Measurement of the $t\bar{t}$ production cross section in the tau + jets channel using the ATLAS detector

DOI
10.1140/epjc/s10052-013-2328-7

Publication date
2013

Document Version
Final published version

Published in
European Physical Journal C

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement of the $t\bar{t}$ production cross section in the tau + jets channel using the ATLAS detector

The ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 30 November 2012 / Revised: 7 February 2013 / Published online: 2 March 2013
© CERN for the benefit of the ATLAS collaboration 2013. This article is published with open access at Springerlink.com

Abstract A measurement of the top quark pair production cross section in the final state with a hadronically decaying tau lepton and jets is presented. The analysis is based on proton–proton collision data recorded by the ATLAS experiment at the LHC, with a centre-of-mass energy of 7 TeV. The data sample corresponds to an integrated luminosity of 1.67 fb$^{-1}$. The cross section is measured to be $\sigma_{t\bar{t}} = 194 \pm 18$ (stat.) ± 46 (syst.) pb and is in agreement with other measurements and with the Standard Model prediction.

1 Introduction

Top quark pairs ($t\bar{t}$) are produced in abundance at the Large Hadron Collider (LHC) due to the high centre-of-mass energy of 7 TeV. The large sample of $t\bar{t}$ events collected with the ATLAS detector makes it possible to study experimentally challenging decay channels and topologies. This letter describes a measurement of the $t\bar{t}$ production cross section. The final state studied here consists of a hadronically decaying tau lepton (τ_{had}) and jets, corresponding to the $t\bar{t} \rightarrow [b\tau_{\text{had}}\nu_{\tau}][bq]$ decay, where b and q are used to denote b-quarks and lighter quarks, respectively. Such an event topology with a hadronically decaying tau lepton corresponds to approximately 10 % of all $t\bar{t}$ decays [1].

A $t\bar{t}$ cross-section measurement in the final state with tau leptons makes it possible to probe flavour-dependent effects in top quark decays. It is also relevant to searches for processes beyond the Standard Model, where $t\bar{t}$ events with tau leptons in the final state are a dominant background. This measurement is particularly important for hypothetical charged Higgs boson production [2–5] in top quark decays, where the existence of a charged Higgs boson would lead to an enhancement in the cross section for the considered $t\bar{t}$ final state. The measurement presented here is complementary to the previously published tau + lepton (electron or muon) channel measurement [6]. The most recent cross-section measurements of the tau + jets decay channel have been performed by the CDF and D0 collaborations in proton–antiproton collisions at $\sqrt{s} = 1.96$ TeV [7, 8]. This is the first measurement reported in this specific channel at the LHC.

In this analysis, events with at least five jets are selected, where two of the jets are identified as having originated from b-quarks. After identifying the two jets likely to come from the hadronic decay of one of the top quarks, one of the remaining jets is selected as the τ_{had} candidate from the other top quark. The τ_{had} contribution is separated from quark- or gluon-initiated jets with a one-dimensional fit to the distribution of the number of tracks associated with the τ_{had} candidate. Since the τ_{had} decays preferentially to one or three charged particles (and other neutral decay products), this variable provides good separation between hadronically decaying tau leptons and jets, as the latter typically produce a large number of charged particles. The main backgrounds to the $t\bar{t}$ signal are multijet events, $t\bar{t}$ events with a different final state or signal events where the wrong jet is chosen as the τ_{had} candidate. A small contribution from single-top and $W+$ jets events is also present. The distributions for the backgrounds used in the fit are obtained with data-driven methods.

2 The ATLAS detector

The ATLAS detector [9] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and a near-4π coverage in solid angle.1 The inner

* e-mail: atlas.publications@cern.ch

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis pointing along the beam direction.
tracking system covers the pseudorapidity range $|\eta| < 2.5$, and consists of a silicon pixel detector, a silicon microstrip detector (SCT), and, for $|\eta| < 2.0$, a transition radiation tracker. The inner detector is surrounded by a thin superconducting solenoid providing a 2 T magnetic field along the beam direction. A high-granularity liquid-argon sampling electromagnetic calorimeter covers the region $|\eta| < 3.2$. An iron/scintillator tile hadronic calorimeter provides coverage in the range $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems and separate trigger and high-precision tracking chambers providing accurate muon tracking for $|\eta| < 2.7$.

3 Data and simulation samples

The data used in this analysis were collected during the first half of the 2011 data-taking period and correspond to a total integrated luminosity of $\mathcal{L} = 1.67 \text{ fb}^{-1}$. The data sample was selected with a b-jet trigger that required at least four jets identified with $|\eta| < 3.2$ and a transverse energy (E_T) above 10 GeV. Two of these jets were required to be identified as b-jets using a dedicated high-level-trigger b-tagging algorithm [10]. This trigger was enabled for only part of the 2011 data-taking period and is therefore the limiting factor in determining the integrated luminosity of the dataset used.

The selection efficiency for the $t\bar{t} \rightarrow \tau_\text{had} + \text{jets}$ signal is derived from Monte Carlo (MC) simulations. The MC@NLO v4.01 [11] generator, with the parton distribution function (PDF) set CT10 [12], is used for the $t\bar{t}$ signal. The theoretical prediction of the $t\bar{t}$ cross section for proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 7 \text{ TeV}$ is $\sigma_{t\bar{t}} = 167^{+17}_{-18} \text{ pb}$ for a top quark mass of 172.5 GeV. It has been calculated at approximate next-to-next-to-leading order (NNLO) in QCD with HATHOR 1.2 [13] using the MSTW2008 90 % confidence level NNLO PDF sets [14], incorporating PDF and α_S uncertainties according to the MSTW prescription [15], and cross-checked with the next-to-leading-order + next-to-next-to-leading-log calculation of Cacciari et al. [16] as implemented in Top++ 1.0 [17]. Tau lepton decays are modelled with TAUOLA [18]. Samples of simulated events are also used to estimate the small contributions from $W + \text{jets}$, $Z + \text{jets}$, single-top-quark and di-boson events, as described in Ref. [19]. The generated events were processed through the full ATLAS detector simulation using GEANT4 [20, 21], followed by the trigger and offline reconstruction. The distribution of the number of pile-up events (i.e., collisions in the same, or nearby, bunch crossing as the hard-scattering event) is adjusted to match the scattering multiplicity measured in the data.

4 Event selection

Jets are reconstructed from clusters of calorimeter cells [22] using the anti-k_t algorithm [23, 24] with a radius parameter $R = 0.4$. The jets are calibrated using transverse momentum- and η-dependent corrections obtained from simulation and validated with collision data [25]. Candidate events are required to contain at least five jets with a transverse momentum (p_T) larger than 20 GeV and $|\eta| < 2.5$.

The identification of jets originating from b-quarks is performed using algorithms that combine secondary vertex properties and track impact parameters [26]. The algorithm identifies b-jets with an average efficiency of 60 % and provides a light-quark jet rejection factor of about 340 in $t\bar{t}$ topologies. The likelihood of misidentifying a b-hadron as a b-jet in a $t\bar{t}$ event is approximately 5 %. The two jets with the highest b-tag probability are chosen as the event b-candidates; events with fewer than two b-jets are rejected.

The magnitude of the missing transverse energy (E_T^{miss}) is reconstructed from energy clusters in the calorimeters. The calibration of each cluster depends on the type of physical object associated with the cluster. The transverse momentum of muons in the event is also taken into account. The E_T^{miss} significance ($S_{E_T^{\text{miss}}}$) is defined as $E_T^{\text{miss}}/(0.5 [\sqrt{\text{GeV}]} \cdot \sqrt{\sum E_T})$, where $\sum E_T$ is the scalar sum of the transverse momentum of all objects. Using a $S_{E_T^{\text{miss}}}$ requirement instead of a direct E_T^{miss} requirement allows the rejection of multijet events where the E_T^{miss} arises from energy resolution effects, while still retaining high efficiency for signal events with E_T^{miss} coming from particles which do not interact with the detector [27]. Candidate events are required to have $S_{E_T^{\text{miss}}} > 8$.

Events containing a reconstructed electron or muon [28, 29] with $p_T > 15 \text{ GeV}$ and $|\eta| < 2.5$ are vetoed to reduce the background due to events containing W bosons that decay to electrons or muons and to avoid overlap with other $t\bar{t}$ cross-section measurements.

In each event, a single τ_had candidate is selected from the reconstructed jets using the following procedure. First, the reconstruction of the hadronically decaying top quark is attempted by selecting the three jets (including exactly one of the two b-candidates) which, when their four-momenta...
are added vectorially, give the highest \(p_T \) sum. The remaining jet with the highest \(p_T \), excluding the remaining \(b \)-candidate, is selected as the \(\tau_{\text{had}} \) candidate. Events where the \(\tau_{\text{had}} \) candidate \(p_T \) is below 40 GeV are rejected.

The main contributions to the selected \(\tau_{\text{had}} \) candidates in the signal region come from the signal (\(\tau_{\text{had}} \) from \(t\bar{t} \) events), electrons from \(t\bar{t} \) events and misidentified jets from \(t\bar{t} \), single-top-quark production, \(W + \) jets and multijet events. The contributions from \(Z/\gamma^* + \) jets and diboson processes are negligible.

5 Data analysis

The majority of \(\tau_{\text{had}} \) decays are characterised by the presence of one or three charged hadrons in the final state, which can be reconstructed as charged particle tracks in the inner detector. The number of tracks (\(n_{\text{track}} \)) originating from the interaction point associated with a \(\tau_{\text{had}} \) candidate is used to separate the \(\tau_{\text{had}} \) contribution from the misidentified jet background.

All selected tracks with \(p_T > 1 \) GeV located in a core region spanning \(\Delta R < 0.2 \) around the jet axis are counted. To increase the discriminating power, tracks in the outer cone \(0.2 < \Delta R < 0.6 \) are also counted, using a variable \(p_T \) requirement that is dependent on both the \(\Delta R \) of the outer track and the \(p_T \) of the core tracks. This variable \(p_T \) requirement is designed to reduce the contribution from pile-up and underlying event tracks, and is explained in Ref. [30]. The separation power of the \(n_{\text{track}} \) variable is illustrated in Fig. 1 where a comparison of the \(n_{\text{track}} \) distribution is shown for \(\tau_{\text{had}} \), electrons and misidentified jets from multijet events.

To extract the signal from the \(n_{\text{track}} \) distribution, the data sample is fitted with three probability density functions (templates): a \(\tau/electron \) template, a \(gluon-jet \) template and a \(quark-jet \) template. The \(\tau_{\text{had}} \) component from \(t\bar{t} \) events constitutes the signal in the event sample. Real electrons from \(t\bar{t} \) events (either prompt or from leptonic tau decays) which failed to be rejected by the electron veto also contribute significantly to the event sample. The electron and \(\tau_{\text{had}} \) templates are combined into a single \(\tau/electron \) template to ensure a stable fit, using MC predictions to determine their relative contributions. The \(\tau/electron \) template is obtained from simulated \(t\bar{t} \) events. The small expected contributions to the real \(\tau/electron \) component of the fit from single-top-quark and \(W + \) jets events do not change the shape of the template.

The remaining significant contributions come from misidentified jets, and are separated into two templates. The \(gluon-jet \) template describes the QCD multijet processes which are dominated by gluon-initiated jets, and the \(quark-jet \) template describes the remaining processes (\(t\bar{t} \), single-top quark and \(W + \) jets) that are enriched in quark-initiated jets.

The \(gluon-jet \) template is determined using a sideband region where the \(S_{E_{\text{T}}^{\text{miss}}} \) requirement is changed to \(3 < S_{E_{\text{T}}^{\text{miss}}} < 4 \). This selection greatly enhances the contribution from multijet events, reducing other contributions (e.g. from \(t\bar{t} \) events) to less than 1 %. The regions defined by the selection \(2 < S_{E_{\text{T}}^{\text{miss}}} < 3 \) and \(4 < S_{E_{\text{T}}^{\text{miss}}} < 5 \) are also used to study any correlations between the \(S_{E_{\text{T}}^{\text{miss}}} \) criteria and the \(n_{\text{track}} \) distribution.

The \(quark-jet \) template is obtained from a \(t\bar{t} \) control sample where the \(\tau_{\text{had}} \) candidate is replaced by a muon candidate. The reconstructed muon [29] is required to have \(p_T > 20 \) GeV, \(|\eta| < 2.5\) and no jet within a distance \(\Delta R = 0.4 \). The requirement on the number of non-\(b \)-tagged jets is changed from three to two as the jet corresponding to the \(\tau_{\text{had}} \) is now replaced by a muon. The other selection requirements are the same as for the signal region. This isolates \(t\bar{t} \) events with very high purity; the contribution from backgrounds is estimated from MC predictions to be at the 5 % level, and consists mainly of single-top-quark and \(W + \) jets events. The two highest-\(p_T \) jets that are not identified as \(b \)-jet candidates are selected as \(\tau_{\text{had}} \) candidates. The template is corrected using MC simulations for differences in the transverse momentum distribution between the signal region and the control sample, and for the expected contribution to the control sample from \(t\bar{t} \) dilepton events (\(t\bar{t} \rightarrow \mu + \tau_{\text{had}} + X, t\bar{t} \rightarrow \mu + e + X \)).

6 Results

An extended binned-likelihood fit is used to extract the different contributions from the \(n_{\text{track}} \) distribution. To improve the fit stability, a soft constraint is applied to the
ratio of quark-jet events to tau/electron events, which are dominated by the same process ($t\bar{t}$ events). The constraint, based on MC predictions, is a Gaussian with a width of 19% of its central value. This width was estimated based on studies of the associated systematic uncertainties using the same methodology as described in Sect. 7. The statistical uncertainties on the fit parameters are calculated using the shape of the fit likelihood. The systematic uncertainties on the shapes of the templates are propagated using a pseudo-experiment approach, taking into account the bin-by-bin correlations. This yields a final number of tau/electron events of 270 \pm 24 (stat.) \pm 11 (syst.).

The fit results are shown in Fig. 2. A comparison between the fit results, and the expected event yields from the MC predictions is presented in Table 1. The numbers are in good agreement.

To extract the number of signal events, predictions from simulation are used to subtract the backgrounds from W + jets and single-top events (9 ± 5 and 12 ± 2, respectively) from the fitted number of tau/electron events. The number is then scaled by the expected ratio, $N_{\ell}/(N_{\ell} + N_{\tau})$, of τ_{had} and electrons passing the selection in the $t\bar{t}$ sample. This ratio is estimated from MC simulation to be 0.78 \pm 0.03 (stat.) \pm 0.03 (syst.). This yields a final number of observed signal events of $N_{\tau} = 194 \pm 18$ (stat.) ± 11 (syst.).

The cross section is measured to be $\sigma_{t\bar{t}} = 194 \pm 18$ (stat.) ± 46 (syst.) pb.

7 Systematic uncertainties

A summary of all systematic uncertainties on the cross section is given in Table 2.

The uncertainty on the selection efficiency due to the choice of the configuration for the MC simulation is estimated by using alternative MC samples and reweighting procedures. The difference in the efficiency obtained from various configurations is taken as the uncertainty. The uncertainty on the modelling of the ISR/FSR is taken into account by using ACE@MC [31] samples with specific tunes aimed at conservatively varying the amount of parton showering [32]. The uncertainty due to the choice of the matrix element event generator is estimated by comparing $t\bar{t}$ samples generated using MC@NLO, POWHEG [33–35], and ALPGEN [36]. To study the impact of different hadronization models, events generated using POWHEG are processed with two different hadronization programs: HERWIG and PYTHIA. The uncertainty of the choice of PDFs is estimated using a number of current PDF sets [37].

Uncertainties on the simulation of the detector response are taken into account using dedicated studies of the reconstructed physics objects (electrons, muons, jets, E_T^{miss}). The
uncertainties considered are associated with the jet energy scale, jet energy resolution, b-tagging efficiency, trigger efficiency and the E_T^{miss} calculation [25, 26]. The uncertainty due to mismodelling of the lepton veto is estimated using the uncertainties on the muon and electron reconstruction efficiencies determined from independent data samples, and is found to be negligible.

To obtain the uncertainty on the fit results, variations are applied to the templates to describe various systematic effects. As the tau/electron template is taken directly from MC-simulated $t\bar{t}$ events, the systematic uncertainties on this template are taken from estimates of the mismodelling of the simulation. The dominant contributions come from variations in the amount of ISR/FSR in the simulation (1 %), the modelling of the pile-up (1 %), and the statistical uncertainties (1 %). Uncertainties on the track reconstruction efficiency, jet energy scale, and the ratio of n_{had} to electrons are found to be negligible. The quark-jet template is obtained from a $\mu +$ jets control sample of $t\bar{t}$ events in data. The dominant contributions to the uncertainty come from the statistical uncertainties (4 %), the difference in shape between the $\mu +$ jets template and the expected quark-jet distribution, estimated from MC samples (2 %), and the MC-based subtraction of the dilepton contribution (1 %). The uncertainty on the MC-based kinematic correction is found to be negligible. The gluon-jet template is derived from a background-dominated sideband region with small values of $S_{E_T^{\text{miss}}}$. The two sources of uncertainties are the dependence of the template on the $S_{E_T^{\text{miss}}}$ criterion of the control region, obtained by varying the $S_{E_T^{\text{miss}}}$ requirement (1 %), and the statistical uncertainty of the control region (1 %). The total systematic uncertainty on the fit is found to be 4 %.

The uncertainty on the luminosity is calculated to be 3.7 % as described in Ref. [38]. The total systematic uncertainty on the cross section is 24 %.

8 Conclusions

This letter presents a measurement of the top quark pair production cross section in the final state corresponding to the $t\bar{t} \rightarrow [b\nu]\bar{t}_\tau [bqq]$ decay. The measurement uses a dataset corresponding to an integrated luminosity of 1.67 fb$^{-1}$ of proton–proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The signal has been extracted by fitting the number of tracks associated with tau lepton candidates using templates derived from simulation for the $t\bar{t}$ signal and from the data for the backgrounds.

The $t\bar{t}$ production cross section is measured to be $\sigma_{t\bar{t}} = 194 \pm 18$ (stat. ± 46 (syst.) pb. This result is compatible with the highest precision ATLAS measurements [39, 40], and with the result of 186 ± 13 (stat.) ± 20 (syst.) ± 7 (lum.) pb obtained in the complementary tau + lepton (electron or muon) channel [6]. It is also in good agreement with the theoretical prediction of 167^{+17}_{-18} pb.

Acknowledgements We thank CERN for the very successful operation of the LHC; as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNR, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
References

7. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 071102 (2010)

The ATLAS Collaboration

4(a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya;
(c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7Department of Physics, University of Arizona, Tucson AZ, United States of America
8Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9Physics Department, University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13(a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14Department for Physics and Technology, University of Bergen, Bergen, Norway
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19(a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21Physikalisches Institut, University of Bonn, Bonn, Germany
22Department of Physics, Boston University, Boston MA, United States of America
23Department of Physics, Brandeis University, Waltham MA, United States of America
24(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest;
(c) West University in Timisoara, Timisoara, Romania
27Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29Department of Physics, Carleton University, Ottawa ON, Canada
30CERN, Geneva, Switzerland
31Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics,
University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35Nevis Laboratory, Columbia University, Irvington NY, United States of America
36Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40Physics Department, Southern Methodist University, Dallas TX, United States of America
41Physics Department, University of Texas at Dallas, Richardson TX, United States of America