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Abstract
Defossilation of chemical industry, aiming at reducing CO2

emissions, is constrained by the fact that many chemical
products used today are carbon-based. To overcome this vi-
cious circle, technologies such as the electrochemical glycerol
oxidation reaction (GOR) can be used to convert glycerol, a
waste product from biodiesel production, into value-added
products. In a direct glycerol fuel cell, the value-added prod-
ucts together with electrical energy can be generated, while in
an electrolyser, the synthesis of chemicals needs to be
powered by renewable energy. However, when scaling up such
systems from the laboratory scale to the industrial scale, it is
also essential to consider aspects such as market parameters
of the potential chemical products and selectivities of the
electrocatalysts. In this contribution, we aim to highlight the
research opportunities regarding GOR in the context of the
transition from fossil to renewable energy resources, with a
particular focus on synthesizing GOR products in industrially
relevant amounts.
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Introduction
Chemical products are an integral part of modern society
and therefore ubiquitous in our daily lives. Their pro-
duction requires almost 450 million tons of carbon
www.sciencedirect.com C
annually (2020), of which more than 80% comes from
fossil resources such as oil, coal, and gas [1]. As a result,
in the current linear and fossil-based economy, the
chemical industry is responsible for about 7% of global
greenhouse gas emissions, such as CO2 [2]. Unlike the
energy sector, the chemical industry cannot be decar-
bonized since its products are based on the element
carbon. Yet the transition to a circular economy requires
new technologies for the sustainable production of
building blocks, synthetic fuels, and raw materials for
the chemical, high-tech systems, and materials in-

dustries. The future synthesis of carbon-based chem-
icals must combine renewable energy resources with
renewable carbon resources to close the carbon cycle.
Such renewable carbon can be obtained from biomass,
by recycling carbon products and reutilizing CO2 or
other C-based products with no relevant application [3].

Biodiesel, consisting of fatty acid methyl esters (FAME),
has gained significant interest in recent years being a
biodegradable and non-toxic biofuel, that may be used to
defossilise road freight transport, marine transport, and

aviation [4]. Biodiesel belongs to the group of 1st and
2nd-generation biofuels, as it can be produced from
edible (1st generation) and non-edible feedstock-
derived fats or oils (2nd generation) [5]. Since 1st gen-
eration biofuels can compete with land used to grow food
crops, biodiesel produced from non-edible feedstocks
such as waste cooking oil would be more beneficial [6,7].
In 2021, the EU emerged as the top biodiesel producer
with 9.9 million tons (Mt), followed by Indonesia at
8.2 Mt, Brazil at 5.9 Mt, and the United States at 5.5 Mt
[8]. With an annual volume of 50 billion liters for the

biodiesel production (in 2020) there is a surplus of low-
cost crude glycerol and a growing interest in finding
ways to increase its value, typically after its purification.
The transesterification reaction is one of the most widely
used processes [6] to convert triglycerides into biodiesel.
Transesterification can be performed using acid, base, or
enzymatic catalysis, with base catalysis industrially
preferred due to its higher reaction rate. In the base-
catalysed transesterification, the triglycerides are
mixed with methanol and sodium/potassium hydroxide
or sodium methoxide as a homogenous catalyst to pro-

duce FAME and glycerol as a byproduct (Figure 1a)
[9,10]. For each mole of triglycerides used, one mole of
glycerol is formed together with three moles of FAME,
leading to w10 wt.-% of glycerol in the product mixture
[10]. The crude glycerol (>1.0 g/mL), obtained by
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100829
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Figure 1

(a) Reaction scheme for the transesterification reaction to produce biodiesel. Adapted from Ref. [6]. (b) Working principle of a glycerol/O2 direct alcohol
fuel cell (left), and a glycerol electrolyser with concomitant hydrogen production. The anode compartments for the two half-cells are shown in blue on the
left and the cathode compartments in pink on the right. EGOR, EORR and EHER represent the potentials for the glycerol oxidation reaction (GOR), oxygen
reduction reaction (ORR), and hydrogen evolution reaction (HER), respectively, and their relative values to enable a fuel cell (a) or electrolyzer (b) to
operate. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

2 Recycling and Reuse within a Circular Economy (2023)
separation from the biodiesel (w0.850 g/mL), contains
65e85% glycerol, 23e38% methanol, and other compo-
nents such as soap, ash, water and many organics non-

glycerol (MONG) products (methyl esters, free fatty
acids, unreacted glycerides), depending on the feedstock
and transesterification catalysis used [6,10].

The electrochemical oxidation of glycerol (GOR) is a
promising conversion technique to valorise glycerol and
can thus also be referred to as an electroreforming re-
action [7,11]. In contrast to other techniques, such as
the carboxylation, dehydration, esterification, hydro-
genolysis, or reforming of glycerol, the electrochemical
approach is desirable since it offers mild conditions such

as ambient temperatures and pressure and does not
require the addition of potentially hazardous chemical
oxidants, while taking advantage of renewable resources
[12]. The GOR takes place at the anode of an electro-
chemical system and can produce a series of valuable
oxygenates, some exemplified in Table 1, along with
their global exported volumes, value, price and
Current Opinion in Green and Sustainable Chemistry 2023, 41:100829
applications. C3 products are typically more expensive
than the C2 or C1 products, with dihydroxyacetone
having the highest price from all the chemicals listed in

Table 1. However, its worldwide demand is between the
smallest when compared with other GOR products,
such as glyceric acid and glycolic acid with more than
twenty times greater demand. The implementation of
the GOR in a direct alcohol fuel cell (DAFC) offers the
possibility to provide electrical energy in addition to the
valuable products (Figure 1b, left), while the use in an
electrolyser allows the simultaneous production of
hydrogen or other cathodically formed products next to
the value-added glycerol-derived products at the anode
(Figure 1b, right).

The review is structured in four sections. Glycerol
electroreforming in DGFCs and Glycerol
electroreforming in electrolysers focus on the recent
developments in glycerol electroreforming in direct
glycerol fuel cells (DGFCs) or in electrolysers when
paired with the production of hydrogen. In What should
www.sciencedirect.com
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Table 1

Market parametersa (2021) and applications for crude/purified glycerol, hydrogen, and main GOR products generated in a fuel cell or in
an electrolyser [13].

Valuable product
(Number of containing
carbon atoms, abbreviation)

Worldwide
exported

amount in Mt

Worldwide exported
value in Mio. US$ d

Price in US$
per t d

Price in US¢
per mole b,d

Application

Glyceric acid (C3, GLAC)e 1.445 4100 2800 30 Anionic monomer of packaging material
for exothermic and volatile agents [17],
used in cosmetic and pharmaceutical
products to treat skin diseases [18]

126,000 [14]
2300 [15]
3625 [16]

Dihydroxyacetone (C3, DHA)e 0.062 240 3800 35 Pharmaceutical intermediate, self-tanning
agent and browning ingredient in the
cosmetic industry, monomer for
biopolymers [21]

82,000 [19]
150,000 [20]
1850 [16]

Lactic acid (C3, LAC) 0.310 550 1800 16 Production of biodegradable poly (lactic
acid), polyester, feedstock for the
synthesis of green solvents and various
commodity chemicals. Directly used in the
pharmaceutical, food and detergent
industries [22]

Oxalic acid (C2, OA) 0.151 180 1200 11 Cleaning or bleaching, removal of dust,
mordant in dyeing processes, baking
powder, antioxidant [23]

Glycolic acid (C2, GLCO)e 1.445 4100 2800 21 Substrates of pharmaceutical
intermediates, reducing agent in
electroless copper plating [26]

1810 [16]
1840 [24]
2332 [25]

Formic acid (C1, FA) 0.692 530 800 4 Fuel in fuel cells, organic chemical as raw
material, metal surface treatment agents,
synthesis of rubber additives and industrial
solvents [18,27]

Glycerol and Hydrogen
Glycerol (crude) 2.022 1100 500 5 Green solvent for organic reactions,

substrate to produce value-added
products through microbial fermentation or
physicochemical processing [28]

Glycerol (purified) 2.118 2000 1000 9 Raw material for cosmetics, food, paints,
and pharmaceutical industries [7]

Hydrogenc 0.207 200 1000 0.2 N-fertilizers (ammonia, nitric acid),
methanol production, chemical energy
storage [2,29]

a The Harmonised System (HS) classification codes assessed for the respective compounds are 152,000 (crude glycerol, glycerol waters and
glycerol lyes; crude glycerol), 290,545 (glycerol; purified glycerol), 280,410 (hydrogen), 291,590 (saturated acyclic monocarboxylic acids; glyceric
acid, glycolic acid), 291,440 (ketone-alcohols and ketone-aldehydes; dihydroxyacetone), 291,811 (lactic acid incl. salts and esters), 291,711
(oxalic acid incl. salts and esters), 291,511, 291,512 and 291,513 (formic acid incl. salts and esters).
b Calculated using standard ambient temperature and pressure (SATP) conditions (298.17 K, 101.325 kPa) and the molar mass of the pure
substance, assuming 100% purity of the compound.
c Increasing H2 demand, 154 Mt/year till 2030, 614 Mt/year till 2050 in a 1.5 �C scenario [30].
d Worldwide exported values, prices per t and mole were rounded.
e Since the market parameters of these products were taken from a chemical class of products, for example “ketone-alcohols and ketone-alde-
hydes” for dihydroxyacetone, the presented exported amount, values and prices are not exact. Other reports on the prices are given below the
calculated one.

From glycerol to sustainable chemicals Braun et al. 3
we consider when scaling up?, the scalability of glycerol
electroreforming through electrolysis is discussed, with
a perspective and conclusion part in Conclusion and

perspective.
www.sciencedirect.com C
Glycerol electroreforming in DGFCs
Up to date, glycerol was seen as an alternative fuel for
DAFCs [31], due to its high energy density of 6.26 kWh
L�l, being easily transported/stored since it is a non-
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100829
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Table 2

Anode materials used in DGFCs and electrolysers for glycerol electroreforming and H2 co-generation.

Valuable product and selectivity Anode catalyst Electrolyte Peak current density Reference

DGFC configuration
TART – 28.1%
GLAC – 27.2%
CO2 – 24.0%
OA – 14.1%
GLCO – 4.2%
FA – 2.4%
(at 20 mA/cm2 for 10.2 h)

Pd-(Ni–Zn)/C 2 M KOH
5 wt% glycerol

65.3 mA/cm2

0.92 VRHE (Scan rate:
0.05 V/s)a

[47]

FA – 64%
GLYD – 21%
GLAC – 15%
(after 4 h)

Pt–Au/Poly
(CC-co-BP)RGOb

0.5 M KOH
0.5 M glycerol

37.05 mA/mg at �0.1 VSCE

(Scan rate: 0.05 V/s)a
[48]

TART – 55.5%
GLAC – 28.3%
LAC – 6.3%
FA – 3.6%
GLCO – 3.2%
OA – 3.2%
(at 0.9 VRHE for 12 h)a

Pt/FeNCc 5 M KOH
8 M glycerol

5.0 mA/cm2 at 0.85 VRHE

(Scan rate: 0.05 V/s)a
[49]

MA– 46%
TART– 19%
OA – 22%
GLAC – 13%
(at 0.3 V for 2 h)

Au/C 2 M KOH
1 M glycerol
T = 50 �C

Not reported [50]

GLCO – 0.2 mmol/L
FA – 0.2 mmol/L
(at flow rate 100 mL/min,
in situ Bi/Pt/C/CP, 0.83 V)

Bi/Pt/C/CPd 0.1 M NaOH
0.1 M glycerol

6.80 mA/cm2 at 0.90 VRHE

(Scan rate: 0.05 V/s)a
[31]

FA – 81.2%
(at 0.7 VRHE for 4 h)a

Pd0.82Pt0.56Ag 0.5 M NaOH
1 M crude glycerol
(purity ~ 65%)

2.9 A/mgPdPt at 0.85 VRHE

(Scan rate: 0.05 V/s)a
[42]

Electrolyser configuration
Valuable product and selectivity Anode catalyst Electrolyte E (VRHE) @ 10 mA/cm2 Reference

GLAC – 97.2%
(at 1.0 V for 5 h)

Au/CPd 0.1 M NaOH
0.1 M glycerol

1.0a [51]

DHA – 45.5%,
GLYD – 41.5%
GLCO – 5.1%
TART – 3%
FA – 3%
GLAC – 1.8%
(at 2.05 VRHE for 3 h)a

MnO2 0.1 M Na2B4O7

0.1 M glycerol
Not reached [19]

DHA – 71%,
FA – 5%
(at 1.52 VRHE after 18 C passed)a

NiOOH 0.75H3BO3

~1 M K2SO4

Adjusted with KOH (pH = 9)
0.025 M glycerol

Not reached [52]

GLAC – 42.4%
LAC – 22.9%
TART – 14.1%
CO2 – 13.9%
FA – 6.6%
(at 0.45 VRHE for 8 h)

Pt0.95-Bi0.05/TiN/
HNWs/CCe

1 M KOH
0.05 M glycerol

~0.5a [53]

OA – ~44%
(at 1.5 VRHE for 48 h)

NiOx/MWCNTs-Oxf 7 M KOH
0.1 M glycerol

~1.27a [23]

4 Recycling and Reuse within a Circular Economy (2023)
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Table 2 (continued )

Valuable product and selectivity Anode catalyst Electrolyte Peak current density Reference

GLCO – 41.2%
FA – 39%
TART – 10.8%
GLAC – 9%
(at 1.0 VRHE for 10 h)a

RA-Aug on Ni foam 1 M KOH
0.1 M glycerol

0.85a [26]

FA – 94.3%
(at 1.624 VRHE for 10 h)a

NiCo hydroxide 1 M KOH
0.1 M glycerol

1.33a [54]

FA – 51%
CO2 – 48%
CO – 1%
(at 10 mA/cm2 for 100 h)a

MnO2/CPd 0.005 M H2SO4

0.2 M glycerol
1.36a [55]

(DHA: Dihydroxyacetone, GLYD: glyceraldehyde, GLAC: glyceric acid, TART: tartronic acid, LAC: lactic acid, OA: oxalic acid, MA: mesoxalic acid,
GLCO: glycolic acid, FA: formic acid).
a Conventional three-electrode system.
b Pt–Au/Poly (CC-co-BP)-RGO: platinum-gold (Pt–Au) nanoparticles decorated non-covalent functionalization of triazine framework derived from
poly (cyanuric chloride-co-biphenyl) over reduced graphene oxide (Poly(CC-co-BP)-RGO).
c Pt/FeNC: Pt nanoparticles decorated, Fe- and N co-doped carbon nanotube catalyst.
d CP: carbon paper.
e Pt0.95-Bi0.05/TiN/HNWs/CC: Pt–Bi hybrid nanoparticles anchored hollow titanium nitride nanowires grew on carbon cloth.
f MWCNTs-Ox: oxygen-functionalized multiwalled carbon nanotubes.
g RA-Au: nanostructured Au catalysts were fabricated on a Si substrate by the electrochemical reduction of anodic-treated (RA-treatment) catalyst
films.

From glycerol to sustainable chemicals Braun et al. 5
flammable, low-volatile liquid [32]. Lower potentials,
more cathodic than the reduction reaction, are required
to fully oxidize glycerol to CO2 to maximize the gener-

ated power [21]. Compared to the electrooxidation of
monoalcohols (methanol or ethanol), the full oxidation
of glycerol involves parallel and/or consecutive reactions
in which the scission of multiple CeC and CeH bonds
takes place [32]. Electrocatalyst materials with high
activity, selectivity, and stability are required to achieve
this. Platinum is one of the few catalysts which enables
GOR to take place at the low potentials required in the
fuel cell [33]. Nevertheless, its scarcity, high-cost
combined with its faster deactivation caused by the
CO poisonings (intermediate of the reaction) pose

questions regarding the sustainability under the condi-
tion of a shorter lifetime of the fuel cell. To overcome
these drawbacks, new catalysts were developed: (i)
using polymetallic nanostructures [11,18,21,22,34,35]
with elements such as Pd, Ru, Co, Au, Cu, Ag, Sn, Sb,
Fe, Bi, Rh, and Ni; (ii) applying carbon-based nano-
materials with low cost and high surface area to reduce
the cost of Pt-based fuel cells [36].

Besides the direct GOR to CO2 in a fuel cell (DGFC) to
achieve only high-power density [37e40], another

strategy involves the synthesis of a valuable organic
product in addition to the electricity in a DGFC
[31,41,42]. In this case, the main requirement for
electrocatalysts is the CeC bond cleavage control at low
overpotentials. Therefore, the selective formation of
value-added products at the anode should compensate
for the loss in electricity production or contribute to the
www.sciencedirect.com C
overall cost reduction. The reaction mechanism and
thus the GOR selectivity toward specific products in a
DGFC, are influenced by the catalyst, current, reaction

medium or temperature [43,44]. Table 2 summarizes
some examples for the co-generation of electricity and
valuable compounds in DGFCs. Notably, although
different systems have been developed, the studies
demonstrate an ongoing need for designing materials
with a well-balanced cost-performance, which can
selectively catalyse the anodic reaction at low potentials.
Due to low reaction rate, high overpotential, and low
stability, non-noble metal-based catalysts have not been
used in DGFCs so far. Moreover, given the similar per-
formance of DGFCs operated with crude and high-

purity glycerol [28,42,45], and considering an around
50e80% lower price for the crude glycerol compared
with the purified one (Table 1) [46], DGFCs with crude
glycerol can be envisaged for commercialisation of
DGFCs. Considering the future use of DGFCs in the
mobility sector for example, with GOR producing elec-
tricity as well as generating value-added products,
further investigations are highly needed to evaluate how
to integrate and take advantage of such a system.

Glycerol electroreforming in electrolysers
H2 production via water electrolysis is planned to be the
next energy vector, and several countries, including
Germany and the Netherlands, have already developed
national H2 strategies. In this context, we see several
opportunities for glycerol valorisation as a decentralized
solution for producing green H2 and valuable glycerol-
derived products. Literature reports indicate that such
urrent Opinion in Green and Sustainable Chemistry 2023, 41:100829
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6 Recycling and Reuse within a Circular Economy (2023)
conversion schemes can be performed in alkaline, [56e
59] proton exchange membrane (PEM) [60], and anion
exchange membrane (AEM) electrolysers [61]. Table 2
summarizes relevant studies on paired electrolysis for
synthesizing different glycerol-derived products and H2

co-generation. In an electrolyser, the goal is to reduce
the cell voltage to minimize total energy input while
enabling relevant current densities for economically

viable electrolysis [62]. Thus, replacing the oxygen
evolution reaction (OER) by oxidation of organic mol-
ecules, including glycerol, can lower the input energy
given the low oxidation potential of these organics
compared to water [21,23,63,64]. But as shown in
Table 2, the selectivity of GOR is not trivial to be
controlled, with few reports having high selectivity only
for one GOR product. Intuitively, we may think that just
by replacing OER with GOR (or other alternative re-
actions), one can improve the water electrolysis effi-
ciency and thus easily promote the expansion of a more

energy efficient green hydrogen production (w20 kWh/
kg H2 [60] compared to 40e48 kWh/kg H2 in conven-
tional water electrolysers [60,65]) and the generation of
value-added products. However, technical-economic
analyses (TEAs) for the construction of such glycerol
electroreformers suggest that the idea of simply
replacing OER is oversimplified, and that the supply of
raw materials and processing of final products must also
be considered before constructing such a plant.

What should we consider when scaling up?
The first factor that should be examined is the cost of
the whole process in terms of capital (CAPEX) and
operating expenses (OPEX). As an example, we review
two previous studies [15,66] in which hydrogen was co-
generated at the cathode and a TEA was conducted, as
illustrated in Figure 2. While Kim et al. [15] considered
the GOR with a Pt/C catalyst in a PEM electrolyser
using an acidic electrolyte, Khan et al. [66] investigated
the glucose oxidation reaction in an alkaline electrolyser

using Ni/Fe oxides as anode catalyst in an alkaline
electrolyte. In both cases, the purification/recovery of
the products represents a high percentage of the
CAPEX, while the proportional cost of the electrolyser is
less significant, especially when the electrocatalysts are
non-precious metal-based. While for conventional water
electrolysis systems, OPEX is mainly manifested in the
cost of electrical energy [67], this is not the case for
glycerol electroreformers or other biomass-derived
organic oxidation reactions [24], where the cost of the
raw materials and heating steam are the most important

aspects (Figure 2). From the perspective of a potential
investor for a glycerol electroreformer, the second
important factor is the revenues of the plant. The TEAs
clearly show that hydrogen production in particular ac-
counts for the least significant income, but the oxidation
products are of particular importance. This is further
justified by the fact that the price of hydrogen per mole
is substantially lower than the price of the other
Current Opinion in Green and Sustainable Chemistry 2023, 41:100829
products (Table 1). Therefore, the primary goal of an
industrial application of the GOR or glucose oxidation
reaction would not be the hydrogen production with
value-added side products, but the production of the
biomass-derived compounds with hydrogen as a
byproduct.

To better understand this perspective, let us venture a

thought experiment. The German government plans an
electrolysis capacity of 10 GW to produce green
hydrogen by 2030 [68]. We assume that the OER in
these electrolysers would be completely replaced by the
oxidation of glycerol and that about 20 kWh of electrical
energy is required per kg of H2. Let us further assume
that the operating time of the electrolysers is 4000 h per
year, with a conversion of 70% and a stoichiometric
selectivity of 90% from glycerol to glyceric acid or formic
acid. As a result, about 1.4 Mt of H2 and 33.4 Mt of
glyceric acid or 21.7 Mt of formic acid would be pro-

duced in a year, while 41.4 Mt or 20.7 Mt of glycerol
would be required as a reactant for glyceric or formic
acid production, respectively. While the H2 produced
would represent only a small fraction of the global H2

demand in the future to meet the 1.5 �C target (foot-
note 3, Table 1), the amounts of glyceric acid or formic
acid produced as value-added products would exceed by
far the quantities currently exported in the world, not to
mention the quantity of glycerol needed to drive the
whole reaction (Table 1). We would like to emphasize
that this is only a calculation to illustrate the orders of

magnitude that would oppose the GOR as a replace-
ment for the OER on the side of a global, potential
future electrolytic hydrogen production.

Therefore, electroreforming of glycerol can help to
increase the capacity of green hydrogen production in
the future. However, the demand for value-added
products from GOR will probably not grow at the
same rate as for green hydrogen [69]. Concomitantly,
the biodiesel market, and thus glycerol supply, is even
expected to grow more slowly in the coming years than
in the past due to reduced support policies in regions

such as the EU [70], which would thus limit a potential
large-scale industrial application of the GOR in a range
of several GW. Consequently, coupling GOR with other
electrochemical reduction reactions such as the nitro-
gen reduction reaction (NRR) [71], or the CO2

reduction reaction (CO2RR) [72] can become more
important in the future. Furthermore, the possibility of
using other biomass-derived waste reactants [73,74] at
the anode besides glycerol in the already existing
infrastructure of the same electroreforming plant
would mean a gain in flexibility to produce high

amounts of hydrogen (or other cathodically formed
products) without running into a shortage of anodic
reactants or an excess of anodic value-added products.
However, the technical feasibility of such an idea has
yet to be verified.
www.sciencedirect.com
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Figure 2

CAPEX, OPEX and revenue for: (Left) a 14 MW electrolyser system using Pt/C as the anode catalyst for GOR at 60 �C and 0.5 M glycerol in
0.5 M H2SO4 at an anode potential of 1.1 V producing 4000 t H2 per year. Separation of the products were performed by distillation after neutralization
with Ca(OH)2. Adapted with permission from Ref. [15]. Copyright 2017 American Chemical Society. (Right) Photovoltaically-powered electrolyser
performing glucose electrooxidation using a Ni/Fe oxides anode and 0.1 M glucose in 1 M KOH at 0.2 A/cm2 and a cell voltage of 1.4 V with 50%
conversion and 50% selectivity for GRA and GNA, respectively, producing 384 t H2 per year. Separation of the products were performed by fractional
crystallization after neutralization with H2SO4. Adapted from Ref. [66] and with permission of the Royal Society of Chemistry.
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(continued )

Abbreviation Meaning

EORR Potential at which the oxygen reduction
reaction occurs

EU European Union
FA Formic acid
FAME Fatty acid methyl ester(s)
GLAC Glyceric acid
GLCO Glycolic acid
GLYD Glyceraldehyde
GOR Glycerol oxidation reaction
HS Harmonised System
LAC Lactic acid
MA Mesoxalic acid
MONG Many organics non-glycerol
Mt Million ton or megaton
MWCNTs-Ox Oxygen-functionalized multiwalled carbon

nanotubes
OA Oxalic acid
OER Oxygen evolution reaction

8 Recycling and Reuse within a Circular Economy (2023)
Conclusion and perspective
Implementing GOR as the anodic reaction of an elec-

trocatalytic system (DGFC, electrolyser) has a high
potential in upgrading a biomass-based waste stream,
thus also contributing to the implementation of the
concept of renewable carbon and to the development of
a circular economy so that society is no longer depen-
dent on fossil energies. To improve the future compet-
itiveness of such technology, further research in the field
is required. In particular, further studies should focus on
crude glycerol as a reactant and the development of
highly selective electrocatalysts. In addition, the design
of the paired electrolysis schemes in which the co-

generation of other products than hydrogen in an elec-
trolytic cell will be important. At the same time, the
question arises of how the valuable products from
DGFC applications can be integrated into a future
energy conversion and chemical production system.
OPEX Operational expenses
PEM Polymer exchange membrane
Pt/FeNC Pt nanoparticles decorated, Fe- and N co-

doped carbon nanotube catalyst
Pt0.95-Bi0.05/

TiN/HNWs/CC
Pt–Bi hybrid nanoparticles anchored
hollow titanium nitride nanowires grew on
carbon cloth
Declaration of competing interest
The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this
paper.
Pt–Au/Poly
(CC-co-BP)-RGO

Platinum-gold (Pt–Au) nanoparticles
decorated non-covalent functionalization
of triazine framework derived from poly
(cyanuric chloride-co-biphenyl) over
reduced graphene oxide (Poly(CC-co-
BP)-RGO)

RA-Au Nanostructured Au catalysts were
fabricated on a Si substrate by the
electrochemical reduction of anodic-
treated (RA-treatment) catalyst films

SATP Standard ambient temperature and
pressure

TART Tartronic acid
TEA Techno-economic analysis
Data availability
No data was used for the research described in the
article.

Acknowledgement
M. Braun and C. Andronescu gratefully acknowledge the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) for funding through the research
group FOR 2982 “UNusual anODE reactions in elec-

trochemical energy conversion: Value creation rather
than oxygen evolution in hydrogen production
(UNODE)” (project number 433304702 C. A.). C.
Andronescu, C. S. Santana, and A. C. Garcia would like
to thank the Dutch Research Council (NWO) for
providing financial support for the project number
KICH1.ED04.20.026 which is carried out in the frame-
work of the Electrochemical Conversion and Materials
(ECCM) program.
Appendix
Abbreviation Meaning

AEM Anion exchange membrane
CAPEX Capital expenses
CP Carbon paper
DAFC Direct alcohol fuel cell
DGFC Direct glycerol fuel cell
DHA Dihydroxyacetone
EGOR Potential at which the glycerol oxidation

occurs
EHER Potential at which the hydrogen evolution

reaction occurs
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