Search for new phenomena in events with three charged leptons at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1103/PhysRevD.87.052002

Publication date
2013

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search for new phenomena in events with three charged leptons at $\sqrt{s} = 7$ TeV with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 27 November 2012; published 4 March 2013)

A generic search for anomalous production of events with at least three charged leptons is presented. The search uses a pp-collision data sample at a center-of-mass energy of $\sqrt{s} = 7$ TeV corresponding to 4.6 fb$^{-1}$ of integrated luminosity collected in 2011 by the ATLAS detector at the CERN Large Hadron Collider. Events are required to contain at least two electrons or muons, while the third lepton may either be an additional electron or muon, or a hadronically decaying tau lepton. Events are categorized by the presence or absence of a reconstructed tau-lepton or Z-boson candidate decaying to leptons. No significant excess above backgrounds expected from Standard Model processes is observed. Results are presented as upper limits on event yields from non-Standard-Model processes producing at least three prompt, isolated leptons, given as functions of lower bounds on several kinematic variables. Fiducial efficiencies for model testing are also provided. The use of the results is illustrated by setting upper limits on the production of doubly charged Higgs bosons decaying to same-sign lepton pairs.

DOI: 10.1103/PhysRevD.87.052002 PACS numbers: 13.85.Rm, 12.60.Cn, 14.65.Jk, 14.80.Fd

I. INTRODUCTION

Events with more than two energetic, prompt, and isolated charged leptons are rarely produced at hadron colliders. Such events offer a clean probe of electroweak processes at high center-of-mass energies, and their production at enhanced rates above Standard Model predictions would constitute evidence for new phenomena. Models predicting events with multiple leptons in the final state include excited neutrino models [1,2], fourth-generation quark models [3], the Zee-Babu neutrino mass model [4–6], supersymmetry [7–15], and models with doubly charged Higgs bosons [16,17], including Higgs triplet models [18,19].

The production of multilepton events in the Standard Model is dominated by WZ and ZZ production, where both bosons decay leptonically. Smaller contributions come from events with top-quark pairs produced in association with a W or Z boson, and from triboson production. Isolated but nonprompt lepton candidates misidentified as prompt arise in Drell-Yan events produced in association with a photon that converts in the detector and is reconstructed as an electron. Prompt but nonisolated leptons misidentified as isolated can arise from Dalitz decays [20,21]. Additional nonprompt, nonisolated leptons arise from heavy-flavor decays and from mesons that decay in flight. Fake leptons can arise from hadrons that satisfy the lepton identification criteria.

This paper presents a search for the anomalous production of events with at least three charged leptons in the final state. The search uses a data set collected in 2011 by the ATLAS detector at the CERN Large Hadron Collider (LHC) corresponding to 4.6 fb$^{-1}$ of pp collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV. Events are required to have at least two isolated electrons or muons, or one of each, while the third lepton may be either an additional electron or muon or a hadronically decaying tau lepton (τ_{had}).

Searches for new phenomena at the LHC are challenged by large cross-section Standard Model processes that overwhelm any events from rare interactions. Such backgrounds must be reduced by triggers before storing event data for future study; these triggers should be highly efficient at selecting processes of interest while reducing the overall rate of events by orders of magnitude. Additional requirements made on either leptons or event kinematics must likewise have both large background rejection factors and high efficiencies for events with real leptons. The reconstruction and identification of τ_{had} candidates in a busy hadronic environment is particularly challenging, requiring the use of sophisticated analysis techniques to reduce backgrounds from parton-initiated jets. The analysis presented here attempts to reduce the backgrounds from Standard Model processes as much as possible, while retaining events that are potentially interesting for broad classes of new physics models.

Selected events are grouped into four categories by the presence or absence of a τ_{had} candidate and by the presence or absence of a combination of leptons consistent with a Z-boson decay. The search is carried out separately in each category by inspecting several variables of interest. The results of the search are presented as model-independent limits. Efficiencies for selecting leptons within the fiducial

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
volume are also presented in order to aid the interpretation of the results in the context of specific models of new phenomena.

Related searches for new phenomena in events with multilepton final states have not shown any significant deviation from Standard Model expectations. The CMS Collaboration has conducted a search similar to the one presented here using 4.98 fb$^{-1}$ of 7 TeV data [22]. The ATLAS Collaboration has performed a search for supersymmetry in final states with three leptons [23], as have experiments at the Tevatron [24,25]. The search presented here complements the previous searches by providing limits outside of the context of a specific model of new phenomena.

This paper is organized as follows: the ATLAS detector is described in Sec. II, followed by a description of the samples and event selection in Secs. III and IV, respectively. The categorization of events and definition of signal regions is presented in Sec. V. The background estimation techniques and the results of the application of those techniques in control regions are described in Sec. VI. Systematic uncertainties are discussed in Sec. VII. The results of the search are presented in Sec. VIII. Fiducial efficiencies for model testing are provided in Sec. IX and are used to set upper limits on the pair production of doubly charged Higgs bosons.

II. THE ATLAS DETECTOR

The ATLAS experiment [26] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle [27]. The inner tracking detector covers the pseudorapidity range $|\eta| < 2.5$, and consists of a silicon pixel detector, a silicon microstrip detector (SCT), and, for $|\eta| < 2.0$, a straw tube transition radiation tracker. The inner detector is surrounded by a thin superconducting solenoid providing a 2 T magnetic field. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and end-cap high-granularity lead liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$, to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillating-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two copper/LAr hadronic end-cap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimized for electromagnetic and hadronic measurements, respectively. The muon spectrometer surrounds the calorimeters. It consists of three large air-core superconducting toroid systems with eight coils each and stations of precision tracking and trigger chambers providing accurate muon tracking for $|\eta| < 2.7$. A three-level trigger system [28] is used to select events for further analysis offline.

III. MONTE CARLO SIMULATION AND DATA SETS

Monte Carlo (MC) simulation samples are used to estimate backgrounds from events with three prompt leptons. The ATLAS detector is simulated using GEANT4 [29], and simulated events are reconstructed using the same software as that used for collision data. Small post-reconstruction corrections are applied to account for differences in efficiency, momentum resolution and scale, and energy resolution and scale between data and simulation [30,31].

The largest Standard Model backgrounds with at least three prompt leptons are WZ and ZZ production where the bosons decay leptonically. These processes are modeled with SHERPA 1.4.1 [32]. These samples include the case where the Z boson (or γ^*) is off shell, and the γ^* has an invariant mass above twice the muon (tau) mass for $\gamma^* \rightarrow \mu\mu$ ($\gamma^* \rightarrow \tau\tau$), and above 100 MeV for $\gamma^* \rightarrow ee$. Diagrams where a γ^* is produced as radiation from a final-state lepton and decays to additional leptons, i.e. $W \rightarrow \ell^+\nu \rightarrow \ell^+\gamma^*\nu \rightarrow \ell^+\ell^+\ell^-\ell^-$ and $Z \rightarrow \ell^+\ell^- \rightarrow \ell^+\ell^+\ell^-\ell^-$, where ℓ and ℓ' need not have the same flavor, are also included. The leading-order predictions from SHERPA are cross-checked with next-to-leading-order calculations from POWHEG-BOX 1.0 [33]. Diagrams including a Standard Model Higgs boson have negligible contributions in all signal regions under study.

The production of $t\bar{t} + W/Z$ processes (also denoted $t\bar{t} + V$) is simulated with MADGRAPH 5.1.3.28 [34] for the matrix element and PYTHIA 6.425 [35] for the parton shower and fragmentation. Corrections to the normalization from higher-order effects for these samples are 20% for $t\bar{t} + W$ [36] and 30% for $t\bar{t} + Z$ [37]. Leptons from Drell-Yan processes produced in association with a photon that converts in the detector (denoted $Z + \gamma$ in the following) are modeled with PYTHIA. Additional samples are used to model dilepton backgrounds for control regions with fewer than three leptons. Events from $t\bar{t}$ production are simulated with MC@NLO 4.01 [38], with HERWIG 6.520 [39] for the parton shower and fragmentation, and JIMMY 4.31 [40] for the underlying event. Events from $W + \gamma$ production are simulated with ALPGEN 2.13 [41] for the matrix element, HERWIG for the parton shower and fragmentation, and JIMMY for the underlying event.

Simulated samples of pair-produced doubly charged Higgs bosons [16,17,19] are used to illustrate the results of this search in the context of a specific scenario. The doubly charged Higgs bosons decay to pairs of same-sign leptons, producing up to four energetic, prompt, isolated charged leptons in the final state. The doubly charged Higgs bosons are simulated with masses ranging from 100 GeV to 500 GeV. A sample of pair-produced fourth-generation down-type quarks [3] is also considered when estimating fiducial efficiencies and potential contributions from non-Standard-Model processes. In this model, the heavy quarks decay to top quarks and W bosons, producing...
SEARCH FOR NEW PHENOMENA IN EVENTS WITH...

four W bosons and two bottom quarks. This analysis is sensitive to the subset of such events in which at least three of the W bosons decay leptonically. The heavy quark is assumed to have a mass of 500 GeV, corresponding to the approximate expected experimental limit. The normalization for this sample is provided at approximately next-to-next-to-leading-order accuracy by HATHOR 1.2 [42]. Both the doubly charged Higgs boson and fourth-generation quark samples are generated with PYTHIA.

The parton distribution functions for the SHERPA and POWHEG-BOX samples are taken from CT10 [43], and from MRST2007 LO*/[44] for the PYTHIA and HERWIG samples. The MADGRAPH and ALPGEN samples use CTEQ6L1 [45]. The MC@NLO sample uses CTEQ6.6 [46].

Additional pp interactions (pileup) in the same or nearby bunch crossings are modeled with PYTHIA. Simulated events are reweighted to reproduce the distribution of pp interactions per bunch observed in data over the course of the 2011 run. The mean number of interactions per bunch crossing for the data was ten. The luminosity has been measured with an uncertainty of $\pm 3.9\%$ [47].

IV. EVENT SELECTION

Events are required to have fired at least one single-electron or single-muon trigger. The electron trigger requires a minimum threshold on the momentum transverse to the beamline (p_T) of 20 GeV for data collected in the early part of 2011, and 22 GeV for data collected later in the year. The muon p_T threshold is 18 GeV for the full data set. The efficiency of the trigger requirements for events satisfying all selection criteria ranges from 95% to 99% depending on the signal region and is evaluated with simulated WZ events. In order to ensure that the efficiency is independent of the p_T of the leptons, the offline event selection requires that at least one lepton (electron or muon) has $p_T \geq 25$. At least one such lepton must also be consistent with having fired the relevant single-lepton trigger. A muon associated with the trigger must lie within $|\eta| < 2.4$ due to the limited acceptance of the muon trigger, while triggered electrons must lie within $|\eta| < 2.47$, excluding the calorimeter barrel/end-cap transition region ($1.37 \leq |\eta| < 1.52$). Additional muons in the event must lie within $|\eta| < 2.5$ and have $p_T \geq 10$ GeV. Additional electrons must satisfy the same η requirements as triggered electrons and must have $p_T \geq 10$ GeV. The third lepton in the event may be an additional electron or muon satisfying the same requirements as the second lepton, or a τ_{had} with $p_T^{vis} \geq 15$ GeV and $|\eta^{vis}| < 2.5$, where p_T^{vis} and η^{vis} denote the p_T and η of the visible products of the tau decay, with no corrections for the momentum carried by neutrinos. Throughout this paper the four-momenta of tau candidates are defined only by the visible decay products.

All parts of the detector are required to have been operating properly for the events under study. Events must have a reconstructed primary vertex candidate with at least three associated tracks, where each track must have $p_T > 0.4$ GeV. In events with multiple primary vertex candidates, the primary vertex is chosen to be the one with the largest value of Σp_T^2, where the sum is taken over all reconstructed tracks associated with the vertex. Events with pairs of leptons that are of the same flavor but opposite sign and have an invariant mass below 20 GeV are excluded to avoid contributions from low-mass hadronic resonances.

The lepton selection includes requirements to reduce the contributions from nonprompt or fake lepton candidates. These requirements exploit the transverse and longitudinal impact parameters of their tracks with respect to the primary vertex, the isolation of the lepton candidates from nearby hadronic activity, and, in the case of electron and τ_{had} candidates, the lateral and longitudinal profiles of the shower in the electromagnetic calorimeter. There are also requirements for electrons on the quality of the reconstructed track and its match to the cluster in the calorimeter. These requirements are described in more detail below.

Electron candidates are required to satisfy the “tight” identification criteria described in Ref. [30], updated for the increased pileup in the 2011 data set. Muons must have tracks with hits in both the inner tracking detector and muon spectrometer and must satisfy criteria on track quality described in Ref. [31].

The transverse impact parameter significance is defined as $|d_0/\sigma(d_0)|$, where d_0 is the transverse impact parameter of the reconstructed track with respect to the primary vertex and $\sigma(d_0)$ is the estimated uncertainty on d_0. This quantity must be less than 3.0 for muon candidates. Electrons must satisfy a looser cut of $|d_0/\sigma(d_0)| < 10$, since interactions with material in the inner tracking detector often reduce the quality of the reconstructed track. The longitudinal impact parameter z_0 must satisfy $|z_0 \sin(\theta)| < 1$ mm for both electrons and muons.

Electrons and muons are required to be isolated through the use of two variables sensitive to the amount of hadronic activity near the candidate. The first, $p_{T,track}$, is the scalar sum of the transverse momenta of all tracks with $p_T \geq 1$ GeV in a cone of $|\Delta R| < 0.3$ around the lepton axis. The sum excludes the track associated with the lepton candidate and also excludes tracks inconsistent with originating from the primary vertex. The second, $E_{iso,cal}$, is the sum of the transverse energies of cells in the electromagnetic and hadronic calorimeters in a cone of the same size. For electron candidates, this sum excludes a rectangular region around the candidate axis of 0.125×0.172 in $\eta \times \phi$ (corresponding to 5 \times 7 cells in the main sampling layer of the electromagnetic calorimeter) and is corrected for the imperfect containment of the electron transverse energy within the excluded region. For muons, the sum only includes cells above a certain threshold in order to suppress noise and does not include cells with energy deposits from the muon candidate. For both electrons and muons, the
value of $E_{T,\text{cal}}$ is corrected for the expected effects of pileup interactions. Muon candidates are required to have $p_{T,\text{track}}/p_T < 0.13$ and $E_{T,\text{cal}}/p_T < 0.14$, while electron candidates are required to have $p_{T,\text{track}}/p_T < 0.15$ and $E_{T,\text{cal}}/p_T < 0.14$; see Ref. [48] for the optimization of these requirements.

Jets in the event are reconstructed using the fast-jet [49] implementation of the anti-k_T algorithm [50], with distance parameter $R = 0.4$. The jet four-momenta are corrected for the noncompensating nature of the calorimeter, for inactive material in front of the calorimeters, and for pileup [51, 52]. Jets used in this analysis are required to have $p_T \geq 25 \text{ GeV}$ and lie within $|\eta| < 4.9$. Jets within the acceptance of the inner tracking detector must fulfill a requirement, based on tracking information, that they originate from the primary vertex. The missing transverse momentum p_T^{miss} is defined as the negative vector sum of the transverse momenta of reconstructed jets, leptons, and any remaining calorimeter clusters unassociated with reconstructed objects. The magnitude of p_T^{miss} is denoted E_T^{miss}.

Tau leptons decaying to an electron (muon) and neutrinos are selected with the nominal identification criteria described above and are classified as electrons (muons). Hadronically decaying tau candidates are constructed from jet candidates and are then selected using a boosted decision tree (BDT), which is trained to distinguish hadronically decaying tau leptons from quark- and gluon-initiated jets [53]. The BDT is trained separately for tau candidates with one and three charged decay products, referred to as “one-prong” and “three-prong” taus, respectively. In this analysis, only one-prong τ_{had} candidates satisfying the tight working point criteria are considered. This working point is roughly 35% efficient for one-prong τ_{had} candidates originating from W-boson or Z-boson decays and has a jet rejection factor of roughly 300. Additional requirements to remove τ_{had} candidates initiated by prompt electrons or muons are also imposed. A BDT trained to discriminate between electron-initiated τ_{had} candidates and true τ_{had} candidates provides a factor of roughly 400 in rejection at 90% efficiency. Muon-initiated τ_{had} candidates are identified with a cut-based method, which achieves a factor of 2 in rejection at 96% efficiency. The identification of both electron- and muon-initiated τ_{had} candidates is discussed further in Ref. [53].

Since lepton and jet candidates can be reconstructed as multiple objects, the following logic is applied to remove overlaps. If two electrons are separated by $\Delta R < 0.1$, the candidate with lower p_T is neglected. If a jet lies within $\Delta R = 0.2$ of an electron or τ_{had} candidate, the jet is neglected, while if the separation of the jet from an electron candidate satisfies $0.2 \leq \Delta R < 0.4$, the electron is neglected. In addition, electrons within $\Delta R = 0.1$ of a muon are also neglected, as are τ_{had} candidates within $\Delta R = 0.2$ of electron or muon candidates. Finally, muon candidates with a jet within $\Delta R = 0.4$ are neglected.

V. SIGNAL REGIONS

Events satisfying all selection criteria are classified into four categories. Events in which at least three of the lepton candidates are electrons or muons are selected first, followed by events with two electrons or muons, or one of each, and at least one τ_{had} candidate. These two categories are referred to as $\geq 3e/\mu$ and $2e/\mu + \geq 1\tau_{\text{had}}$, respectively. Next, events in each of those two categories are subdivided by the presence or absence of a reconstructed Z-boson candidate, which is defined as an opposite-sign same-flavor pair of lepton candidates with a total invariant mass within $\pm 20 \text{ GeV}$ of the Z-boson mass [54]. An additional electron may also be included in the combination with the same-flavor opposite-sign pair to satisfy the invariant mass requirement, to handle cases where an energetic photon from final-state radiation converts in the detector and is reconstructed as a prompt electron. Events with a reconstructed Z-boson candidate are referred to as on-Z events, and those without such a candidate are referred to as off-Z events. The resulting four categories are mutually exclusive and are chosen to isolate the contributions from backgrounds such as jets faking τ_{had} candidates and events with Z bosons produced in association with a jet that fakes a prompt lepton. In order to remain independent of the Z + jets control region described in Sec. VI, the on-Z regions have a minimum E_T^{miss} requirement of 20 GeV.

Several kinematic variables are used to characterize the events that satisfy all selection criteria. The variable H_T^{leptons} is defined as the scalar sum of transverse momenta, or p_T^{vis} for τ_{had} candidates, of the three leading leptons. The variable H_T^{jets} is defined as the sum of transverse momenta of all selected jets in the event. The “effective mass” m_{eff} is the scalar sum of E_T^{miss}, H_T^{jets}, and the transverse momenta of all identified leptons in the event.

Subsets of selected events are defined based on kinematic properties. The H_T^{leptons} distribution is considered for all events in each category. The E_T^{miss} distribution is considered separately for events with H_T^{jets} below and above 100 GeV, which serves to separate events produced through weak and strong interactions. The m_{eff} distribution is considered for events with and without a requirement of

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lower bounds (GeV)</th>
<th>Additional requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_T^{leptons}</td>
<td>0, 100, 150, 200, 300</td>
<td>$H_T^{\text{jets}} < 100 \text{ GeV}$</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>0, 50, 75</td>
<td>$H_T^{\text{jets}} \geq 100 \text{ GeV}$</td>
</tr>
<tr>
<td>m_{eff}</td>
<td>0, 150, 300, 500</td>
<td>$E_T^{\text{miss}} \geq 75 \text{ GeV}$</td>
</tr>
</tbody>
</table>
VI. BACKGROUND ESTIMATION

Standard Model processes that produce events with three lepton candidates fall into three classes. The first consists of events in which prompt leptons are produced in the hard interaction, including the \(WZ\), \(ZZ\), and \(t\bar{t} + W/Z\) processes. A second class of events includes Drell-Yan production in association with an energetic \(\gamma\), which then converts in the detector to produce a single reconstructed electron. A third class of events arises from nonprompt, nonisolated, or fake lepton candidates satisfying the identification criteria described in Sec. IV.

The first class of backgrounds is dominated by \(WZ \rightarrow \ell \nu \ell' \ell'\) and \(ZZ \rightarrow \ell \ell' \ell' \ell'\) events. Smaller contributions come from \(t\bar{t} + W \rightarrow b\bar{b} \ell \nu \ell' \nu\) and \(t\bar{t} + Z \rightarrow b\bar{b} \ell \nu \ell' \nu\) events. Contributions from triboson events, such as \(WWW \rightarrow \ell \nu \ell' \nu\) production, are negligible. All such processes are modeled with the dedicated MC samples described in Sec. III. Reconstructed leptons in the simulated samples are required to be consistent with the decay of a vector boson or tau lepton from the hard interaction. The second class of backgrounds, from Drell-Yan production in association with a hard photon, is also modeled with MC simulation.

The class of events that includes nonprompt or fake leptons, referred to here as the reducible background, is estimated using \textit{in-situ} techniques which rely minimally on simulation. Such backgrounds for muons arise from semileptonic b- or c-hadron decays, from in-flight decays of pions or kaons, and from energetic jets that reach the muon spectrometer. Electron candidates can also arise from misidentified hadrons or jets. Hadronically decaying taus have large backgrounds from narrow, low-track-multiplicity jets that mimic \(\tau\) signatures.

Relaxed criteria are defined for each lepton flavor. These criteria, in combination with a requirement that candidates fail the nominal identification criteria, produce samples of lepton candidates that are rich in background with minimal contributions from misidentified prompt leptons. For electrons and muons, the isolation criteria are relaxed to accept nonisolated leptons. Electrons are also allowed to fail the tight electron identification criteria, provided they satisfy the “medium” criteria \([30]\). The relaxed \(\tau\) identification loosens the requirement on the BDT score.

These samples of events are used to measure the ratio of the number of leptons satisfying the nominal identification criteria to the number that fail the nominal criteria but satisfy the relaxed criteria. This ratio can then be applied as a scale factor—referred to here as a “fake factor”—to multilepton events satisfying the relaxed criteria to estimate the background in signal regions. For electron and muon candidates, the sample used to measure the fake factor consists of events that pass the high-\(p_T\) single-lepton triggers described in Sec. IV. Events with more than one selected lepton are removed from the sample to avoid overlap with the signal region and to reduce the contamination from Drell-Yan processes. Muons must also fail the nominal requirement on \(|d_0/\sigma(d_0)|\) to further remove prompt contributions. Finally, events where the transverse mass \((m_T)\) of the electron combined with the \(E_T^{\text{miss}}\) is larger than 25 GeV are also rejected to avoid contamination from \(W + \text{jets}\), where \(m_T\) is defined as

\[
m_T = \sqrt{(E_T^{\ell} + E_T^{\text{miss}})^2 - |p_T^{\ell} + p_T^{\text{miss}}|^2}.
\]

For events with muons the transverse mass requirement is relaxed to 40 GeV since the inversion of the \(|d_0/\sigma(d_0)|\) requirement is sufficient to remove most of the contributions from \(W\)-boson decays.

For \(\tau\) had candidates, a sample of \(\gamma + \text{jets}\) is used to measure the fake factors. The production of prompt photons in \(pp\) collisions is dominated by the Compton process \(qg \rightarrow q'\gamma\), yielding a sample of \(\gamma + \text{jets}\) that is rich in quark-initiated jets. In the events considered here, an energetic photon is used to tag the event, and the \(\tau\) had candidate is the away-side jet. The photon is required to have \(p_T > 40\) GeV and satisfy the tight identification criteria \([55]\). The photon candidate is also required to have \(E_T^{\gamma,\text{cal}} < 5\) GeV. These criteria have been shown to yield a mostly pure sample of photon candidates, with the remainder largely consisting of events in which a jet fragments into a leading \(\pi^0\) that then decays to two photons. The resulting sample suffers from minimal contamination from true \(\tau\) had candidates, with the largest contribution from \(W(\rightarrow \tau\text{had}\nu) + \text{jets}\), where the jet is identified as a photon, contributing less than 1% to the total sample.

The fake factors for all flavors are parametrized as functions of the \(p_T\) and \(|\eta|\) of the candidates, to account for changes in the composition of the nominal and relaxed samples in different kinematic ranges. For electrons and muons with \(p_T > 100\) GeV, the fake factor is computed from a linear extrapolation of the fake factors between 35 GeV and 100 GeV. An additional parametrization is added to account for the heavy-flavor content of the event based on the output of the MV1 \(b\)-tagging algorithm. The MV1 algorithm uses a neural network to identify \(b\) jets based on the outputs of several secondary-vertex and three-dimensional-impact-parameter taggers, which are described in detail in Ref. \([56]\). The largest MV1 score associated with any jet in the event is used to parametrize the fake factors. The correlation of this variable with the use of the inverted \(|d_0/\sigma(d_0)|\) requirement when estimating the muon fake factors leads to a bias in events with large MV1 scores, causing the muon fake factors to be underestimated by a factor of 2. This bias is corrected using MC simulated samples.

Contributions from prompt leptons can bias the reducible background estimates in two ways. The first arises...
when prompt leptons populate either the tight or relaxed regions when deriving the fake factors. The second arises when prompt leptons populate the relaxed region when applying the fake factors. In all cases, the effects of prompt leptons on the reducible background estimates are evaluated and corrected using MC simulation.

The background estimates are tested in several control regions. A control region rich in events with a Z boson produced in association with a jet is defined to test the reducible background estimates. Events in this region have three identified lepton candidates, with the requirement that a pair of opposite-sign, same-flavor leptons has an invariant mass within ± 20 GeV of the Z-boson mass. The additional requirement that the E_T^{miss} does not exceed 20 GeV avoids overlap with the signal regions. This is referred to as the $Z +$ jets region.

A second control region, also consisting of events with three lepton candidates, is defined using the low-mass Drell-Yan events rejected by the requirement that no opposite-sign, same-flavor lepton pair have $m(\ell^+\ell^-) < 20$ GeV. This region is referred to as the low-mass Drell-Yan region.

A third region is defined in order to probe the estimates of backgrounds from nonprompt and nonisolated sources in events rich in heavy-flavor decays. Events are required to have exactly two same-sign leptons and $E_T^{\text{miss}} > 40$ GeV. Events are further required to have a b-jet candidate selected by the MV1 tagging algorithm, using a working point that is 60% efficient and that has a light-jet mistag rate of less than 1% for jets with $p_T < 100$ GeV. This sample is estimated to be primarily composed of lepton + jets $t\bar{t}$ events. The same-sign requirement suppresses events where both W bosons decay leptonically and enhances the contributions from events where one lepton candidate originates from semileptonic b decay. This region is referred to as the $t\bar{t}$ region. An upper limit on H_T^{jets} of 300 GeV reduces potential contamination from new phenomena.

Good agreement between the expected and observed event yields is seen in all control regions, as shown in Table II. Figure 1 shows the m_T distribution of the E_T^{miss} and the lepton not associated with the Z boson candidate in the $\geq 3e/\mu$ channel of the $Z +$ jets region. Figure 2 shows the p_T distribution for the third lepton candidate in the $Z +$ jets region. The p_T distribution for the subleading lepton (τ_{had} candidate) in the $t\bar{t}$ region is shown in Fig. 3. The p_T distribution for the third lepton in the low-mass Drell-Yan region is shown in Fig. 4. The H_T^{leptons}, E_T^{miss}, and m_{eff} distributions are not shown here, but also are in good agreement in the control regions. The contributions from new phenomena in the control regions are estimated with doubly charged Higgs and fourth-generation quark events. An example of such contamination is shown with fourth-generation quark events in Fig. 3(a), where the contamination is small. The contributions in all other control regions from events with pair-produced doubly charged Higgs bosons or fourth-generation quarks are negligible.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties on the predicted backgrounds come from several sources. These uncertainties are summarized in Table III, presented as ranges of relative uncertainties on the total expected background yields across all signal regions and channels.

The backgrounds modeled with simulated samples have uncertainties associated with trigger efficiencies, lepton efficiencies, lepton momentum scales and resolution, and jet energy scales and resolution. The uncertainty on the E_T^{miss} in simulation is computed from varying the inputs to the E_T^{miss} calculation within their uncertainties on the

<table>
<thead>
<tr>
<th>Channel</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z +$ jets</td>
<td>$\geq 3e/\mu$</td>
<td>165 ± 26</td>
<td>160 ± 50</td>
<td>320 ± 60</td>
</tr>
<tr>
<td></td>
<td>$2e/\mu + \geq 1\tau_{\text{had}}$</td>
<td>3.0 ± 0.6</td>
<td>1480 ± 360</td>
<td>1480 ± 360</td>
</tr>
<tr>
<td></td>
<td>$\geq 3e/\mu$</td>
<td>55 ± 9</td>
<td>34 ± 12</td>
<td>89 ± 15</td>
</tr>
<tr>
<td></td>
<td>$2e/\mu + \geq 1\tau_{\text{had}}$</td>
<td>0.5 ± 0.1</td>
<td>91 ± 23</td>
<td>92 ± 23</td>
</tr>
<tr>
<td></td>
<td>$2e/\mu$</td>
<td>25 ± 4</td>
<td>58 ± 23</td>
<td>83 ± 23</td>
</tr>
<tr>
<td></td>
<td>$1e/\mu + 1\tau_{\text{had}}$</td>
<td>1.9 ± 0.4</td>
<td>107 ± 27</td>
<td>109 ± 27</td>
</tr>
</tbody>
</table>

The m_T distribution of the E_T^{miss} and the lepton not associated with the Z-boson candidate decay in $\geq 3e/\mu$ events in the $Z +$ jets control region. The last bin shows the integral of events above 90 GeV. The bottom panel shows the ratio of events observed in data to those expected from background sources for each bin.
energy/momentum scale and resolution, and is thus strongly correlated with the other uncertainties and not presented separately. Contributions to the $E_{\text{T}}^{\text{miss}}$ from soft activity not associated with high-p_T objects are presented separately. Uncertainties on the jet energy scale and resolution are significant in regions requiring large values of $H_{\text{T}}^{\text{jets}}$ or m_{eff} and are small otherwise.

Uncertainties on the cross sections of the different Standard Model processes modeled by simulation are also considered. The SHERPA predictions of the WZ and ZZ processes are cross-checked with the next-to-leading-order predictions from POWHEG-BOX in a kinematic region similar to the signal regions considered in this search, resulting in 10% and 25% uncertainties in the normalization, respectively. Uncertainties from renormalization and factorization scale variations, as well as the variation of the parton distribution functions, contribute an additional 10% and 7%, respectively, taken from Ref. [57].

The reducible background estimates carry large uncertainties from several sources. A 40% uncertainty is assigned to the fake factors used to estimate the reducible electron and muon backgrounds, based on closure studies.

FIG. 2 (color online)

The p_T distribution of the third lepton candidate in (a) $3e/\mu$ events and (b) $2e/\mu + \geq 1\tau_{\text{had}}$ events in the $Z + \text{jets}$ control region. The last bin in the left (right) plot shows the integral of events above 100 GeV (150 GeV). The bottom panels show the ratio of events observed in data to those expected from background sources for each bin.

FIG. 3 (color online)

The p_T distribution of the (a) subleading lepton in $2e/\mu$ events and (b) τ_{had} in $1e/\mu + 1\tau_{\text{had}}$ events in the $t\bar{t}$ control region. The expected contribution from non-Standard-Model processes is illustrated in the left figure by events with fourth-generation down-type quarks (b'). The contribution from b' events in the right figure is negligible. The last bin in each plot shows the integral of events above 100 GeV. The bottom panels show the ratio of events observed in data to those expected from background sources for each bin.
in MC samples and cross-checks in control regions. For electrons and muons with $p_T > 100$ GeV, where the fake factors are extrapolated from the values at lower p_T, a 100% uncertainty is assigned. A 100% uncertainty is also assigned to the fake factors for muons with high b-tagging scores, due to the large correction taken from MC simulation to remove the bias between the b-tagging algorithm and the inverted d_0 requirement. For the τ_{had} fake estimates, a 25% uncertainty on the fake factors is determined by altering the composition of the relaxed sample. In signal regions where the relaxed samples are poorly populated, statistical uncertainties on the reducible background estimates become significant, especially in regions with high E^miss_T or H^jets_T requirements.

In all of the signal regions under study, the dominant systematic uncertainties on the total background estimate arise from the uncertainty associated with the reducible background estimates or from the uncertainty on the cross sections used for backgrounds taken from MC simulation. Uncertainties on the efficiency for potential sources of new phenomena include contributions from lepton trigger and identification efficiencies, and lepton momentum scale and resolution. Larger uncertainties on the signal efficiency are assigned based on variations observed between several simulated samples, including pair production of doubly charged Higgs bosons and of fourth-generation down-type quarks, and are 10% for the $\geq 3 e/\mu$ channels and 20% for the $2e/\mu + \geq 1\tau_{\text{had}}$ channels.

In signal regions where the relaxed samples are poorly populated, statistical uncertainties on the reducible background estimates become significant, especially in regions with high E^miss_T or H^jets_T requirements.

In all of the signal regions under study, the dominant systematic uncertainties on the total background estimate arise from the uncertainty associated with the reducible background estimates or from the uncertainty on the cross sections used for backgrounds taken from MC simulation. Uncertainties on the efficiency for potential sources of new phenomena include contributions from lepton trigger and identification efficiencies, and lepton momentum scale and resolution. Larger uncertainties on the signal efficiency are assigned based on variations observed between several simulated samples, including pair production of doubly charged Higgs bosons and of fourth-generation down-type quarks, and are 10% for the $\geq 3 e/\mu$ channels and 20% for the $2e/\mu + \geq 1\tau_{\text{had}}$ channels.

TABLE III. The range of systematic uncertainties originating from different sources, presented as the relative uncertainty on the total expected background yield in all signal regions under study. In cases where a source of uncertainty contributes less than 1% of total uncertainty in any of the signal regions, the minimum is presented as "\(\leq 1\% \)."

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency</td>
<td>((\leq 1%))–1%</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>((\leq 1%))–13%</td>
</tr>
<tr>
<td>Electron energy resolution</td>
<td>((\leq 1%))–1%</td>
</tr>
<tr>
<td>Electron identification</td>
<td>((\leq 1%))–3%</td>
</tr>
<tr>
<td>Electron nonprompt/fake backgrounds</td>
<td>((\leq 1%))–13%</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>((\leq 1%))–1%</td>
</tr>
<tr>
<td>Muon momentum resolution</td>
<td>((\leq 1%))–7%</td>
</tr>
<tr>
<td>Muon identification</td>
<td>((\leq 1%))–1%</td>
</tr>
<tr>
<td>Muon nonprompt/fake backgrounds</td>
<td>((\leq 1%))–51%</td>
</tr>
<tr>
<td>Tau energy scale</td>
<td>((\leq 1%))–4%</td>
</tr>
<tr>
<td>Tau identification</td>
<td>((\leq 1%))–4%</td>
</tr>
<tr>
<td>Tau nonprompt/fake backgrounds</td>
<td>((\leq 1%))–24%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>((\leq 1%))–6%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>((\leq 1%))–3%</td>
</tr>
<tr>
<td>Soft E^miss_T terms</td>
<td>((\leq 1%))–14%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.9%</td>
</tr>
<tr>
<td>Cross-section uncertainties</td>
<td>((\leq 1%))–14%</td>
</tr>
<tr>
<td>Statistical uncertainties</td>
<td>1%–25%</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>11%–56%</td>
</tr>
</tbody>
</table>

TABLE IV. The expected and observed event yields for all inclusive signal channels. The expected yields are presented with two uncertainties: the first is the statistical uncertainty, and the second is the systematic uncertainty.

<table>
<thead>
<tr>
<th>Flavor chan.</th>
<th>Z chan.</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\geq 3 e/\mu)</td>
<td>(\text{off-Z})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\geq 3 e/\mu)</td>
<td>(\text{on-Z})</td>
</tr>
<tr>
<td>(2e/\mu + \geq 1\tau_{\text{had}})</td>
<td>(\text{off-Z})</td>
<td>220 ± 5 ± 50</td>
<td>226</td>
</tr>
<tr>
<td>(2e/\mu + \geq 1\tau_{\text{had}})</td>
<td>(\text{on-Z})</td>
<td>1060 ± 10 ± 260</td>
<td>914</td>
</tr>
</tbody>
</table>
VIII. RESULTS

Event yields for the most inclusive signal regions in each search channel are presented in Table IV. No significant deviation from the expected background is observed. The yields for all signal regions are presented in Tables VIII, IX, X, XI, and XII of Appendix A.

The H_T distributions for the two off-Z signal channels are shown in Fig. 5, and the E_T^{miss} distributions for the same channels are shown in Fig. 6. The m_{eff} distributions for the two on-Z channels are shown in Fig. 7. The m_{eff} distribution for the on-Z, $\geq 3e/\mu$ channel in Fig. 7(a) has 4 events with $m_{\text{eff}} > 1$ TeV, where a total of 2.2 events are expected.

The observed event yields in different signal regions are used to constrain contributions from new phenomena. The 95% confidence level (CL) upper limits on the number of events from non-Standard-Model sources (N_{95}) are calculated using the CL$_s$ method [59]. All statistical and systematic uncertainties on estimated backgrounds are incorporated into the limit-setting procedure, with correlations taken into account where appropriate. Systematic uncertainties on the signal efficiency are also included as described in Sec. VII. The N_{95} limits are then converted into limits on the “visible cross section” (σ_{95}^{vis}) using the relationship $\sigma_{95}^{\text{vis}} = N_{95}/\int Ldt$.

The observed event yields in different signal regions are used to constrain contributions from new phenomena. The 95% confidence level (CL) upper limits on the number of events from non-Standard-Model sources (N_{95}) are calculated using the CL$_s$ method [59]. All statistical and systematic uncertainties on estimated backgrounds are incorporated into the limit-setting procedure, with correlations taken into account where appropriate. Systematic uncertainties on the signal efficiency are also included as described in Sec. VII. The N_{95} limits are then converted into limits on the “visible cross section” (σ_{95}^{vis}) using the relationship $\sigma_{95}^{\text{vis}} = N_{95}/\int Ldt$.

FIG. 5 (color online). The H_T^{leptons} distribution for the off-Z (a) $\geq 3e/\mu$ and (b) $2e/\mu + \geq 1\tau_{\text{had}}$ signal channels. The dashed lines represent the expected contributions from events with pair-produced doubly charged Higgs bosons with masses of 300 GeV. The last bin in the left (right) figure shows the integral of events above 60 GeV (500 GeV). The bottom panels show the ratio of events observed in data to those expected from background sources for each bin.

FIG. 6 (color online). The E_T^{miss} distribution for the off-Z (a) $\geq 3e/\mu$ and (b) $2e/\mu + \geq 1\tau_{\text{had}}$ signal channels. The dashed lines represent the expected contributions from events with fourth-generation down-type quarks with masses of 500 GeV. The last bin in the left (right) figure shows the integral of events above 300 GeV (200 GeV). The bottom panels show the ratio of events observed in data to those expected from background sources for each bin.
FIG. 7 (color online). The m_{eff} distribution for the on-Z (a) $\geq 3e/\mu$ and (b) $2e/\mu + \geq 1\tau_{\text{had}}$ signal channels. The dashed lines represent the expected contributions from events with fourth-generation down-type quarks with masses of 500 GeV. The last bin in the left (right) figure shows the integral of events above 1.2 TeV (1 TeV). In the $\geq 3e/\mu$ channel, a total of 2.13 events are expected for $m_{\text{eff}} > 1$ TeV, and 4 events are observed. The bottom panels show the ratio of events observed in data to those expected from background sources for each bin.

Figures 8–12 show the resulting observed limits, along with the median expected limits with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties. Observed and expected limits are also presented in Tables XIII, XIV, XV, XVI, and XVII of Appendix B. The most inclusive signal regions for the H_{lep} and m_{eff} variables are composed of the same events within each channel, leading to identical limits.

IX. MODEL TESTING

The σ_{95}^{vis} limits can be converted into upper limits on the cross section of a specific model as follows:

(i) Events from the new model are examined at the particle (MC-generator) level, and kinematic requirements on the particles are applied. These include the p_T and η requirements for leptons and jets, and isolation requirements for the leptons. No special treatment for pileup is necessary.

(ii) The number of events passing this selection determines the cross section for the model given the fiducial constraints σ_{fid}.

FIG. 8 (color online). The observed and median expected 95% CL limit on the visible cross section (σ_{95}^{vis}) in the different signal channels, as functions of increasing lower bounds on $H_{\text{lep}}^\text{miss}$.

The $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the median expected limit are indicated by green and yellow bands, respectively.

FIG. 9 (color online). The observed and median expected 95% CL limit on the visible cross section (σ_{95}^{vis}) for events with $H_{\text{lep}}^\text{miss} < 100$ GeV. The lowest bin boundary X is 0 GeV for the off-Z channels and 20 GeV for the on-Z channels. The $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the median expected limit are indicated by green and yellow bands, respectively.
signal channels, as functions of increasing lower bounds on E_T^miss, for events with $H_T^\text{miss} \geq 100$ GeV. The lowest bin boundary X is 0 GeV for the off-Z channels and 20 GeV for the on-Z channels. The $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties on the median expected limit are indicated by green and yellow bands, respectively.

(iii) A correction factor must be applied to take into account detector effects. This correction factor, called e^fid, is model dependent and is subject to uncertainties from detector resolution, reconstruction efficiency, pileup, and vertex selection. This correction factor represents the ratio of the number of events satisfying the selection criteria after reconstruction to all those satisfying the fiducial acceptance criteria at the particle level. As this correction factor accounts for detector effects, no unfolding of the reconstructed distributions is necessary.

(iv) A 95% CL upper limit on the cross section in the new model is then given by

$$\sigma_{95}^\text{fid} = \frac{N_{95}}{e^\text{ fid} \int L dt} = \frac{\sigma_{95}^\text{ vis}}{e^\text{ fid}}. \quad (2)$$

The value of $e^\text{ fid}$ in the $\geq 3 e/\mu$ channels ranges from roughly 0.50 for fourth-generation quark models to over 0.70 for doubly charged Higgs models producing up to four high-p_T leptons. In the $2 e/\mu + \geq 1\tau_{\text{had}}$ channels, $e^\text{ fid}$ is roughly 0.10 for a variety of models. Finite momentum resolution in the detector can cause particles with true momenta outside the kinematic acceptance (e.g. muons with $p_T < 10$ GeV) to be accepted after reconstruction. The fraction of such events after selection is at most 3% for the $\geq 3 e/\mu$ channels and 4% for the $2 e/\mu + \geq 1\tau_{\text{had}}$ channels.

In order to determine $e^\text{ fid}$ for unexplored models of new phenomena producing at least three prompt, isolated, and charged leptons in the final state, per-lepton efficiencies parametrized by the lepton kinematics are provided here. While the experimental results are based on reconstructed quantities, all requirements in the following are defined at the particle level. The per-lepton efficiencies attempt to emulate the ATLAS detector response, thereby allowing a comparison of the yields from particle-level event samples with the cross-section limits provided above without the need for a detector simulation.
Electrons at the particle level are required to have $p_T \geq 10$ GeV and to satisfy $|\eta| < 2.47$ and $|\eta| \notin (1.37, 1.52)$. Particle-level muons are required to have $p_T \geq 10$ GeV and $|\eta| < 2.5$. Electrons and muons are both required to be prompt, and not associated with a secondary vertex, unless they are the product of tau-lepton decays. Leptonically decaying tau candidates are required to produce electrons or muons that satisfy the criteria above. Hadronically decaying tau candidates are required to have $p_T^{\ell} \geq 10$ GeV and $|\eta^{\ell}\vis| < 2.5$, where the visible products of the tau decay include all particles except neutrinos. As with reconstructed tau candidates, the tau four-momentum at the particle level is defined only by the visible decay products.

Generated electrons and muons are further required to be isolated. A track isolation energy at the particle level must have $p_T^{\text{iso}} \geq 1$ GeV and must have $R < 0.1$. Neutrinos and other stable, weakly interacting particles are excluded from both $p_T^{\ell,\text{true}}$ and $E_T^{\text{iso},\ell}$; muons are excluded from $E_T^{\text{true},\ell}$. Electrons must satisfy $p_T^{\ell,\text{true}}/p_T < 0.13$ and $E_T^{\text{true},\ell}/p_T < 0.2$, while muons must satisfy $p_T^{\ell,\text{true}}/p_T < 0.15$ and $E_T^{\ell,\text{true}}/p_T < 0.2$.

Events with at least three leptons as defined above must have at least two electrons and/or muons, at least one of which has $p_T \geq 25$ GeV. The third lepton is allowed to be an electron or muon (in which case the event is classified as a $\equiv 3e/\mu$ event) or a hadronically decaying tau lepton (in which case it is a $2e/\mu + \equiv 1\tau_{\text{had}}$ event).

A simulated sample of WZ events is used to determine the per-lepton efficiencies ϵ_ℓ. The leptons above are matched to reconstructed lepton candidates that satisfy the selection criteria defined in Sec. IV, with ϵ_ℓ defined as the ratio of the number of reconstructed leptons satisfying all selection criteria to the number of generated leptons satisfying the fiducial criteria. Separate values of ϵ_ℓ are measured for each lepton flavor. In the case of electrons and muons, ϵ_ℓ is determined separately for leptons from tau decays.

All efficiencies are measured as functions of the lepton p_T and $|\eta|$. The efficiencies for electrons and taus are shown in Tables V and VI. The $|\eta|$ dependence of the muon efficiencies is treated by separate p_T efficiency measurements for muons with $|\eta| < 0.1$ and those with $|\eta| \geq 0.1$, and is shown in Table VII. For taus, the efficiency tables include the efficiency for taus generated with $p_T^{\vis,\tau} < 15$ GeV but reconstructed with $p_T^{\vis,\tau} \geq 15$ GeV, due to resolution effects. The corresponding efficiencies for electrons and muons generated below 10 GeV are much smaller and are not included here. The final per-lepton efficiency for electrons and taus is obtained as $\epsilon_\ell = \epsilon(p_T) \cdot \epsilon(\eta)/\epsilon(\ell)$, where $\epsilon(\ell)$ is 0.69 for prompt electrons, 0.53 for electrons from tau decays, and 0.17 for hadronically decaying taus.

The resulting per-lepton efficiencies are then combined to yield a selection efficiency for a given event satisfying the fiducial acceptance criteria. For events with exactly three leptons, the total efficiency for the event is the product of the individual lepton efficiencies. For events with more than three leptons, the additional leptons in order of descending p_T only contribute to the total efficiency when a lepton with higher p_T is not selected, leading to terms like $\epsilon_1 \epsilon_2 \epsilon_3 (1 - \epsilon_4)$, where ϵ_i denotes the fiducial efficiency for the ith p_T-ordered lepton. The method can be extended to cover the number of leptons expected by the model under consideration.

| $|\eta|$ | Prompt e | $\tau \rightarrow e$ | τ_{had} |
|---|---|---|---|
| 0.0–0.1 | 0.675 ± 0.003 | 0.52 ± 0.01 | 0.210 ± 0.009 |
| 0.1–0.5 | 0.757 ± 0.001 | 0.595 ± 0.005 | 0.195 ± 0.004 |
| 0.5–1.0 | 0.747 ± 0.001 | 0.581 ± 0.005 | 0.179 ± 0.004 |
| 1.0–1.5 | 0.666 ± 0.002 | 0.494 ± 0.006 | 0.138 ± 0.004 |
| 1.5–2.0 | 0.607 ± 0.002 | 0.465 ± 0.006 | 0.170 ± 0.004 |
| 2.0–2.5 | 0.591 ± 0.002 | 0.475 ± 0.007 | 0.163 ± 0.005 |

| $|\eta|$ | Prompt μ | $\tau \rightarrow \mu$ |
|---|---|---|
| $|\eta| > 0.1$ | 0.852 ± 0.002 | 0.47 ± 0.02 |
| $|\eta| < 0.1$ | 0.896 ± 0.002 | 0.51 ± 0.01 |
| $|\eta| > 0.1$ | 0.734 ± 0.005 | 0.43 ± 0.03 |
| $|\eta| < 0.1$ | 0.841 ± 0.005 | 0.41 ± 0.03 |

| $|\eta|$ | Prompt μ | $\tau \rightarrow \mu$ |
|---|---|---|
| 10–15 | 0.852 ± 0.002 | 0.47 ± 0.02 |
| 15–20 | 0.896 ± 0.002 | 0.51 ± 0.01 |
| 20–25 | 0.912 ± 0.001 | 0.52 ± 0.01 |
| 25–30 | 0.921 ± 0.001 | 0.50 ± 0.01 |
| 30–40 | 0.927 ± 0.001 | 0.50 ± 0.01 |
| 40–50 | 0.928 ± 0.001 | 0.513 ± 0.008 |
| 50–60 | 0.932 ± 0.001 | 0.524 ± 0.009 |
| 60–80 | 0.932 ± 0.001 | 0.524 ± 0.009 |
| 80–100 | 0.932 ± 0.001 | 0.524 ± 0.009 |
| 100–200 | 0.930 ± 0.002 | 0.51 ± 0.01 |
| 200–400 | 0.919 ± 0.007 | 0.45 ± 0.05 |
SEARCH FOR NEW PHENOMENA IN EVENTS WITH ATLAS

The median expected upper limits are shown in Fig. 13(a), along with the observed upper limit from the dedicated ATLAS search for \(H^\pm \to \mu^\pm \mu^\pm \) [60]. These results are obtained using the \(H^\pm \) leptons \(\geq 300\) GeV signal region in the \(\geq 3e/\mu \), off-Z channel. The theoretical cross section for \(H^\pm \) coupling to left-handed fermions \((H^\pm_L) \) implies that \(H^\pm_L \) masses below 330 GeV are excluded at 95% CL for \(BR(H^\pm \to \mu^+\mu^-) = 100\% \). For the case with \(BR(H^\pm \to \mu^\pm\tau^\pm) = 100\% \), the acceptance for the \(\geq 3e/\mu \) (2e/\mu + \geq 1\tau_{had}) channel is 24% (49%), and \(e^{fid} \) is 59% (13%) for \(m(H^\pm) = 200\) GeV. The corresponding upper limit on the cross section is 12 (19) fb, with \(m(H^\pm_L) < 237\) GeV (220 GeV) excluded at 95% CL. In this case, the off-Z \(H^\pm \) leptons \(\geq 300\) GeV signal region is used to calculate the expected limits for all \(H^\pm \) masses except for \(m(H^\pm) = 100\) GeV, where the off-Z, \(H^\pm \) leptons \(\geq 200\) GeV signal region is used. The observed and median expected limits from the \(\geq 3e/\mu \) channel are shown in Fig. 13(b).

FIG. 13 (color online). The expected and observed 95% confidence level upper limits on the cross-section times branching ratio of the (a) \(H^\pm \to \mu^\pm \mu^\pm \) and (b) \(H^\pm \to \mu^\pm\tau^\pm \) final states as a function of the \(H^\pm \) mass. For \(m(H^\pm) = 200\) GeV, the observed upper limit is 329 GeV, and the corresponding observed limit is 237 GeV. Results from the dedicated ATLAS search for \(H^\pm \to \mu^\pm\mu^\pm \) [60] are also shown.

Jets at the particle level are reconstructed from all stable particles, excluding muons and neutrinos, with the anti-\(k_t \) algorithm using a distance parameter \(R = 0.4 \). Overlaps between jets and leptons are removed as described in Sec. IV. \(E_T^{miss} \) is defined as the magnitude of the vector sum of the transverse momenta of all stable, weakly interacting particles, including those produced in models of new phenomena. The kinematic variables used for limit setting are defined as before: \(H^\pm \) leptons \(\geq 300\) GeV signal region in the \(\geq 3e/\mu \), off-Z channel. The theoretical cross section for \(H^\pm \) coupling to left-handed fermions (\(H^\pm_L \)) implies that \(H^\pm_L \) masses below 330 GeV are excluded at 95% CL for \(BR(H^\pm \to \mu^+\mu^-) = 100\% \). For the case with \(BR(H^\pm \to \mu^\pm\tau^\pm) = 100\% \), the acceptance for the \(\geq 3e/\mu \) (2e/\mu + \geq 1\tau_{had}) channel is 24% (49%), and \(e^{fid} \) is 59% (13%) for \(m(H^\pm) = 200\) GeV. The corresponding upper limit on the cross section is 12 (19) fb, with \(m(H^\pm_L) < 237\) GeV (220 GeV) excluded at 95% CL. In this case, the off-Z \(H^\pm \) leptons \(\geq 300\) GeV signal region is used to calculate the expected limits for all \(H^\pm \) masses except for \(m(H^\pm) = 100\) GeV, where the off-Z, \(H^\pm \) leptons \(\geq 200\) GeV signal region is used. The observed and median expected limits from the \(\geq 3e/\mu \) channel are shown in Fig. 13(b).

X. CONCLUSION

A generic search for new phenomena in events with at least three energetic, charged, prompt, and isolated leptons has been presented, using a data sample corresponding to an integrated luminosity of 4.6 fb\(^{-1}\) of \(pp \) collision data collected by the ATLAS experiment. The search was conducted in separate channels based on the presence or absence of a hadronically decaying tau lepton or reconstructed Z boson, and yielded no significant deviation from background yields expected from the Standard Model. Upper limits at 95% confidence level on event yields due to non-Standard-Model processes were placed as a function of lower bounds on several kinematic variables. Additional information on the fiducial selection of events populating the signal regions under study has been provided. The use of
this information in the interpretation of the results in the context of models of new phenomena has been illustrated by setting upper limits on the production of doubly charged Higgs bosons decaying to same-sign lepton pairs.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; INFN, IRC and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

APPENDIX A: TABLES OF EXPECTED AND OBSERVED EVENT YIELDS

The expected and observed event yields for all signal regions under study are shown in Tables VIII, IX, X, XI, and XII.

<table>
<thead>
<tr>
<th>H^{lep}_T</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total exp.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq 3e/\mu$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>54 ± 4 ± 7</td>
<td>54 ± 6 ± 23</td>
<td>107 ± 7 ± 24</td>
<td>99</td>
</tr>
<tr>
<td>100 GeV</td>
<td>32 ± 2 ± 4</td>
<td>32 ± 4 ± 16</td>
<td>65 ± 4 ± 16</td>
<td>62</td>
</tr>
<tr>
<td>150 GeV</td>
<td>22 ± 1 ± 3</td>
<td>15 ± 2 ± 8</td>
<td>37 ± 3 ± 8</td>
<td>27</td>
</tr>
<tr>
<td>200 GeV</td>
<td>9.7 ± 0.6 ± 1.5</td>
<td>6 ± 2 ± 4</td>
<td>16 ± 2 ± 4</td>
<td>15</td>
</tr>
<tr>
<td>300 GeV</td>
<td>3.6 ± 0.5 ± 0.5</td>
<td>2.5 ± 1.2 ± 1.8</td>
<td>6.2 ± 1.3 ± 1.9</td>
<td>4</td>
</tr>
<tr>
<td>$2e/\mu + \geq 1\tau_{\text{had}}$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>6.4 ± 0.4 ± 1.0</td>
<td>214 ± 5 ± 50</td>
<td>220 ± 5 ± 50</td>
<td>226</td>
</tr>
<tr>
<td>100 GeV</td>
<td>4.4 ± 0.3 ± 0.6</td>
<td>109 ± 3 ± 26</td>
<td>113 ± 3 ± 26</td>
<td>113</td>
</tr>
<tr>
<td>150 GeV</td>
<td>1.7 ± 0.2 ± 0.3</td>
<td>46 ± 2 ± 11</td>
<td>47 ± 2 ± 11</td>
<td>42</td>
</tr>
<tr>
<td>200 GeV</td>
<td>0.8 ± 0.1 ± 0.1</td>
<td>17 ± 1 ± 4</td>
<td>17 ± 1 ± 4</td>
<td>15</td>
</tr>
<tr>
<td>300 GeV</td>
<td>0.2 ± 0.1 ± 0.0</td>
<td>2.5 ± 0.4 ± 0.6</td>
<td>2.7 ± 0.4 ± 0.6</td>
<td>1</td>
</tr>
<tr>
<td>$\geq 3e/\mu$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>389 ± 5 ± 50</td>
<td>120 ± 8 ± 40</td>
<td>508 ± 10 ± 70</td>
<td>588</td>
</tr>
<tr>
<td>100 GeV</td>
<td>285 ± 4 ± 40</td>
<td>71 ± 6 ± 26</td>
<td>356 ± 7 ± 50</td>
<td>422</td>
</tr>
<tr>
<td>150 GeV</td>
<td>122 ± 2 ± 17</td>
<td>14 ± 3 ± 7</td>
<td>136 ± 4 ± 18</td>
<td>151</td>
</tr>
<tr>
<td>200 GeV</td>
<td>49 ± 1 ± 7</td>
<td>5 ± 2 ± 4</td>
<td>54 ± 2 ± 8</td>
<td>60</td>
</tr>
<tr>
<td>300 GeV</td>
<td>12.3 ± 0.7 ± 1.6</td>
<td>0.5 ± 0.5 ± 0.5</td>
<td>12.7 ± 0.9 ± 1.7</td>
<td>18</td>
</tr>
<tr>
<td>$2e/\mu + \geq 1\tau_{\text{had}}$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>13.2 ± 0.5 ± 2.2</td>
<td>1050 ± 10 ± 260</td>
<td>1060 ± 10 ± 260</td>
<td>914</td>
</tr>
<tr>
<td>100 GeV</td>
<td>11.1 ± 0.5 ± 1.9</td>
<td>670 ± 10 ± 160</td>
<td>680 ± 10 ± 160</td>
<td>587</td>
</tr>
<tr>
<td>150 GeV</td>
<td>4.5 ± 0.3 ± 0.8</td>
<td>66 ± 2 ± 16</td>
<td>71 ± 2 ± 16</td>
<td>75</td>
</tr>
<tr>
<td>200 GeV</td>
<td>1.8 ± 0.2 ± 0.3</td>
<td>19 ± 1 ± 5</td>
<td>21 ± 1 ± 5</td>
<td>24</td>
</tr>
<tr>
<td>300 GeV</td>
<td>0.5 ± 0.1 ± 0.1</td>
<td>3.0 ± 0.5 ± 0.8</td>
<td>3.5 ± 0.5 ± 0.8</td>
<td>7</td>
</tr>
</tbody>
</table>
TABLE IX. Results for the $E_{T}^{\text{miss}}, H_{T}^{\text{jets}} < 100$ GeV signal regions. Irreducible sources include all backgrounds estimated with MC simulation. Results are presented, in number of expected events, as $N \pm$ (statistical uncertainty) \pm (systematic uncertainty).

<table>
<thead>
<tr>
<th>E_{T}^{miss}</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total exp.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq 3\mu$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>46 \pm 4 \pm 6</td>
<td>41 \pm 5 \pm 16</td>
<td>86 \pm 6 \pm 17</td>
<td>89</td>
</tr>
<tr>
<td>20 GeV</td>
<td>28 \pm 4 \pm 3</td>
<td>28 \pm 4 \pm 12</td>
<td>56 \pm 6 \pm 12</td>
<td>65</td>
</tr>
<tr>
<td>50 GeV</td>
<td>7 \pm 0.5 \pm 1.0</td>
<td>15 \pm 2 \pm 7</td>
<td>22 \pm 2 \pm 7</td>
<td>25</td>
</tr>
<tr>
<td>75 GeV</td>
<td>3 \pm 0.3 \pm 0.4</td>
<td>7 \pm 2 \pm 4</td>
<td>10 \pm 2 \pm 4</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2\mu + \geq 1\tau_{\text{had}}$, off-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 GeV</td>
</tr>
<tr>
<td>20 GeV</td>
</tr>
<tr>
<td>50 GeV</td>
</tr>
<tr>
<td>75 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\geq 3\mu$, on-Z</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
<td>340 \pm 5 \pm 50</td>
<td>100 \pm 7 \pm 31</td>
<td>439 \pm 9 \pm 60</td>
<td>509</td>
</tr>
<tr>
<td>50 GeV</td>
<td>105 \pm 2 \pm 14</td>
<td>14 \pm 3 \pm 5</td>
<td>119 \pm 3 \pm 14</td>
<td>144</td>
</tr>
<tr>
<td>75 GeV</td>
<td>40 \pm 1 \pm 5</td>
<td>5 \pm 1 \pm 2</td>
<td>46 \pm 2 \pm 6</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2\mu + \geq 1\tau_{\text{had}}$, on-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
</tr>
<tr>
<td>50 GeV</td>
</tr>
<tr>
<td>75 GeV</td>
</tr>
</tbody>
</table>

TABLE X. Results for the $E_{T}^{\text{miss}}, H_{T}^{\text{jets}} \geq 100$ GeV signal regions. Irreducible sources include all backgrounds estimated with MC simulation. Results are presented, in number of expected events, as $N \pm$ (statistical uncertainty) \pm (systematic uncertainty).

<table>
<thead>
<tr>
<th>E_{T}^{miss}</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total exp.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq 3\mu$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>7.7 \pm 0.8 \pm 1.2</td>
<td>13 \pm 2 \pm 7</td>
<td>21 \pm 2 \pm 7</td>
<td>10</td>
</tr>
<tr>
<td>20 GeV</td>
<td>6.0 \pm 0.6 \pm 0.9</td>
<td>12 \pm 2 \pm 6</td>
<td>18 \pm 2 \pm 6</td>
<td>8</td>
</tr>
<tr>
<td>50 GeV</td>
<td>3.2 \pm 0.3 \pm 0.5</td>
<td>8 \pm 2 \pm 5</td>
<td>11 \pm 2 \pm 5</td>
<td>5</td>
</tr>
<tr>
<td>75 GeV</td>
<td>2.2 \pm 0.2 \pm 0.3</td>
<td>7 \pm 2 \pm 4</td>
<td>9 \pm 2 \pm 4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2\mu + \geq 1\tau_{\text{had}}$, off-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 GeV</td>
</tr>
<tr>
<td>20 GeV</td>
</tr>
<tr>
<td>50 GeV</td>
</tr>
<tr>
<td>75 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\geq 3\mu$, on-Z</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
<td>49 \pm 1 \pm 7</td>
<td>20 \pm 4 \pm 10</td>
<td>69 \pm 4 \pm 12</td>
<td>79</td>
</tr>
<tr>
<td>50 GeV</td>
<td>29 \pm 1 \pm 4</td>
<td>7 \pm 2 \pm 3</td>
<td>36 \pm 2 \pm 5</td>
<td>43</td>
</tr>
<tr>
<td>75 GeV</td>
<td>17.4 \pm 0.7 \pm 2.1</td>
<td>5 \pm 1 \pm 2</td>
<td>22 \pm 2 \pm 3</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2\mu + \geq 1\tau_{\text{had}}$, on-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 GeV</td>
</tr>
<tr>
<td>50 GeV</td>
</tr>
<tr>
<td>75 GeV</td>
</tr>
</tbody>
</table>
TABLE XI. Results for the m_{eff} signal regions. Irreducible sources include all backgrounds estimated with MC simulation. Results are presented, in number of expected events, as N^\pm (statistical uncertainty) ± (systematic uncertainty).

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total exp.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ $3e/\mu$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>54 ± 4 ± 7</td>
<td>54 ± 6 ± 23</td>
<td>107 ± 7 ± 24</td>
<td>99</td>
</tr>
<tr>
<td>150 GeV</td>
<td>32 ± 2 ± 4</td>
<td>43 ± 4 ± 20</td>
<td>75 ± 4 ± 20</td>
<td>64</td>
</tr>
<tr>
<td>300 GeV</td>
<td>12.0 ± 0.9 ± 1.6</td>
<td>16 ± 2 ± 8</td>
<td>28 ± 3 ± 8</td>
<td>15</td>
</tr>
<tr>
<td>500 GeV</td>
<td>3.3 ± 0.2 ± 0.5</td>
<td>3.2 ± 1.2 ± 2.4</td>
<td>6.5 ± 1.2 ± 2.5</td>
<td>5</td>
</tr>
<tr>
<td>2$e/\mu + ≥ 1\tau_{\text{had}}$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>6.4 ± 0.4 ± 1.0</td>
<td>214 ± 5 ± 50</td>
<td>220 ± 5 ± 50</td>
<td>226</td>
</tr>
<tr>
<td>150 GeV</td>
<td>4.4 ± 0.3 ± 0.7</td>
<td>106 ± 3 ± 24</td>
<td>111 ± 3 ± 24</td>
<td>101</td>
</tr>
<tr>
<td>300 GeV</td>
<td>1.3 ± 0.2 ± 0.2</td>
<td>31 ± 2 ± 7</td>
<td>32 ± 2 ± 7</td>
<td>25</td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.4 ± 0.1 ± 0.2</td>
<td>6.6 ± 0.7 ± 1.6</td>
<td>7.0 ± 0.7 ± 1.6</td>
<td>6</td>
</tr>
<tr>
<td>≥ $3e/\mu$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>390 ± 5 ± 50</td>
<td>120 ± 8 ± 40</td>
<td>510 ± 10 ± 70</td>
<td>588</td>
</tr>
<tr>
<td>150 GeV</td>
<td>270 ± 3 ± 40</td>
<td>57 ± 6 ± 22</td>
<td>330 ± 7 ± 40</td>
<td>399</td>
</tr>
<tr>
<td>300 GeV</td>
<td>73 ± 1 ± 10</td>
<td>16 ± 3 ± 8</td>
<td>89 ± 4 ± 13</td>
<td>103</td>
</tr>
<tr>
<td>500 GeV</td>
<td>22.2 ± 0.9 ± 2.8</td>
<td>3 ± 1 ± 1</td>
<td>25 ± 2 ± 3</td>
<td>29</td>
</tr>
<tr>
<td>2$e/\mu + ≥ 1\tau_{\text{had}}$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>13.2 ± 0.5 ± 2.2</td>
<td>1050 ± 10 ± 260</td>
<td>1060 ± 10 ± 260</td>
<td>914</td>
</tr>
<tr>
<td>150 GeV</td>
<td>10.7 ± 0.5 ± 1.8</td>
<td>360 ± 5 ± 90</td>
<td>370 ± 5 ± 90</td>
<td>309</td>
</tr>
<tr>
<td>300 GeV</td>
<td>2.9 ± 0.3 ± 0.4</td>
<td>47 ± 2 ± 12</td>
<td>50 ± 2 ± 12</td>
<td>42</td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.9 ± 0.2 ± 0.1</td>
<td>7.7 ± 0.8 ± 1.9</td>
<td>8.7 ± 0.8 ± 2.0</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE XII. Results for the m_{eff}, high-$E_{\text{T}}^{\text{miss}}$ signal regions. Irreducible sources include all backgrounds estimated with MC simulation. Results are presented, in number of expected events, as N^\pm (statistical uncertainty) ± (systematic uncertainty).

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Irreducible</th>
<th>Reducible</th>
<th>Total exp.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ $3e/\mu$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>5.1 ± 0.4 ± 0.7</td>
<td>13 ± 2 ± 8</td>
<td>18 ± 2 ± 8</td>
<td>15</td>
</tr>
<tr>
<td>150 GeV</td>
<td>5.1 ± 0.4 ± 0.7</td>
<td>13 ± 2 ± 8</td>
<td>18 ± 2 ± 8</td>
<td>15</td>
</tr>
<tr>
<td>300 GeV</td>
<td>3.7 ± 0.3 ± 0.5</td>
<td>10 ± 2 ± 6</td>
<td>13 ± 2 ± 6</td>
<td>9</td>
</tr>
<tr>
<td>500 GeV</td>
<td>1.7 ± 0.2 ± 0.2</td>
<td>2.9 ± 1.1 ± 2.3</td>
<td>4.5 ± 1.1 ± 2.3</td>
<td>4</td>
</tr>
<tr>
<td>2$e/\mu + ≥ 1\tau_{\text{had}}$, off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>1.0 ± 0.2 ± 0.1</td>
<td>17 ± 1 ± 4</td>
<td>18 ± 1 ± 4</td>
<td>18</td>
</tr>
<tr>
<td>150 GeV</td>
<td>1.0 ± 0.2 ± 0.1</td>
<td>17 ± 1 ± 4</td>
<td>18 ± 1 ± 4</td>
<td>18</td>
</tr>
<tr>
<td>300 GeV</td>
<td>0.6 ± 0.1 ± 0.1</td>
<td>11.9 ± 0.9 ± 2.9</td>
<td>12.4 ± 0.9 ± 2.9</td>
<td>11</td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.2 ± 0.1 ± 0.1</td>
<td>3.2 ± 0.5 ± 0.8</td>
<td>3.4 ± 0.5 ± 0.8</td>
<td>2</td>
</tr>
<tr>
<td>≥ $3e/\mu$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>58 ± 1 ± 7</td>
<td>10 ± 2 ± 4</td>
<td>68 ± 2 ± 8</td>
<td>85</td>
</tr>
<tr>
<td>150 GeV</td>
<td>58 ± 1 ± 7</td>
<td>10 ± 2 ± 4</td>
<td>68 ± 2 ± 8</td>
<td>85</td>
</tr>
<tr>
<td>300 GeV</td>
<td>32 ± 1 ± 4</td>
<td>6 ± 1 ± 2</td>
<td>37 ± 2 ± 4</td>
<td>47</td>
</tr>
<tr>
<td>500 GeV</td>
<td>11.8 ± 0.6 ± 1.4</td>
<td>2.2 ± 1.1 ± 0.7</td>
<td>14.0 ± 1.3 ± 1.6</td>
<td>18</td>
</tr>
<tr>
<td>2$e/\mu + ≥ 1\tau_{\text{had}}$, on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 GeV</td>
<td>2.7 ± 0.3 ± 0.4</td>
<td>6.8 ± 0.7 ± 1.6</td>
<td>9.5 ± 0.8 ± 1.7</td>
<td>5</td>
</tr>
<tr>
<td>150 GeV</td>
<td>2.7 ± 0.3 ± 0.4</td>
<td>6.7 ± 0.7 ± 1.6</td>
<td>9.4 ± 0.8 ± 1.7</td>
<td>4</td>
</tr>
<tr>
<td>300 GeV</td>
<td>1.6 ± 0.2 ± 0.2</td>
<td>3.5 ± 0.5 ± 0.9</td>
<td>5.0 ± 0.5 ± 0.9</td>
<td>2</td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.6 ± 0.1 ± 0.1</td>
<td>0.4 ± 0.1 ± 0.1</td>
<td>1.0 ± 0.2 ± 0.1</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX B: TABLES OF EXPECTED AND OBSERVED LIMITS

The expected and observed 95% confidence level upper limits on the expected event yields from new phenomena for all signal regions under study are shown in Tables XIII, XIV, XV, XVI, and XVII.

TABLE XIII. Limits in the H_{T}^{leptons} bins shown as the upper limit on the visible cross section $(\sigma_{95}^{\text{vis}} = N_{95}/\int L dt)$.

<table>
<thead>
<tr>
<th>H_{T}^{leptons} (GeV)</th>
<th>Observe (fb)</th>
<th>Expected (fb)</th>
<th>$^{+1\sigma}_{-1\sigma}$ (fb)</th>
<th>$^{+2\sigma}_{-2\sigma}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$^{\geq 3e/\mu}$ off-Z</td>
<td>$^{2e/\mu + \geq 1\tau_{\text{had}}}$ off-Z</td>
</tr>
<tr>
<td>$>$ 0</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>$>$ 100</td>
<td>8.7</td>
<td>8.5</td>
<td>2.9</td>
<td>6.9</td>
</tr>
<tr>
<td>$>$ 150</td>
<td>4.0</td>
<td>4.6</td>
<td>1.8</td>
<td>5.1</td>
</tr>
<tr>
<td>$>$ 200</td>
<td>4.4</td>
<td>3.6</td>
<td>1.7</td>
<td>4.9</td>
</tr>
<tr>
<td>$>$ 300</td>
<td>1.6</td>
<td>1.9</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>23</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>$>$ 100</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>$>$ 150</td>
<td>6.1</td>
<td>6.4</td>
<td>3.4</td>
<td>8.3</td>
</tr>
<tr>
<td>$>$ 200</td>
<td>3.3</td>
<td>3.6</td>
<td>1.9</td>
<td>5.0</td>
</tr>
<tr>
<td>$>$ 300</td>
<td>1.2</td>
<td>1.5</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>$^{\geq 3e/\mu}$ on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$ 0</td>
<td>48</td>
<td>33</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>$>$ 100</td>
<td>38</td>
<td>25</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>$>$ 150</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>$>$ 200</td>
<td>7.2</td>
<td>6.5</td>
<td>2.2</td>
<td>6.2</td>
</tr>
<tr>
<td>$>$ 300</td>
<td>4.5</td>
<td>3.1</td>
<td>1.4</td>
<td>3.5</td>
</tr>
<tr>
<td>$^{2e/\mu + \geq 1\tau_{\text{had}}}$ on-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$ 0</td>
<td>85</td>
<td>94</td>
<td>41</td>
<td>96</td>
</tr>
<tr>
<td>$>$ 100</td>
<td>53</td>
<td>61</td>
<td>26</td>
<td>64</td>
</tr>
<tr>
<td>$>$ 150</td>
<td>11.0</td>
<td>9.9</td>
<td>4.3</td>
<td>11.0</td>
</tr>
<tr>
<td>$>$ 200</td>
<td>5.2</td>
<td>4.5</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td>$>$ 300</td>
<td>3.0</td>
<td>1.9</td>
<td>1.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

052002-17
TABLE XIV. Limits in the E_T^{miss} bins with $H_T^{\text{jets}} \geq 100$ GeV requirement shown as the upper limit on the visible cross section ($\sigma_{\text{the}} = N_{\text{exp}} / \int L (dt)$).

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$^{+1\sigma}_{-1\sigma}$ (fb)</th>
<th>$^{+2\sigma}_{-2\sigma}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\geq 3e/\mu$ off-Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$0</td>
<td>2.6</td>
<td>3.1</td>
<td>1.5</td>
<td>3.4</td>
</tr>
<tr>
<td>$>$50</td>
<td>2.1</td>
<td>2.4</td>
<td>1.0</td>
<td>2.3</td>
</tr>
<tr>
<td>$>$75</td>
<td>2.1</td>
<td>2.3</td>
<td>1.1</td>
<td>1.9</td>
</tr>
</tbody>
</table>

$2e/\mu + \geq 1\tau_{\text{had}}$ off-Z

$>$0	4.2	4.8	2.5	6.1
$>$50	3.1	3.3	1.8	4.4
$>$75	2.6	2.1	0.8	1.9

$\geq 3e/\mu$ on-Z

$>$20	11.0	8.7	2.5	7.0
$>$50	6.4	4.9	2.3	5.4
$>$75	5.1	3.8	1.6	3.8

$2e/\mu + \geq 1\tau_{\text{had}}$ on-Z

$>$20	5.9	7.3	2.9	6.8
$>$50	3.4	2.8	1.4	3.5
$>$75	1.2	1.5	0.4	1.0

TABLE XV. Limits in the E_T^{miss} bins with $H_T^{\text{jets}} \leq 100$ GeV requirement shown as the upper limit on the visible cross section ($\sigma_{\text{the}} = N_{\text{exp}} / \int L (dt)$).

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$^{+1\sigma}_{-1\sigma}$ (fb)</th>
<th>$^{+2\sigma}_{-2\sigma}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\geq 3e/\mu$ off-Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$0</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>$>$50</td>
<td>5.3</td>
<td>4.7</td>
<td>1.9</td>
<td>4.8</td>
</tr>
<tr>
<td>$>$75</td>
<td>3.1</td>
<td>3.0</td>
<td>1.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

$2e/\mu + \geq 1\tau_{\text{had}}$ off-Z

$>$0	23	21	9	23
$>$50	4.3	4.0	2.3	5.0
$>$75	3.1	2.6	1.1	3.1

$\geq 3e/\mu$ on-Z

$>$20	41	30	10	20
$>$50	16	10	4	11
$>$75	8.0	5.4	2	6.2

$2e/\mu + \geq 1\tau_{\text{had}}$ on-Z

$>$20	80	88	39	94
$>$50	4.4	5.5	3.2	7.6
$>$75	1.8	2.2	0.4	1.0

TABLE XVI. Limits in the m_{eff} bins shown as the upper limit on the visible cross section ($\sigma_{\text{the}} = N_{\text{exp}} / \int L (dt)$).

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$^{+1\sigma}_{-1\sigma}$ (fb)</th>
<th>$^{+2\sigma}_{-2\sigma}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq 3e/\mu$ off-Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$0</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>$>$150</td>
<td>8.1</td>
<td>8.8</td>
<td>1.7</td>
<td>3.8</td>
</tr>
<tr>
<td>$>$300</td>
<td>3.1</td>
<td>3.7</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>$>$500</td>
<td>2.1</td>
<td>2.1</td>
<td>1.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>

$2e/\mu + \geq 1\tau_{\text{had}}$ off-Z

$>$0	25	23	13	29
$>$150	12	13	6	14
$>$300	3.9	4.9	2.5	6.4
$>$500	2.2	2.4	1.3	3.4

$\geq 3e/\mu$ on-Z

$>$0	48	33	15	32
$>$150	37	25	9	21
$>$300	11	9	4	9
$>$500	4.8	3.9	1.7	4.3

$2e/\mu + \geq 1\tau_{\text{had}}$ on-Z

$>$0	85	94	41	96
$>$150	28	35	13	34
$>$300	5.9	6.8	2.8	8.1
$>$500	1.9	2.5	1.4	3.5

$\geq 3e/\mu$ off-Z

$>$0	2.6	3.1	1.5	3.4
$>$50	2.1	2.3	1.1	1.9
$>$75	2.1	2.3	1.1	1.9

$2e/\mu + \geq 1\tau_{\text{had}}$ off-Z

$>$0	4.2	4.8	2.5	6.1
$>$50	3.1	3.3	1.8	4.4
$>$75	2.6	2.1	0.8	1.9
TABLE XVII. Limits in the m_{eff} bins with $E_{\text{vis}}\gtrsim 75$ GeV requirement shown as the upper limit on the visible cross section ($\sigma_{\text{vis}} = \sigma_{\text{if}}/\int \text{d}t$).

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$+1\sigma_{\text{eff}}$ (fb)</th>
<th>$-1\sigma_{\text{eff}}$ (fb)</th>
<th>$+2\sigma_{\text{eff}}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>3.8</td>
<td>3.9</td>
<td>1.5</td>
<td>0.7</td>
<td>3.4</td>
</tr>
<tr>
<td>>150</td>
<td>3.8</td>
<td>3.9</td>
<td>1.5</td>
<td>1.0</td>
<td>3.6</td>
</tr>
<tr>
<td>>300</td>
<td>2.8</td>
<td>3.0</td>
<td>1.2</td>
<td>0.7</td>
<td>3.2</td>
</tr>
<tr>
<td>>500</td>
<td>2.1</td>
<td>2.0</td>
<td>0.8</td>
<td>0.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

$2e/\mu + \gtrsim 1\tau_{\text{had}}$ off-Z

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$+1\sigma_{\text{eff}}$ (fb)</th>
<th>$-1\sigma_{\text{eff}}$ (fb)</th>
<th>$+2\sigma_{\text{eff}}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>10.0</td>
<td>6.9</td>
<td>3.0</td>
<td>1.3</td>
<td>7.4</td>
</tr>
<tr>
<td>>150</td>
<td>10.0</td>
<td>7.1</td>
<td>2.8</td>
<td>2.2</td>
<td>7.0</td>
</tr>
<tr>
<td>>300</td>
<td>6.8</td>
<td>4.9</td>
<td>2.1</td>
<td>1.0</td>
<td>5.1</td>
</tr>
<tr>
<td>>500</td>
<td>3.9</td>
<td>3.0</td>
<td>1.2</td>
<td>0.7</td>
<td>3.4</td>
</tr>
</tbody>
</table>

$2e/\mu + \gtrsim 1\tau_{\text{had}}$ on-Z

<table>
<thead>
<tr>
<th>m_{eff} (GeV)</th>
<th>Observed (fb)</th>
<th>Expected (fb)</th>
<th>$+1\sigma_{\text{eff}}$ (fb)</th>
<th>$-1\sigma_{\text{eff}}$ (fb)</th>
<th>$+2\sigma_{\text{eff}}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>1.6</td>
<td>2.4</td>
<td>1.4</td>
<td>0.9</td>
<td>3.8</td>
</tr>
<tr>
<td>>150</td>
<td>1.4</td>
<td>2.5</td>
<td>1.5</td>
<td>0.8</td>
<td>3.8</td>
</tr>
<tr>
<td>>300</td>
<td>1.5</td>
<td>2.0</td>
<td>1.1</td>
<td>0.8</td>
<td>2.7</td>
</tr>
<tr>
<td>>500</td>
<td>0.9</td>
<td>1.1</td>
<td>0.8</td>
<td>0.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

[27] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The variable ΔR is used to evaluate the distance between objects and is defined as $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$.

SEARCH FOR NEW PHENOMENA IN EVENTS WITH

PHYSICAL REVIEW D 87, 052002 (2013)

14Department for Physics and Technology, University of Bergen, Bergen, Norway
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19aDepartment of Physics, Bogazici University, Istanbul, Turkey
19bDivision of Physics, Dogus University, Istanbul, Turkey
19cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19dDepartment of Physics, Istanbul Technical University, Istanbul, Turkey
20aINFN Sezione di Bologna, Italy
20bDipartimento di Fisica, Università di Bologna, Bologna, Italy
21Physikalisches Institut, University of Bonn, Bonn, Germany
22Department of Physics, Boston University, Boston, Massachusetts, USA
23Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24aFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24bFederal University of Sao Joao del Rei (UFJS), Sao Joao del Rei, Brazil
24cInstituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
26bUniversity Politehnica Bucharest, Bucharest, Romania
26cWest University in Timisoara, Timisoara, Romania
27Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29Department of Physics, Carleton University, Ottawa, Ontario, Canada
30CERN, Geneva, Switzerland
31Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
32aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32bDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33aDepartment of Modern Physics, University of Science and Technology of China, Anhui, China
33bDepartment of Physics, Nanjing University, Jiangsu, China
33cSchool of Physics, Shandong University, Shandong, China
33dPhysics Department, Shanghai Jiao Tong University, Shanghai, China
34Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35Nevis Laboratory, Columbia University, Irvington, New York, USA
36Niels Bohr Institute, University of Copenhagen, København, Denmark
37aINFN Gruppo Collegato di Cosenza, Italy
37bDipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40Physics Department, Southern Methodist University, Dallas, Texas, USA
41Physics Department, University of Texas at Dallas, Richardson, Texas, USA
42DESY, Hamburg and Zeuthen, Germany
43Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45Department of Physics, Duke University, Durham, North Carolina, USA
46SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47INFN Laboratori Nazionali di Frascati, Frascati, Italy
48Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49Section de Physique, Université de Genève, Geneva, Switzerland
50aINFN Sezione di Genova, Italy
50bDipartimento di Fisica, Università di Genova, Genova, Italy
51aE. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
51bHigh Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
SEARCH FOR NEW PHENOMENA IN EVENTS WITH...

PHYSICAL REVIEW D 87, 052002 (2013)

112Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
113Palacký University, RCPTM, Olomouc, Czech Republic
114Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
115LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116Graduate School of Science, Osaka University, Osaka, Japan
117Department of Physics, University of Oslo, Oslo, Norway
118Department of Physics, Oxford University, Oxford, United Kingdom
119aINFN Sezione di Pavia, Italy
119bDipartimento di Fisica, Università di Pavia, Pavia, Italy
120Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
121Petersburg Nuclear Physics Institute, Gatchina, Russia
122aINFN Sezione di Pisa, Italy
122bDipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
124aLaboratorio de Instrumentacion e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
124bDepartamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126Czech Technical University in Prague, Praha, Czech Republic
127Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
128State Research Center Institute for High Energy Physics, Protvino, Russia
129Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130Physics Department, University of Regina, Regina, Saskatchewan, Canada
131Ritsumeikan University, Kusatsu, Shiga, Japan
132aINFN Sezione di Roma I, Roma, Italy
132bDipartimento di Fisica, Università La Sapienza, Roma, Italy
133aINFN Sezione di Roma Tor Vergata, Roma, Italy
133bDipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134aINFN Sezione di Roma Tre, Roma, Italy
134bDipartimento di Fisica, Università Roma Tre, Roma, Italy
135aFaculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
135bCentre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
135cFaculté des Sciences Semlalia, Université Cadi Ayyad, LHPHEA-Marrakech, Morocco
135dFaculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
135eFaculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
136DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
138Department of Physics, University of Washington, Seattle, Washington, USA
139Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140Department of Physics, Shizuoka University, Nagano, Japan
141Fachbereich Physik, Universität Siegen, Siegen, Germany
142Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
143SLAC National Accelerator Laboratory, Stanford, California, USA
144aFaculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
144bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145aDepartment of Physics, University of Johannesburg, Johannesburg, South Africa
145bSchool of Physics, University of the Witwatersrand, Johannesburg, South Africa
146aDepartment of Physics, Stockholm University, Sweden
146bThe Oskar Klein Centre, Stockholm, Sweden
147Physics Department, Royal Institute of Technology, Stockholm, Sweden
148Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
149Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150School of Physics, University of Sydney, Sydney, Australia
151Institute of Physics, Academia Sinica, Taipei, Taiwan
152Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
SEARCH FOR NEW PHENOMENA IN EVENTS WITH... PHYSICAL REVIEW D 87, 052002 (2013)

dd Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA.

ee Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.

ff Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

gg Also at California Institute of Technology, Pasadena, CA, USA.

hh Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

ii Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

jj Also at Nevis Laboratory, Columbia University, Irvington, NY, USA.

kk Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

ll Also at Department of Physics, Oxford University, Oxford, United Kingdom.

mm Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.

nn Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.