Generalizing the Detection of Internal and External Interactions in Clinical Guidelines

Zamborlini, V.; Hoekstra, R.; da Silveira, M.; Pruski, C.; ten Teije, A.; van Harmelen, F.

Published in:
BIOSTEC 2016: proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies

DOI:
10.5220/0005704101050116

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Generalizing the Detection of Internal and External Interactions in Clinical Guidelines

Veruska Zamborlini1,2, Rinke Hoekstra1,3, Marcos da Silveira2, Cedric Pruski2, Annette ten Teije1 and Frank van Harmelen1

1Dept. of Computer Science, VU University Amsterdam, The Netherlands
2LIST Luxembourg Institute of Science and Technology, Luxembourg
3Faculty of Law, University of Amsterdam, The Netherlands

{v.carrettazamborlini, rinke.hoekstra, annette.ten.teije, frank.van.harmelen}@vu.nl, {cedric.pruski, marcos.dasilveira}@list.lu

Keywords: Clinical Guidelines, Semantic Web, Knowledge Representation, Ontologies

Abstract: This paper presents a method for formally representing Computer-Interpretable Guidelines to deal with multimorbidity. Although some approaches for merging guidelines exist, improvements are still required for combining several sources of information and coping with possibly conflicting pieces of evidence coming from clinical studies. Our main contribution is twofold: (i) we provide general models and rules for representing guidelines that expresses evidence as causation beliefs; (ii) we introduce a mechanism to exploit external medical knowledge acquired from Linked Open Data (Drugbank, Sider, DIKB) to detect potential interactions between recommendations. We apply this framework to merge three guidelines (Osteoarthritis, Diabetes, and Hypertension) in order to illustrate the capability of this approach for detecting potential conflicts between guidelines and eventually propose alternatives.

1 INTRODUCTION

Clinical Guidelines (CG) are developed for supporting physicians decision, e.g. specifying what treatment work best in what situation (Peleg, 2013). When possible, the recommendations provided by CGs are based on evidence from clinical researches. In this case, there is a direct mapping to the clinical evidence that describes the effects (transitions) of certain care action (e.g. do not administer aspirin because of an increased risk of gastrointestinal bleeding). Since an evidence is not a fact, a multitude of evidence rating systems (Lohr, 2003) are adopted by CGs authors. Epistemologically, an evidence reflects a belief in the existence of a causal relation between e.g. administering aspirin and gastrointestinal bleeding. Furthermore, CGs are targeted to the treatment of a specific illness. However, it is quite common to have patients with multiple diseases (multi-morbidity) that need to be addressed according to different CGs. For example, according to (Barnett et al., 2012), around 40% of 55 years old patients suffer from at least 2 diseases, and 20% of 70 years old patients suffer from at least 4 diseases in Scotland. As with any large volume of regulations, combined guidelines almost inevitably involve intricate interactions between the recommendations they describe. Finding interactions (like potential conflicts) requires intensive collaboration in multidisciplinary teams.

Computational support can be of great value for supporting physicians to handle all this complexity. Many languages have been proposed for representing “computer interpretable” guidelines (CIG) and reasoning about it (Peleg, 2013). However, the concepts here discussed are poorly or not addressed by those approaches. The main reason is because much has been devoted to executing guidelines within treatments rather than other purposes such as combining and updating CGs. In particular, regarding the issue of multimorbidity, existing approaches for combining CGs are limited in their ability to automatically detect the interactions, propose alternatives or combining more than two guidelines (Zamborlini et al., 2015b).

This work follows an incremental methodology. We start by addressing realistic but simplified case studies, and add more complexity according to the lessons learned in each iteration. Therefore, this paper is the continuation of earlier work reported in (Zam-
recommendations, depicted in Fig. 1, are: among them (adapted from (Jafarpour, 2013)). The Hypertension (HT), and the detection of interactions lines, namely Osteoarthritis (OA), Diabetes (DB) and section. It concerns the combination of three guide-
ments (recommendations) in the clinical do-
the adapted version of the TMR (Transition-based Medical Recommendation) models and their semantic web-based implementation as a framework for repre-
sentation (recommendations) in the clinical do-
2 The Models & Framework
This section describes our case study, as well as the adapted version of the TMR (Transition-based Medical Recommendation) models and their semantic web-based implementation as a framework for repre-
sentation (recommendations) in the clinical do-
2.1 Case Study
This case study is meant for illustrating the concepts previously mentioned and further defined in the next section. It concerns the combination of three guide-
lines, namely Osteoarthritis (OA), Diabetes (DB) and Hypertension (HT), and the detection of interactions among them (adapted from (Jafarpour, 2013)). The recommendations, depicted in Fig. 1, are:

Diabetes (DB)
1. Should adm. NSAID to reduce blood coagulation
2. Should adm. Tramadol to reduce blood coagulation
3. Should adm. Insulin to reduce blood sugar level

Osteoarthritis (OA)
1. Should NOT administer Aspirin to avoid increasing the risk of gastrointestinal bleeding
2. Should administer Ibuprofen to reduce pain

Hypertension (HT)
1. Should adm. Thiazide to reduce the blood pressure

Among them some interactions can be identified:

Internal Interactions:
1. DB.1 and DB.2 are alternative recommendations meant for promoting the same effect.
2. DB.1 and OA.1 are contradictory recommendations since the first might lead to the prescription of Aspirin which is non-recommended by the later.

External Interactions (from external knowledge sources):
1. DB.1 and DB.2 both have as external alternative Administer Epoprostenol to achieve the desired effect according to DrugBank.
2. DB.2 and OA.2 recommend incompatible actions according to Drugbank
3. DB.3 and HT.1 interact since the latter might lead to prescription of bendroflumethiazide, which has high blood sugar level as side effect according to Sider, as opposed to goal in the former.
4. HT.1 and OA.2 interact since the latter has high blood pressure as side effect according to Sider, as opposed to goal in the former.
5. (others)

In Fig. 1 the big rectangles in both left and right sides represent beliefs regarding the care actions (administering tramadol). The latter is represented as dotted ellipses inside the beliefs. The causation beliefs are about a transition between situations (blood coagulation goes from normal to low) that are be-
lieved to be promoted by executing a care action type). The causation belief has a frequency e.g. ad-
minister tramadol always reduce the blood coagulation. For sake of simplicity, we consider in this work only always as frequency for all causation beliefs. They also have a strength associated, which corre-
sponds to the evidence level (e.g. high level), accord-
ing to the quality attributed to the sources (or studies) that provide such knowledge. The beliefs in gray shade represent the knowledge imported from an ex-
ternal source described in the top left (e.g. Drug-
Bank). The strength in this case will depend on the reliability of each data source. The external sources here considered describe two types of beliefs: causation belief or incompatibility belief. The latter repre-
sents action types that should not be recommended to-
gether, e.g. Administer Aspirin is incompatible with
Administer Ibuprofen (the reason is not provided in structured way from the sources).

The dotted rectangles in the middle represent the guidelines. The more external one is the merge of the three guidelines for OA+HT+DB. They comprise both the recommendations (e.g. avoid thrombi) and the interactions alternative among them. The former is represented as rounded rectangles, and the latter is depicted by labelled thin arrows connecting the interacting recommendations and beliefs. Solid arrows are for internal interactions and dotted arrows for external ones. A positive (or negative) recommendation is indicated by a thick arrow labeled with “should” (or “should not”).

2.2 Conceptual Model & Rules

Figure 2 presents a UML class diagram for the TMREvent model describing some relevant concepts and relations regarding event types in the scope of this work. The concepts introduced in previous versions of the models are depicted in gray-shade (same for the next diagrams). This model is inspired in UFO (Unified Foundational Ontology) (Guizzardi et al., 2013) that is a formal theory describing some of the general concepts used here, namely Type (Universal) and Category, as well as Object, Event, Action and Situation Types. The model regards mostly types of things\(^1\) since it is meant for modeling, for example, the type of event that is expected as consequence of another one, rather then the particular event that was the consequence of another particular one. In other words, we do not want to say that John’s pain was relieved due to the administration of aspirin, but that administering aspirin often relieves the pain of patients\(^2\).

While action types concern event types to be performed by an intentional agent (omitted in the model), transition types concern (deterministic) event types for which pre and post situation types can be defined\(^3\). In other words, it represents the transformation of a situation type into another (transformable & expected situations). An event type can be defined as the participation of a certain object type.

\(^1\)For sake of simplicity we can omit the word ‘type’.\(^2\)For a deeper explanation see (Zamborlini et al., 2014a).\(^3\)We do consider some event types are non-deterministic or non-intentional, but this is out of scope of this work.
e.g. a DrugAdministration type is the administration of (participation of) a Drug type. An event type can cause another event type to happen (occurrence of one causes the occurrence of the other). Moreover, an event type can also be incompatible with another one when they can not or should not occur together. In other words, either happening together is not possible or would bring about results/transformations that are not the expected ones.

A category is a type that (transitively) subsumes (or regroups) other types according to a grouping criteria, e.g. ThiazideDrug is a category of drugs that contains the molecule thiazide, e.g. bendroflumethiazide. In this case the grouping criteria regards a structural property. However, it can also concern the effect expected to be promoted, e.g. NSAID is the category for the (non-steroidal) drugs expected to promote the transition reduce inflammation, e.g. Aspirin.

FOL rules are provided for deriving relations relevant in the context of this work. Some relations are defined in terms of other relations, for example, inverseTo between transition types is one transition that ‘undo’ the effect of the other. These relations are preceded by a slash in the models (previous and forthcoming). Other relations can be propagated, e.g. the grouping criteria of an object category (Analgesic Drug) is the grouping criteria of the event category of administering such object (Adm. Analgesic) and vice-versa.

Inverse Transitions: one transition type \(t_1 \) transforms situation \(s_1 \) into \(s_2 \) while another transition type \(t_2 \) transforms \(s_2 \) into \(s_1 \).

R.1 \(\forall t_1, t_2, s_1, s_2 \) TransitionType\((t_1) \land \) TransitionType\((t_2) \land \) SituationType\((s_1) \land \) SituationType\((s_2) \land s_1 \neq s_2 \land \) hasTransformableSituation\((t_1, s_1) \land \) hasExpectedSituation\((t_1, s_2) \land \) hasTransformableSituation\((t_2, s_2) \land \) hasExpectedSituation\((t_2, s_1) \) \(\rightarrow \) inverseTo\((t_1, t_2) \)

Propagating grouping criteria via administrationOf: if an action type \(a_1 \) is the administration of a drug type \(d_1 \), a transition type \(t_1 \) is the grouping criteria for \(d_1 \) iff it is also for \(a_1 \).

R.2 \(\forall a_1, d_1, t_1 \) (ActionType\((a_1) \land \) DrugType\((d_1) \land \) TransitionType\((t_1) \land \) administrationOf\((a_1, d_1) \) \(\rightarrow \) hasGroupingCriteria\((d_1, t_1) \) \(\leftrightarrow \) hasGroupingCriteria\((a_1, t_1) \)

Other relations can be difficult to be precisely defined either for epistemic or ontological issues. For instance, some event types might not have a precise definition of their consequences, e.g. administering aspirin sometimes relieves the pain, sometimes it does not. We address this issue in the TMRBelief Model by representing those relations through beliefs, presented in a UML class diagram in Fig. 3. In this work, beliefs allow to represent a ‘degree of truth’ for assertions about things/entities according to a source. It allows for complementary beliefs, e.g. aspirin relieves the pain in 80% of the cases (therefore it does not in 20%), but also for inconsistent ones, e.g. administering aspirin always relieves the pain and it never relieves the pain. This is a desired feature since for some assertions there can be no common agreement from different sources (see (Zamborlini et al., 2015a)). However, we consider that one (merged) guideline that rely on incompatible beliefs is then inconsistent. We also account for the certainty/quality of the belief as its strength, such as the evidence level classification in clinical guidelines.

We are particularly interested in beliefs about the relations causes, subsumes and incompatibleWith between event types, for which we provide ‘epistemic/doxastic’ versions (represented as dotted lines in the model). In other words, they are relations dependent on the existence of a belief to ground their truthfulness (in practice they have a belief as a third argument). Therefore, they are not the same as the ones in Fig. 2.

The causation belief between event types reflects the likelihood/frequency (probability) of one causing the another according to a source. In this work we focus on beliefs about action (hasAsCause Action Type) causing transitions (hasAsEffect Transition Type) as justification for the clinical recommendations. Moreover, for the interaction rules we consider only the positive causation beliefs, i.e., an action type always cause a transition, since it is not on the scope of this work both i) the negative causation, which only appears as sub-justifications of recommendation (discussed in (Zamborlini et al., 2015a)) and ii) the intermediate frequency values (often, rarely, etc)\(^4\). In its turn, the incompatibility between event types is con-

\(^4\)This approach exclude endless assertions about all the effects an event is not expected to produce since the beliefs are defined in CGs or scientific papers by a community of experts, e.g. cancer is not an effect of a certain drug.
sidered in this work to be given as an assertion. Therefore it is represented as a belief, although it could be explained/derived at a certain level of granularity. Finally the subsumption of event types due to expected effect also relies on beliefs, namely the causation one.

Causation - an event type \(e1 \) causes another one \(e2 \) with a certain frequency \(f \) according to a belief \(cb \):

\[
R.3 \forall e1,e2,t,b,f \ (\text{EventType}(e1) \land \text{EventType}(e2)) \land \text{CausationBelief}(cb) \land \text{hasAsCause}(cb, e1) \land \text{hasAsEffect}(cb, e2) \land \text{frequency}(cb, f) \\
\rightarrow \text{causes}(e1,e2, f, cb)
\]

Similar Causation Beliefs: two beliefs \(cb1, cb2 \) about different event types \(e1, e2 \) promoting with same frequency \(f \) another event type \(e3 \):

\[
R.4 \forall cb1,cb2,e1,e2,e3,f \ (\text{causes}(e1,e3,f,cb1) \land \text{causes}(e2,e3,f,cb2) \land cb1 \neq cb2 \land e1 \neq e2) \\
\rightarrow \text{similarTo}(cb1,cb2)
\]

Propagating causation via hasGroupingCriteria: If an event type \(e1 \) has as grouping criteria a transition type \(t \) then \(e1 \) must cause \(t \)

\[
R.5 \forall e1,t1 \ (\text{EventType}(e1) \land \text{TransitionType}(t1) \land \text{hasGroupingCriteria}(e1,t1)) \\
\rightarrow \exists b \ (\text{causes}(e1,t1, 'always', cb))
\]

Deriving Subsumption via causation and grouping criteria: if an event type \(e1 \) causes a transition \(t1 \) that is the grouping criteria of another event type \(e2 \) then \(e2 \) subsumes \(e1 \) according to the causation belief

\[
R.6 \forall e1,e2,t,b1 \ (\text{EventType}(e1) \land \text{EventType}(e2) \land \text{TransitionType}(t) \land \text{causes}(e1,t, 'always', cb1) \land \text{hasGroupingCriteria}(e2,t1) \land e1 \neq e2) \\
\rightarrow \exists b \ (\text{subsumes}(e2, e1, cb1))
\]

Incompatible Event Types: event type \(e1 \) is believed be incompatible with another one \(e2 \)

\[
R.7 \forall e1,e2,b \ (\text{EventType}(e1) \land \text{EventType}(e2) \land \text{IncompatibilityBelief}(b) \land \text{about}(b,e1) \land \text{about}(b,e2)) \\
\rightarrow \text{incompatibleWith}(e1, e2, b)
\]

In more general terms, a **Regulation** is composed of a set of **Norms**, given by a **source**, about the execution of action types based on a causation belief. The norm strength can vary from obligation to prohibition. For the specific case of clinical domain, norms are specialized as **Recommendations** and regulations as **Clinical Guidelines**. Since the clinical guidelines are mostly considered a reference for best practices, the strength of recommendations in this work will be considered as ‘should’ (positive) and ‘should-not’ (negative), any other variation of strength is out of scope. Finally, among norms there can be **Interactions** of different types. In this work we formalize internal interactions discussed in (Zamborlini et al., 2015a) and we extend and formalize external interactions (introduced in (Zamborlini et al., 2015b)). Figure 4 presents the UML class diagram for the **TMRNorm** model.

The following FOL rule defines the derivable relation **regulates** while the interactions are defined in the next subsections. Some interaction types have a cumulative behavior, like **Repeated Action** and **Alternative Actions** (introduced in (Zamborlini et al., 2014b)). For example, if three norms recommend the administration of aspirin, there should be one single interaction of type **Repeated Action** among them, rather than three different interactions among pairs of them. External interactions also accumulate, like **External-Alternative Action**. Although the subsumption relation in these rules can be also the epistemic one, derivable through causation beliefs, we adopt the simplified notation \(\text{subsumes}(a1, a2) \) since it does not change the meaning of the rules.

Regulation - a norm \(n \) from a regulation \(r \) over an action type \(a \) has strength \(st \) based on a causation belief \(cb \):

\[
R.8 \forall r,n,a,st,cb \ (\text{Regulation}(r) \land \text{Norm}(n) \\
\land \text{partOf}(n, r) \land \text{ActionType}(a) \land \text{CausationBelief}(cb) \\
\land \text{aboutExecutionOf}(n, a) \land \text{strength}(n, st) \\
\land \text{basedOn}(n, cb)) \\
\rightarrow \text{regulates}(r, n, a, st, cb)
\]

With respect to previous work, this section present more generic version of the models with respect to norms, beliefs and event types, (mentioned contribution C1). It allows, for instance, to better handle the hierarchies of action types (or event types) possibly deriving them from hierarchies of drug types, which is commonly found in the existent datesets and terminologies. Particularly the hierarchies concerning effects believed to be promoted (e.g. **Adm. Aspirin specializes Adm. AntiInflammatory**) are handled as beliefs. This is indeed compatible with the discourse of not of having certainty about causation relations. FOL formulas are adapted/introduced for the derivable relations. Furthermore, the incompatibility belief is introduced in the **TMRBelief** model, as well as the strength of beliefs and causation frequency. Finally, the recommendations strength is also introduced in the **TMRNorm** model.
2.2.1 Internal Interaction Rules

Considering the modifications in the model, we propose in this section the corresponding adaptation of the internal interaction rules presented in (Zamborlini et al., 2015a) (contribution C2). The following types of interactions are defined:

Repeated Action: two positive norms about the same action or about actions in a subsuming relation. The second rule is for the cumulative behavior, i.e. when two different interactions of this type relate the same norm (n2) then those interactions are the same.

(I.1.1) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2 \) (\(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{regulates}(r, n_2, a_2, \text{‘should’}, cb_2) \) \(\land (a_1 = a_2 \lor \text{subsumes}(a_1, a_2) \lor \text{subsumes}(a_2, a_1)) \) \(\rightarrow \exists (!\text{RepeatedAction}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2)) \)

(I.1.2) \(\forall i_1, i_2, n_1, n_2, n_3 \) (\(\text{RepeatedAction}(i_1) \land \text{RepeatedAction}(i_2) \land \text{relates}(i_1, n_1) \land \text{relates}(i_2, n_2) \land \text{relates}(i_2, n_3) \land r_1 \neq n_3 \land n_1 \neq n_2 \land n_2 \neq n_3) \) \(\rightarrow i_1 = i_2 \)

Alternative Actions: two positive norms about different actions for achieving the same transition, i.e. they are based on similar causation beliefs for different actions. The second rule is for the cumulative behavior

(I.2.1) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2 \) (\(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{regulates}(r, n_2, a_2, \text{‘should’}, cb_2) \) \(\land \text{similarTo}(cb_1, cb_2) \land a_1 \neq a_2) \) \(\rightarrow \exists (!\text{AlternativeActions}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2)) \)

(I.2.2) \(\forall i_1, i_2, n_1, n_2, n_3 \) (\(\text{AlternativeActions}(i_1) \land \text{AlternativeActions}(i_2) \land \text{relates}(i_1, n_1) \land \text{relates}(i_2, n_2) \land \text{relates}(i_2, n_3) \land n_1 \neq n_3 \land n_1 \neq n_2 \land n_2 \neq n_3) \) \(\rightarrow i_1 = i_2 \)

Contradictory Norms: (i) two norms, positive and negative, about the execution of same action (or actions in a subsuming relationship) or (ii) two norms, positive and negative, about different actions promoting the same transition or (iii) two positive regulations about different actions for achieving inverse transitions.

(I.3) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2, t_1, t_2 \) \(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{regulates}(r, n_2, a_2, \text{str}, cb_2) \) \(\land \text{causes}(a_2, t_2, \text{‘always’}, cb_2) \) \(\land ((\text{str} = \text{‘should-not’} \lor (a_1 = a_2 \lor \text{subsumes}(a_1, a_2) \lor \text{subsumes}(a_2, a_1)) \lor (\text{st} = \text{‘should-not’} \land a_1 \neq a_2 \land t_1 = t_2) \lor (\text{st} = \text{‘should’} \land a_1 \neq a_2 \land \text{inverseTo}(t_1, t_2))) \) \(\rightarrow \exists (!\text{Contradiction}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2)) \)

Repairable Transition: two norms, positive and negative, about different actions that are believed to cause inverse transitions, i.e. if the undesired effect cannot be avoided, it can be repaired by another action.

(I.4) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2, t_1, t_2 \) \(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{regulates}(r, n_2, a_2, \text{‘should-not’}, cb_2) \) \(\land \text{causes}(a_1, t_1, \text{‘always’}, cb_1) \) \(\land \text{causes}(a_2, t_2, \text{‘always’}, cb_2) \) \(\land a_1 \neq a_2 \land \text{inverseTo}(t_1, t_2) \) \(\rightarrow \exists (!\text{RepairableAction}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2)) \)

2.2.2 External Interaction Rules

Beliefs from other sources provide interesting information to enrich the system, allowing for detection of external interactions defined as:

External-Alternative Actions: actions of which the regulation system is not aware that might promote a desired effect according to external sources. The second rule is for the cumulative behavior, i.e. two different interactions of this type relating the same external causation belief are the same.

(E.1.1) \(\forall r, n_1, a_1, a_2, cb_1, cb_2 \) \(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{similarTo}(cb_1, cb_2) \land \text{hasAsCause}(cb_2, a_2) \) \(\land (\neg \exists n_2 \text{ regulates}(r, n_2, a_2, \text{‘should’}, cb_2)) \) \(\land \text{subsumes}(a_1, a_2) \) \(\rightarrow \exists (!\text{ExternalAlternativeAction}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, cb_2) \land \text{relates}(i, a_2)) \)

(E.1.2) \(\forall i_1, i_2, r, n_1, n_2, cb \) (\(\text{ExternalAlternativeAction}(i_1) \land \text{ExternalAlternativeAction}(i_2) \land \text{CausationBelief}(cb) \land \text{relates}(i_1, cb) \land \text{relates}(i_1, n_1) \land \text{relates}(i_2, cb) \land \text{relates}(i_2, n_2) \land \text{Regulation}(r) \land \text{partOf}(n_1, r) \land \text{partOf}(n_2, r)) \) \(\rightarrow i_1 = i_2 \)

External-Incompatible Actions: two positive norms about actions that the regulation system is not aware of them being incompatible to each other (or to a subsumed action), according to external sources.

(E.2) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2, ib_1 \) \(\text{regulates}(r, n_1, a_1, \text{‘should’}, cb_1) \) \(\land \text{regulates}(r, n_2, a_2, \text{‘should’}, cb_2) \) \(\land \text{incompatibleWith}(a_1, a_2, ib_1) \) \(\land (a_1 = a_2 \lor \text{subsumes}(a_1, a_2) \lor \text{subsumes}(a_2, a_1)) \) \(\rightarrow \exists (!\text{ExternalIncompatibleAction}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2) \land \text{relates}(i, ib_1)) \)

External-Incompatible Effects: effects (situations) recommended to be either avoided or changed, but which are believed to be promoted by other recommended actions, according to external sources, while the regulation system is not aware of it.

(E.3) \(\forall r, n_1, n_2, a_1, a_2, cb_1, cb_2, ib_1, s_1 \) \(\text{regulates}(r, n_1, a_1, \text{st}, cb_1) \) \(\land \text{causes}(a_1, t_1, \text{‘always’}, cb_1) \) \(\land ((\text{st} = \text{‘should’} \land \text{hasTransformableSituation}(t_1, s_1)) \lor (\text{st} = \text{‘should-not’} \land \text{hasExpectedSituation}(t_1, s_1))) \) \(\land \text{causes}(a_1, t, \text{‘always’}, cb) \land a \neq a_1 \land \text{hasExpectedSituation}(t, s_1) \land \text{regulates}(r, n_2, a_2, \text{‘should’}, cb_2) \land cb \neq cb_2 \land (a_2 = a \lor \text{subsumes}(a_2, a) \lor \text{subsumes}(a, a_2)) \) \(\rightarrow \exists (!\text{ExternalIncompatibleEffects}(i) \land \text{relates}(i, n_1) \land \text{relates}(i, n_2) \land \text{relates}(i, cb_2)) \)
This section concludes the contribution C2 by providing generic rules for detecting external interactions. In (Zamborlini et al., 2015b) the rules were specific for a dataset (namely DrugBank). Now the generic rules apply to beliefs imported from any dataset. At this point it's also important to observe that both models and rules are defined in a domain-independent way. A SemWeb-based implementation is provided in the next section.

2.3 SemWeb Implementation

This section presents a SemWeb implementation\(^5\) for the proposed approach. The proposed models have a straightforward mapping to OWL2 (omitted in the paper). However, for instantiating the models with the clinical knowledge, we propose the use of a framework as RDF graph structure based on the open formats Nanopublication, Provenance and Open Annotation (see section 4). It is applied for representing the recommendations (norms) and beliefs as assertions connected to their sources, besides other meta-information. In the sequence, the implementation of the FOL rules using SWI-Prolog is exemplified, together with a procedure adopted to import clinical knowledge from LOD (e.g. DrugBank and Sider) as assertions via generic predicates (beliefs).

2.3.1 Framework

The framework, illustrated in Fig. 5, follows the Nanopublication structure, which presupposes the use of Prov vocabulary, and is enriched with (optional) Open Annotation vocabulary. The latter is meant for representing assertions that are (somehow) extracted from textual documents.

Rounded-dotted boxes represent named graphs containing triples, which in turn are represented as directed-named arrows among resources. The black circles represent the named graphs themselves as subject/object, while the other resources are represented as ellipses with a description inside (where underline stands for blank nodes) or as an expected data-value (e.g. source or date).

The more external named graph, called Nanopublication, connects the following three named graphs: The assertion is a named graph where some knowledge is described using suitable vocabularies, in our case the TMR models. The other named graphs are meant to provide the meta-information about both the assertion and its publication as rdf-data: (i) the provenance graph can contain information such as the source (prov:wasDerivedFrom) of the assertion (e.g. clinical guideline, study or dataset), and text-annotations (oa:Annotation) when the assertion is extracted from a piece of text; and (ii) the publication-Info graph provides meta-information such as when the publication was created and by whom. For sake of readability, henceforth we omit from the figures part of the framework that is not relevant for the discussion here conducted.

Figure 6 illustrates the representation of both a causation belief (at the top) and a recommendation (at the bottom). The Assertion1 is a CausationBelief with high strength level, about the action type that Adm. Ibuprofen always causes the transition type Pain relief according to OA-CIG-Description. The Assertion2 is a Norm, part of OA-GIC that states Adm. Ibuprofen should be executed based on the evidence stated in Assertion1 according to OA-CIG-Description. Beliefs taken from external sources are similarly represented (see Fig. 7).

The framework favor data reusability as LOD.

\(^5\)Accessible at http://rapgmsbgym.github.io.
2.3.2 Rules

The proposed FOL rules have the typical format of Prolog rules, what makes its implementation very straightforward. The implemented rules are here illustrated as: function F.1 implements R.8 while functions F.2.1, F.2.2 implement the rules I.1.1 and I.1.2 for interaction RepeatedAction. For the purpose of this application, the existential quantifier in the consequent of interaction rules is implemented as a Prolog function called existsInteraction. This function uses the rdf assertion built-in function to insert the respective interaction in the dataset in case it does not exist.

(F.1) regulates(Reg, Norm, ActT, Str, CBelief) :-
 instanceOf(Norm, m3:'Norm'),
 rdf(Norm, m3:'partOf', Reg),
 rdf(Norm, m3:'aboutExecutionOf', ActT),
 rdf(ActT, model:'administrationOf', Str),
 rdf(Reg, m3:'basedOn', Belief, Norm).

(F.2.1) forAll(regulation(Reg),
 regulates(Reg, N1, ActionT1, 'should', _),
 regulates(Reg, N2, ActionT2, 'should', _),
 different(N1, N2),
 (same(ActionT1, ActionT2) ;
 subsumes(ActionT1, ActionT2) ;
 subsumes(ActionT2, ActionT1)))
 existsInteraction('RepeatedAction', N1, N2)).

(F.2.2) forAll(interacts('RepeatedAction', N1, N2, I1),
 interacts('RepeatedAction', N2, N3, I2),
 different(N1, N3), different(11, I2),
 rdf(Repeat, I, owl:sameAs, As)).

This section comprises part of contribution C4 (flexible mechanism for reusing LOD to detect interactions) and together with the framework, it concludes contribution C3.

2.3.3 Using External Knowledge - LOD

For some external knowledge-bases available as LOD, a procedure is adopted for importing the knowledge as new beliefs. For example, knowledge about the (side) effects of administering a certain drug can be imported from Sider. Each LOD requires a procedure of reinterpreting the original knowledge into the format here proposed. Once it is done, the rules can derive external interactions regardless to the source.

The following SWI-Prolog rule is used for importing causation beliefs from drugbank (other rules can be found online, also comprising sider and dikb).

Drug Alternatives for all drugs belonging to a drug Category regarding an effect, the causation beliefs are asserted about the actions of administering those drugs promoting the referred effect/transition.

\[
\text{forall} \left(\text{rdf(DrugCat, model:'hasGroupingCriteria', Trans1), same(DrugCat, DrugCatDB)} \right),
\text{rdf(DrugDB, drugcategory:'category', DrugCatDB),}
\text{rdf(Act1, model:'administrationOf', DrugType), same(DrugType, DrugDB))},
\text{existsInteraction(Act1, 'RepeatedAction', 'always', 'drugbank', NanopubURI),}
\text{assertProvResourceUsed(NanopubURI, DrugCatDB),}
\text{assertProvResourceUsed(NanopubURI, DrugDB),}
\text{assertProvResourceUsed(NanopubURI, DrugCatDB))}.
\]

Figure 7 depicts the representation of beliefs extracted from both Drugbank and Sider. The Assertion3 at the top is a CausationBelief with medium strength level, stating that the action type Adm. Epoprostenol always causes the transition type Lower Blood Coagulation according to Drugbank. The Assertion4 in the middle is another CausationBelief with low strength level, stating that Adm. Ibuprofen always causes to Higher Blood Pressure according to Sider. Finally, Assertion5 is a IncompatibilityBelief with medium strength level, stating that Adm. Ibuprofen and Adm. Aspirin are incompatible according to Drugbank. For all of them, the provenance graphs contain, besides the source dataset, the external resources based on which the assertions were generated.

This section concludes contribution C4 together

\[\text{assertion3} \text{assertion4} \text{assertion5} \text{Assertion3} \text{Assertion4} \text{Assertion5}\]

![Figure 7: Nanopubation schema for representing beliefs extracted from external knowledge sources. 'M2' is used as prefix for TMRBelief](image-url)
with the formalisation and implementation of rules for external interactions. Medical guidelines as well as external clinical knowledge can be expressed by means of the conceptual model and can be implemented in a SemWeb-based Framework for automatically detecting interactions. In the next section we provide an experimental assessment by discussing the implementation a case study on detecting recommendations interactions enriched by external knowledge sources.

3 Experimental Assessment

This section presents the results obtained by implementing the case study on combining OA+HT+DB guidelines (Sect. 2.1). The following activities where performed in the experiment: (i) the guideline knowledge was (manually) introduced in a RDF dataset according to the implementation here proposed; (ii) the rules for importing LOD were fired; (iii) the rules for inferring relations and interactions were fired. An ‘interactive’ documentation describing the experiment and the prolog code is available online\(^7\). Figure 8 summarizes the obtained results. It describes the type of interaction, the interaction and its source (derived from internal or external knowledge). The first six lines are the interactions described in Sect. 2.1. The last two lines illustrate that more external interactions can be detected, actually much more given the large volume of clinical LOD. However, since excess of information can become a disadvantage, we intend to provide filters, such as the causation frequency or the strength of the evidence.

Comparing to the previous implementation (Zamborlini et al., 2015b), the following explicit improvements are observed: (i) reasoning over action type hierarchy allows for detecting non-straightforward interactions (e.g. *DO administer NSAID and DO NOT administer Aspirin* are in contradiction because *Aspirin* specializes *NSAID*); (ii) new datasets (e.g. Sider) are added without need for writing specific rules for detecting external interactions; and (iii) causation frequency, belief strength (evidence level) and recommendation strength can be represented. Implicit improvement are: (i) a more maintainable and reusable implementation that will favor new features and datasets to be introduced in future work; (ii) the more reliable and/or relevant information can be selected.

4 Related Work

Formal languages proposed for representing clinical guidelines as “computer interpretable” ones (Annette ten Teije, 2008; Peleg, 2013) were not designed to handle the combination of multiple CIGs (Zamborlini et al., 2014a). An alternative solution is the development of alert systems that are independent of the CGs. Such Computerized Physician Order Entry systems (CPOE), are used to alert physicians about drug interactions (Ammenwerth et al., 2008). Despite the usefulness of these systems, a lot can be gained by tackling interactions between general recommendations on the outset, rather than employing drug-interaction alerts on the hospital floor.

We have investigated this issue in a series of work. In (Zamborlini et al., 2014a) we analyzed related work that addresses recommendation interactions in different levels. Our research focuses on what we called the CIG level, i.e. it accounts for the need to combine guidelines and handle interactions before applying them to a specific patient. This is the case when common co-occurring diseases are considered during guideline development, but could also be needed for uncommon co-occurring diseases in the practice setting. The related work (Jafarpour, 2013; López-Vallverdú et al., 2013; Wilk and Michalowski, 2014) has as their main drawback the need for defining specific rules for each interaction, e.g. *give aspirin & don’t give aspirin* requires a specific rule and *give ibuprofen & don’t give ibuprofen* requires another rule (a more detailed analysis in (Zamborlini et al., 2015b)). As a consequence, they do not provide ‘scalable’ support for combining guidelines, particularly more than two. Piovesan et al. (Piovesan et al., 2014) propose guideline-independent algorithms based on ontologies for detecting interactions, restricted to types “concordance” and “discordance”. The use of intentions associated to recommendations for detecting “intention interactions” is close to our approach on verifying transitions related to recommendations. To the best of our knowledge, none of the related work provides means to express negative norms, nor negative causation beliefs. Moreover, they do not explore action type hierarchies, nor reuse clinical knowledge available online in order to enrich the detection of interactions. However, they do address other aspects that we do not address yet, such as intentions, temporal aspects and qualitative transitions.

Our earlier work highlighted the importance of having the recommendations formally represented with a high level of detail. Explicit description of local constraints and impact of recommendations is
considered an important source of information for increased reasoning capabilities and improved explanation of conflicts in (Bonacini et al., 2013). The model described in (Zamborlini et al., 2014a) introduced clinical recommendations as governing care actions that cause state transitions; an extended version of this model presented in (Zamborlini et al., 2014b) defines different ways in which recommendation can interact according to the referred actions and transitions. The implementation and evaluation of the model using Semantic Web languages was proposed by us in (Zamborlini et al., 2015b). We argued that the detection of interactions using external knowledge sources (in our case drug interactions modeled in the Linked Data version of DrugBank (Law et al., 2014)) can provide more precise information. A Web-based application for browsing the guideline interactions was made available online\(^8\). Extending this model to introduce the notion of causation beliefs (for evidence) and the subsumption relations among actions was presented in (Zamborlini et al., 2015a). It was a first formal exercise with the goal of providing a systematic view on possible internal interactions among recommendations.

The emphasis on evidence means that care recommendations are ultimately grounded in domain knowledge (generalizations over facts). The evidence that underlies the recommendations is weighed depending on the quality, depth and breadth of the study: guidelines are part of a larger network of hypotheses, claims and pieces of evidence that span across multiple publications (de Waard et al., 2009). However, only few CIG languages offer means to link to evidence (Peleg, 2013), and they generally are targeted to very concrete and procedural guidelines, akin to medical protocols. In (Hoeckstra et al., 2012), the authors describe a lightweight ontology that represents the relations between a guideline, its recommendations, and underlying evidence, as annotations on the guideline and evidence texts using a combination of the Open Annotation\(^9\) and PROV\(^10\) formats. Huang et al. (Huang et al., 2014) propose an even more lightweight semantic representation of evidence based clinical guidelines, but automatically extract it from guideline texts. It includes UMLS identifiers for medical terms appearing in the text and use proximity, and the types of terms to infer the type and strength of the evidence that underlies recommendations. The Nanopublication model (Mons et al., 2011) seems to be a natural fit to modeling the evidence that underlies guidelines. It represents a publication as three RDF graphs, that respectively capture an assertion (the finding or evidence), the provenance of the assertion (e.g. an experiment) and publication information about the nanopublication (when was the assertion published and by whom).

The work presented here combines the pragmatic approaches of (Hoeckstra et al., 2012; Huang et al., 2014) and (Mons et al., 2011) in a model that takes the epistemological stance that the evidence underlying a recommendation expresses a belief that a care action causes a certain state transition. This strategy allows for using classical logic-based languages for handling inconsistent knowledge, such as conflicting findings published in different clinical studies.

5 Discussion & Conclusion

The work reported on in this paper improves over our previous work by offering a more generic and scalable way to represent clinical guidelines and detecting interactions. This is done by adapting and extending both the conceptual model and the Semantic

\(^8\)See http://guidelines.hoeckstra.ops.few.vu.nl
\(^10\)See http://www.w3.org/TR/prov-o.
Web-based implementation. The TMR models and rules are made more generic so that they can be more easily extended to incorporate new features such as hierarchies of transition types and causal chains. Incorporating the epistemological nuance of beliefs in the Semantic Web representation, improves the ability to (i) handle knowledge from different sources and (ii) select the reliable ones; (iii) to allow different, incompatible beliefs about the same event to co-exist; and (iv) to provide reusable formal rules that are applicable regardless of specific regulations, guidelines or external sources. This has a favorable effect on reusability, maintainability, and scalability beyond the guidelines we currently covered.

We furthermore show the power of using the extensive domain knowledge available on the Semantic Web for enhancing the ability to automatically perform new tasks, such as suggesting alternative drugs. Our use of open standards and vocabularies, such as the nanopublication format, makes that the knowledge accumulated in our own models is shareable and reusable in a similar fashion. We implement inferencing using expressive SWI-Prolog rules that execute over RDF graphs. The adoption of SWI-Prolog was an improvement over the implementation in (Zamborlini et al., 2015b), as it gave us a single environment for expressing our inference rules benefiting understandability and maintainability. This, of course, at the cost of Semantic Web standards compliance for that specific part of our model. In (Zamborlini et al., 2015b) the limitations of OWL2 for detecting the interactions, forced the use of multiple knowledge representation languages. We had to resort to a combination of expressive OWL2 inferencing, Star-dog SPARQL rules (a SWRL dialect) and custom SPARQL update queries to perform reasoning.

The experimental assessment shows that interactions can be automatically detected among three guidelines and enforced by knowledge from DrugBank and Sider, from each of which the relevant knowledge was imported as beliefs. Although the case study comprises only drug administration as action types, the approach is designed to address interactions among other types of interventions, such as surgeries and exercise therapy. More complex case studies will be addressed in future work. We faced some issues regarding the integration with these external knowledge sources, particularly on deciding which identity criteria we should use to map to the external datasets. For example, we could choose between PubChem ID, UMLS code, dbpedia and so on, where each choice would bring about different coverage and reliability.

Although this work is applied to clinical guide-lines, its potentially of more general application, since both the model and the rules are defined independently of a particular domain. We plan to investigate the applicability of the models and rules to other domains such as disaster management. As ongoing work, we plan to address four limitations: (i) temporal validity for the assertions; (ii) quantification of beliefs and norms (i.e., frequency and strength); (iii) qualification of transitions (e.g. increasing or decreasing a property value); and (iv) considering goals and intentions.

6 Acknowledgments

The first author would like to thank colleagues from NEMO-UFES/Brazil for fruitful discussions about transitions, causation beliefs and regulations, and also prof. md. Saulo Bortolon for the nice discussions about medical domain; Jan Wielemaker and Wouter Beek from VU for helping with SWI-Prolog implementation; Wytze Vliestra (former VU) for fruitful discussions about the biomedical domain; and Paul Groth from Elsevier for fruitful discussions about the potential generality of the model and the use of nanopublications. The first author is funded by CNPq (Brazilian National Council for Scientific and Technological Development) within the program Science without Borders. This work was partially funded by the Dutch National Programme COMMIT.

REFERENCES

