function or alternatively can be expressed in terms of the
associated Legendre function of the first kind.
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1. Introduction

The study of Nicholson–type integrals for the product of two parabolic cylinder functions
has recently gained renewed interest. In 2003, Malyshev [1] derived an integral repre-
sentation for the product of two parabolic cylinder functions with the same order and
identical or opposite arguments, Dν(x)Dν(±x). More recently, Glasser [2] obtained a rep-
resentation for the product of two parabolic cylinder functions with identical orders but
unrelated arguments, Dν(x)Dν(y). Integral representations, on the other hand, for the
case of unrelated orders but identical or opposite arguments, Dν(±x)Dν+µ−1(x), were
derived in [3]. The approach in [4] offered a first attempt at allowing simultaneously for
differing arguments as well as orders. However, this approach still required the orders
in each of the separate integral representations to be linearly related. More in particular,
Veestraeten [4] used the results of [5] to first obtain integral representations forDν(x)Dν(y)
and Dν(x)Dν−1(y) that in a next step, via the recurrence relation for the parabolic cylin-
der function, yielded separate representations for other, linearly related orders such as
Dν(x)Dν+1(y) and Dν(x)Dν−2(y). This paper generalizes existing results by deriving an
integral representation in which both the arguments as well as the orders are (linearly)
unrelated, that is, for Dν(x)Dµ(y).
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16 D. VEESTRAETEN

The convolution theorem of the Laplace transform is used to obtain an inverse Laplace
transform for the product of two parabolic cylinder functions with different arguments
and orders. This derivation starts from two inverse Laplace transforms for single parabolic
cylinder functions that are documented in [6]. The latter expressions are selected in view
of their ability, via the integral representation of the Appell function F1(a, b1, b2; c; x, y), to
ultimately yield a Gaussian hypergeometric function within the integrand of the inverse
Laplace transform. The resulting transform is also specialized into the inverse Laplace
transform for the product of two complementary error functions that was documented in
[7]. In a final step, the inverse Laplace transform is used to obtain an integral representa-
tion for Dν(x)Dµ(y) in which the integrand contains a Gaussian hypergeometric function
or alternatively can be transformed into an associated Legendre function of the first kind.

2. An inverse Laplace transform for the product of two parabolic cylinder
functions with different arguments and orders

The parabolic cylinder function inWhittaker’s notation, see [8], is denoted byDν(z)where
ν and z represent the order and argument, respectively, with ν and z being complex num-
bers. This function is related toWeber’s parabolic cylinder functionU(ν, z) via the identity
U(ν, z) = D−ν−1/2(z), see [9].

The central inverse Laplace transform is presented in Theorem 2.1. In its derivation,
the convolution theorem is applied to two inverse Laplace transforms for single parabolic
cylinder functions that are specified in [6].

Theorem 2.1: Let ν and µ be two complex numbers such that Re(ν + µ) < 1. Then, for all
complex numbers x and y with | arg x| < π , | arg y| < π and | arg x + arg y| < π , we have

p−1/2 exp
(
1
2
p(x + y)

)
Dν(21/2x1/2p1/2)Dµ(21/2y1/2p1/2)

= 2(ν+µ)/2

#((1 − ν − µ)/2)

∫ ∞

0
exp(−pt)t−(1+ν+µ)/2(y + t)µ/2(x + t)ν/2

× F
(

−ν

2
,−µ

2
;
1
2
(1 − ν − µ);

t(x + y + t)
(x + t)(y + t)

)
dt

[Re p > 0]. (2.1)

Proof: We start from the two inverse Laplace transforms for single parabolic cylinder
functions that are specified in (5) and (6) on p. 290 in [6]

#(ν) exp
(
1
2
ap
)
D−2ν(21/2a1/2p1/2) =

∫ ∞

0
exp(−pt)2−νa1/2tν−1(t + a)−ν−1/2 dt

[Re p > 0, Re ν > 0, | arg a| < π]

and

#(ν)p−1/2 exp
(
1
2
ap
)
D1−2ν(21/2a1/2p1/2) =

∫ ∞

0
exp(−pt)21/2−ν tν−1(t + a)1/2−ν dt

[Re p > 0, Re ν > 0, | arg a| < π].

D
ow

nl
oa

de
d 

by
 [8

3.
16

3.
14

6.
11

6]
 a

t 0
9:

47
 0

4 
O

ct
ob

er
 2

01
7 



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 17

These two inverse Laplace transforms, in the notation of Theorem 2.1, are rewritten as

#(−ν/2) exp
(
1
2
xp
)
Dν(21/2x1/2p1/2) =

∫ ∞

0
exp(−pt)2ν/2x1/2t−ν/2−1(t + x)(ν−1)/2 dt

[Re p > 0, Re ν < 0, | arg x| < π] (2.2)

and

#((1 − µ)/2)p−1/2 exp
(
1
2
yp
)
Dµ(21/2y1/2p1/2)

=
∫ ∞

0
exp(−pt)2µ/2t−(µ+1)/2(t + y)µ/2 dt

[Re p > 0, Re µ < 1, | arg y| < π]. (2.3)

Define f̄1(p) and f̄2(p) as the Laplace transforms of the original functions f1(t) and f2(t),
respectively

f̄1(p) =
∫ ∞

0
exp(−pt)f1(t) dt,

f̄2(p) =
∫ ∞

0
exp(−pt)f2(t) dt,

for which Re p > 0. The convolution theorem of the Laplace transform, see [10,11], then
gives

f̄1(p)f̄2(p) =
∫ ∞

0
exp(−pt)f1(t) ∗ f2(t) dt, (2.4)

where f1(t) ∗ f2(t) is the convolution of the original functions f1(t) and f2(t). This convo-
lution is defined as

f1(t) ∗ f2(t) =
∫ t

0
f1(τ )f2(t − τ ) dτ .

The functions f1(t) and f2(t) in the convolution theorem (2.4) are taken from the inverse
transforms (2.2) and (2.3), respectively

f1(t) = 2ν/2x1/2t−ν/2−1(t + x)(ν−1)/2 and f2(t) = 2µ/2t−(µ+1)/2(t + y)µ/2.

The convolution integral then is given by

f1(t) ∗ f2(t) =
∫ t

0
2ν/2x1/2τ−ν/2−1(τ + x)(ν−1)/22µ/2(t − τ )−(µ+1)/2((t − τ ) + y)µ/2 dτ .

The substitution τ = tu allows to rewrite this integral as

f1(t) ∗ f2(t) = 2(ν+µ)/2xν/2t−(1+ν+µ)/2(y + t)µ/2

×
∫ 1

0
u−ν/2−1(1 − u)−(1+µ)/2

(
1 + t

x
u
)(ν−1)/2 (

1 − t
t + y

u
)µ/2

du.

The integral in the latter expression will be specified in terms of the Gaussian hyper-
geometric function F(a, b; c; z). Hereto, two steps need to be applied. First, the integral
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18 D. VEESTRAETEN

is expressed in terms of the Appell function F1(a, b1, b2; c; x, y) by using its integral
representation

#(a)#(c − a)
#(c)

F1(a, b1, b2; c; x, y) =
∫ 1

0
ua−1(1 − u)c−a−1(1 − xu)−b1(1 − yu)−b2 du,

for Re c > Re a > 0, see (8.2.5) in [12] and (42) on p. 450 in [13]. Second, the Appell
function F1(a, b1, b2; c; x, y) is reduced into the Gaussian hypergeometric function for b1 +
b2 = c via

F1(a, b1, b2; b1 + b2; x, y) = (1 − y)−aF
(
a, b1; b1 + b2;

x − y
1 − y

)
,

see (8.3.1.2) in [12] and (63) on p. 452 in [13].
Applying these two steps allows to express the convolution integral as

f1(t) ∗ f2(t) = 2(ν+µ)/2(xy)ν/2t−(1+ν+µ)/2(y + t)(µ−ν)/2#(−ν/2)#((1 − µ)/2)
#((1 − ν − µ)/2)

× F
(

−ν

2
,
1 − ν

2
;
1
2
(1 − ν − µ);− t(x + y + t)

xy

)
.

In order to obtain an inverse Laplace transform that also applies to x=0 and y=0, the
above expression will be rewritten via the following linear transformation formula for the
Gaussian hypergeometric function

F(a, b; c; z) = (1 − z)−aF
(
a, c − b; c;

z
z − 1

)
,

see (15.3.4) in [14]. Using the latter formula then gives

f1(t) ∗ f2(t) = 2(ν+µ)/2t−(1+ν+µ)/2(y + t)µ/2(x + t)ν/2#(−ν/2)#((1 − µ)/2)
#((1 − ν − µ)/2)

× F
(

−ν

2
,−µ

2
;
1
2
(1 − ν − µ);

t(x + y + t)
(x + t)(y + t)

)
,

and the inverse Laplace transform (2.1). !

Remark 1: The above inverse Laplace transform for the product of two parabolic cylinder
functions can be specialized for the product of two complementary error functions, erfc,
via the identity D−1(z) = exp(z2/4)

√
π/2 erfc(z/

√
2), see (9.254.1) in [15]. Setting ν =

µ = −1 in (2.1) and using the identity F(1/2, 1/2; 3/2; z) = z−1/2 arcsin(z1/2), see (76) on
p. 473 in [13], gives

p−1/2 exp(p(x + y))erfc(x1/2p1/2) erfc(y1/2p1/2)

= 2
π3/2

∫ ∞

0
exp(−pt)(x + y + t)−1/2 arcsin

(√
t(x + y + t)

(x + t)(y + t)

)

dt

[| arg x| < π , | arg y| < π , | arg x + arg y| < π],

which corresponds with the inverse Laplace transform (3.7.8.1) in [7].
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 19

3. A Nicholson–type integral representation for the product of two
parabolic cylinder functions with different arguments and orders

Setting p=1 in the inverse Laplace transform (2.1) and rescaling 21/2x1/2 and 21/2y1/2
to x and y, respectively, gives the following integral representation for the product of two
parabolic cylinder functions in which both the arguments and the orders are allowed to
differ

Dν(x)Dµ(y) =
exp

(
− 1

4 (x
2 + y2)

)

#((1 − ν − µ)/2)

∫ ∞

0
exp(−t)t−(1+ν+µ)/2(x2 + 2t)ν/2(y2 + 2t)µ/2

× F
(

−ν

2
,−µ

2
;
1
2
(1 − ν − µ);

2t(x2 + y2 + 2t)
(x2 + 2t)(y2 + 2t)

)
dt

[
Re(ν + µ) < 1, | arg x| <

π

2
, | arg y| <

π

2
, | arg x + arg y| <

π

2

]
. (3.1)

Note that the integrand in the integral representation (3.1) can alternatively also be
expressed via the associated Legendre function of the first kind Pab(x) by using the identity

F(a, b; a + b + 1/2; z) = 2a+b−1/2#(a + b + 1/2)z(1−2a−2b)/4P1/2−a−b
a−b−1/2(

√
1 − z),

see [16]. This gives

Dν(x)Dµ(y) = exp
(
− 1

4 (x
2 + y2)

) ∫ ∞

0
exp(−t)(2t)−(1+ν+µ)/4(x2 + 2t)(ν−µ−1)/4

× (y2 + 2t)(µ−ν−1)/4(x2 + y2 + 2t)(1+ν+µ)/4

× P(1+ν+µ)/2
(µ−ν−1)/2

(
xy

√
(x2 + 2t)(y2 + 2t)

)

dt

[
Re(ν + µ) < 1, | arg x| <

π

2
, | arg y| <

π

2
, | arg x + arg y| <

π

2

]
.

Specializing the integral representation (3.1) for identical orders and/or arguments gives
alternative specifications for the results derived in [1–4]. Setting y= x in the representa-
tion (3.1) yields an expression for Dν(x)Dµ(x) that differs from the integral in (2.36) in
[3] on account of the different conditions on the orders, namely Re(ν + µ) < 1 versus
Re ν < 0 in [3]. Also, the specializations toward the expressions for Dν(x)Dν(y) in (2.10)
in [2] and (2.2) in [4] and Dν(x)Dν(x) in (23) in [1] hold under different conditions for
ν, namely for Re ν < 1/2 versus Re ν < 0 in [1,2,4]. Using µ = −ν − 1 and y= x in the
representation (3.1) gives

Dν(x)D−ν−1(x) = exp
(

−1
2
x2
)∫ ∞

0
exp(−t)(x2 + 2t)−1/2P−ν−1

(
x2

x2 + 2t

)
dt

[∣∣arg x
∣∣ <

π

4

]
.

The integrand in the latter result contains the Legendre function Pa(x). Moreover, this
representation imposes no restriction on ν, whereas the expression for Dν(x)D−ν−1(x) in
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20 D. VEESTRAETEN

(7) on p. 120 in [17] requires Re ν > −1 . Finally, usingµ = ν − 1 and y= x and applying
the identity

F(a, a + 1/2; 2a + 1; z) =
(

2
1 +

√
1 − z

)2a
,

see (105) on p. 461 in [13], returns a representation of which the integrand no longer
comprises special functions

Dν(x)Dν−1(x) =
exp

(
− 1

2x
2)

#(1 − ν)

∫ ∞

0
exp(−t)t−ν(x2 + 2t)−1/2(x2 + t)ν dt

[
Re ν < 1, | arg x| <

π

4

]
.

The latter representation is also an alternative to the expressions (2.3) and (2.4) in [4] that
both require Re ν < 0.
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