Metrical prodosy: A template-and-constraint approach to phonological phrasing in Italian. Based on the poetry of Giuseppe Ungaretti and Eugenio Montale
Helsloot, C.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
9.0 Introduction

This chapter proposes to apply the theory of metrical phrasing advanced in the previous chapters to the domain of versification proper. The approach is reminiscent of the theory of Prosodic Metrics, developed by Golston & Riad (1994).\(^1\) Prosodic Metrics considers poetic meter to be templatic, prosodic and binary:

\[
\begin{align*}
\text{Golston \& Riad (1994:1):} \\
\text{Templatic} & \quad \text{Verse feet are complex templates} \\
\text{Prosodic} & \quad \text{Templates are defined in terms of authentic units of prosody} \\
\text{Binary} & \quad \text{Verse feet and verse metra are binary}
\end{align*}
\]

While Golston \& Riad focus on the lowest levels of meter (i.e. on the metrical position and the verse foot) and on the lowest units of the prosodic hierarchy (i.e. on the mora and the syllable) in the present work, the levels of interest extend to the line of verse where meter is concerned, and to the phonological phrase where prosodic units are concerned. I redefine the Prosodic Metrics Hypothesis as follows:\(^2\)

\[
\begin{align*}
\text{Prosodic Metrics Hypothesis:} \\
\text{Lines of verse are defined in terms of phonological phrase templates}
\end{align*}
\]

This hypothesis leads to the introduction of a very restricted set of \{versification, prosody\} alignment templates, to which I refer as line-templates (\(\lambda\)-templates). Section 9.1 presents these templates as well as the constraints which ensure their proper realization. Metrically bound verse and metrically free verse will be proposed to be conditioned by different poem-constraints. Section 9.2 presents an overview of the previously introduced textual and templatic inputs, the PARSE and FILL constraints as well as their relative rankings. Section 9.3 presents the prosodic

1. Golston \& Riad's analysis concerns the bound verse of Classical Greek and Arabic.
2. See also Helsloot (1995a), for a less explicit proposal in this direction.
analyses of a metrically bound poem of Montale and a metrically free poem of Ungaretti.

9.1 λ-Templates

As shown in chapter 3, the default phonological phrase, i.e. the two-σ or Maxσ ψ, constitutes the prototypical ψ template of the poetic language of Montale and Ungaretti. That is, dependent upon the specific λ-type that is involved, a λ-realization encloses one or more default phonological phrase outputs. The basic {versification, prosody} alignment template is thus:

(3) \{λ, Defψ\}

That is, a line of verse is associated with Defψ templates. FILL-λ is the constraint that ensures that the alignment template is properly filled:

(4) FILL-λ: a λ-template must be properly filled

FILL-λ can be violated. That is, in ways similar to earlier chapters, proper realization of either textual inputs or templatic inputs may give rise to phonological phrase outputs which deviate from the Defψ template, c.q. the λ-template. The relative ranking of FILL-λ with respect to the previously considered PARSE and FILL constraints provides the grammatical account of the actual line realization. The claim is that the amount of FILL-λ violations is directly proportional to the degree of metrical tension. That is, the λ-template in (3) is considered to function as an evaluation metric.

Let us return to chapter 3. Table 3.1 presented the line typology as deduced from the analyzed corpus of poetry of Montale and Ungaretti. Eighteen λ-types were found, ranging from the λ=1 to the λ=18. On the basis of a statistical comparison between the two parsing approaches, i.e. the syntax-based NV-parsing and the perception-based PR-parsing, the unmarked parsing of a λ-type into phonological phrases was established. The line parsing tables contain the results of this statistical account (see Appendix D).

The alignment template \{λ, Defψ\} captures the phonological realization of a substantial part of the various λ-types. In principle, all λ-types larger than the λ=3 may give rise to outputs containing one or more Defψ's. Only the λ=4, λ=8, λ=12 and λ=16, i.e. all line types containing four positions or an exact multiple of four positions, in principle may give rise to outputs containing only Defψ's. On the basis of the analysis of very short lines as well as of very long lines, I formulated two versification principles (see the sections 3.2.4 and 3.2.5):
PROSODIC METRICS

(5) **Versification Principle 1**
A line of verse minimally contains one \(\varphi \)-stress

(5) **Versification Principle 3**
A line of verse maximally contains three \(\varphi \)-stresses

These principles imply that very short line types on the one hand, and very long line types on the other, will be prosodically realized by (sub)minimal phrases and (supra)maximal phrases, respectively. The \(\lambda \)-templates in (6) must thus be added to the basic \(\{ \lambda, \text{Def}\phi \} \) template.

(6) a. \(\{ \lambda_{\text{min}}, 1-\varphi \} \)
b. \(\{ \lambda_{\text{max}}, 3-\varphi \} \)

The relevant constraints are:

(7) a. \(\text{FILL-} \lambda_{\text{min}} \): the Min\(\lambda \) template must be properly filled
b. \(\ast \lambda_{\text{max}} \): lines with more than three \(\varphi \)'s are prohibited

In chapter 6, dedicated to phonological phrase minimality, I also introduced a {versification, prosody} alignment template involving poem/stanza-initial and poem/stanza-final lines. A property of such lines is that they are often realized by one or more (sub)minimal phonological phrases. The {emphatic speech, prosody} alignment template is thus associated with lines occurring in these specific poem positions. Consider the template and its corresponding faithfulness constraint:

(8) \(\{ \lambda I/\lambda_{\text{final}}, \text{Emphatic Speech}/[\]_{\text{emin}} \} \)
FILL-\(\lambda I/\lambda_{\text{final}} \): a \(\lambda I/\lambda_{\text{final}} \) template must be properly filled

This template constitutes the fourth \(\lambda \)-template which characterizes the poetry of Ungaretti and Montale.

A final structural principle still requires to be addressed here. Consider the \(\lambda=11 \). The \(\{ \lambda, \text{Def}\phi \} \) template provides the \(\lambda=11 \) with three \(\varphi \)'s of which two a Def\(\phi \) and one a Min\(\phi \). These three \(\varphi \)'s can be combined in three different ways: Def-Def-Min, Def-Min-Def, and Min-Def-Def. These patterns are exemplified in (9).

(9) a. Def-Def-Min

\[
\begin{array}{cccc}
\ [\lambda] & \ [\lambda] & \ [\lambda] \\
\ (o) & \ (o) & \ (o) \\
\ (\varnothing) & \ (\varnothing) & \ (\varnothing) \\
\end{array}
\]

\[\text{mi sara lieve, meno acre, la ruggine...} \quad \text{M5:18}\]
There are a number of reasons for assuming Def-Min-Def to be structurally more well-formed than the other two combinations. Firstly, the prosodic word and the phonological phrase in Italian are both right-headed. That is, the right side of the constituents is prosodically more prominent, or heavier, than their left side. The level above the phonological phrase, i.e. the intonation phrase level is also assumed to be right-headed (cf. Nespor & Vogel 1986). By analogy, we may assume that the rightmost \(\varphi \) of the \(\lambda=11 \) is structurally more prominent than the preceding \(\varphi \)’s. Following Dresher & van der Hulst (1995), more prominent means structurally more complex. Since the Def\(\varphi \) is more complex than the Min\(\varphi \), the Min\(\varphi \) is disfavored to occur in this rightmost position.

The correlation righthand side and heavy is also generally assumed to be a property of Italian meter: the penultimate position of a \(\lambda \)-type is the most prominent position of the line. Regarding the \(\lambda=11 \), an additional second (and third) less prominent position is generally assumed. These additional strong positions correspond with either the third, fourth, sixth or seventh position. The Min-Def-Def pattern causes the second position of the \(\lambda=11 \) to be strong. In fact, the Light-Heavy principle disfavors this \(\varphi \) combination. Assuming that the intonation phrase is also conditioned by structural binarity, the \(\lambda=11 \) gives rise to a sequence of two intonation phrases. The Light-Heavy principle groups the \(\varphi \)’s as follows:

\[
(10) \quad ([\text{Def}\varphi][\text{Min}\varphi-\text{Def}\varphi])_{\lambda=11}
\]

Hypothetically, the same quantitatively unbalanced, iambic grouping principle of \(\varphi \)’s explains why the \(\lambda=7 \) and the \(\lambda=11 \) constitute the canonical line types in Italian poetry. That is, ‘unbalanced’ line types are preferred over ‘balanced’ line types like the \(\lambda=8 \) and \(\lambda=12 \).

Let me now consider the above \(\lambda \)-templates in the light of the distinction bound verse vs. free verse. Most notably, free verse differs from bound verse insofar as:
A variety of λ-types characterize a poem. Extremely stated, bound verse requires all lines of a poem to correspond to one λ-type, while free verse rather requires the reverse, i.e. successive lines display different λ-types:

(1) \textit{poem-constraints:}

Bound Verse: \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_n \)

Free Verse: \(\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \lambda_n \)

In prosodic terms: while bound verse is characterized by the repetition of an equal number of \(\varphi \)'s, successive lines in free verse are characterized by an unequal number of \(\varphi \)'s.

In section 9.3, the just outlined versification-prosody grammar will be applied to a poem of Montale and a poem of Ungaretti. In the next section, an overview is presented of the \textsl{PARSE} and \textsl{FILL} constraints which were argued to determine Italian phonological phrasing in general.

9.2 Textual Inputs, Templatic Inputs and Constraint Interaction

In the previous chapters, a variety of textual and templatic inputs were distinguished, as well as the relative rankings of a series of \textsl{PARSE} and \textsl{FILL} constraints. I shall now present an overview of these input specifications and these constraint rankings. I start with the textual and templatic inputs. After each input specification the section number is given in which the specification was first discussed. Both the textual input and the templatic input contain bare prosodic features as well as aligned features involving prosodic features on the one hand, and non-prosodic features on the other.

(12) \textsl{TexIn:}

a. \textit{Prosodic Head Features}

i. \(\sigma \)-head to syllabic segments \hspace{1cm} (4.2)

ii. \(\Sigma \)-head to polysyllabic grammatical words \hspace{1cm} (4.2.2)

iii. \(\omega \)-head to lexical words \hspace{1cm} (4.2.1)

iv. \(\Sigma \omega \)-head to strict compounds \hspace{1cm} (4.2.4.1)

v. \(\omega \varphi \)-head to loose compounds \hspace{1cm} (4.2.4.2)

b. \textit{Aligned Prosodic and Non-Prosodic Head Features}

i. \{Imperative, \(\varphi \)-head\} \hspace{1cm} (6.3.1.1)

ii. \{Vocative, \(\varphi \)-head\} \hspace{1cm} (6.3.1.2)

iii. \{Deictic, \(\varphi \)-head\} / \{Deictic, \(\omega \)-head\} \hspace{1cm} (6.3.1.3)

iv. \{Complex Preposition, \(\Sigma \)-head\} \hspace{1cm} (7.3.1.2)
Since free combination of textual inputs on the one hand, and templatic inputs on the other will typically give rise to conflicting results, the grammar provides a constraint hierarchy on the basis of which the selection of the optimal candidate output is ascertained. The constraint families PARSE and FILL ensure that textual inputs are properly parsed, and that templatic inputs are properly filled, respectively. The PARSE constraints in (14), and the FILL constraints in (15) have been recognized as being crucially involved in the selection of the optimal output. In addition, there are two constraints which express the preference of the Defψ template over the other two ψ templates, and the prohibition to realize ψ's exceeding the structural principles of the Maxψ template (cf. 16).
FILL-∅-Head: (a) the head of a φ template is filled with a textually specified ω-head feature, and (b) the head foot of the φ template is exclusively filled with the segments of the word domain providing the ω-head feature (8.5.1).

vii. FILL-Maxφ: the Maxφ template must be properly filled (7.1).

viii. FILL-φ: a φ template is filled with textual material (6.3.2).

ix. FILL-{] of []}: a Narrow Focus template must be properly filled (8.4.1).

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Defφ: outputs are realizations of the Defaultφ template</td>
<td>(7.1)</td>
</tr>
<tr>
<td>ii.</td>
<td>*SupraMaxφ: Supramaximal φ outputs are prohibited</td>
<td>(7.0)</td>
</tr>
</tbody>
</table>

The relative ranking of the constraints was established for a substantial part of the constraints. A complete ranking requires further research, however. Below, the rankings are given on the left, and the phonetic consequence of the rankings on the right. For instance, the dominance of FILL-Onset over PARSE-σ-Head may give rise to synaloephe, i.e. to the deletion of the prosodic feature of a vowel. The dominance of FILL-Σ over FILL-Onset, in turn, entails no synaloephe in the appropriate context.

(17) Partial Constraint Ranking A: Phonetic Realization:

<table>
<thead>
<tr>
<th>PARSE-segment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td>FILL-Σ</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$>$</td>
<td>No synaloephe (5.2.1.2)</td>
</tr>
<tr>
<td>FILL-Onset</td>
<td>$>$</td>
<td>Synaloephe (5.2.1.2)</td>
</tr>
<tr>
<td>PARSE-σ-Head</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partial Constraint Ranking B: Phonetic Realization:

<table>
<thead>
<tr>
<th>PARSE-segment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td>FILL-φ-Head</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td>FILL-[] of []φ</td>
<td>$>$</td>
<td>Vowel Doubling/Pause Insertion /Raddoppiamento Sintattico</td>
</tr>
<tr>
<td>*SupraMaxφ</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$>$</td>
<td>Vowel Doubling/Pause Insertion /Raddoppiamento Sintattico</td>
</tr>
<tr>
<td>FILL-Σ</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$>$</td>
<td>Pitch Jumping (8.4; 8.5)</td>
</tr>
<tr>
<td>FILL-Maxω</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$>$</td>
<td>Destressing (5.2.3; 8.3.1)</td>
</tr>
<tr>
<td>PARSE-ω</td>
<td>$>$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$>$</td>
<td>Total Destressing (8.3.1)</td>
</tr>
<tr>
<td>PARSE-Σ</td>
<td>$>$</td>
<td></td>
</tr>
</tbody>
</table>

Partial Constraint Ranking C:

\[
\begin{align*}
\text{PARSE-segment} & >> \\
\text{PARSE-φ, FILL-φ} & >> \\
\text{FILL-Minφ} & >> \\
\text{PARSE-Σ} & >> \\
\text{PARSE-σ} & >> \\
\text{Defφ} & \\
\end{align*}
\]

Phonetic Realization:

- Addition of phrase prominence
- Subminimal φ’s
- Maxφ’s
- Expanded Defφ’s (weak layering)

The ranking position of the versification constraints, introduced in the previous section, will be considered in the next section.

9.3 Prosodic Parsing of Bound and Free Verse

The poems Perché tardi? of Montale and Canto Quinto of Ungaretti will be analyzed in accordance with the theory of Metrical Prosody developed in this thesis. In order to understand the parsings assigned to the lines of the poems, it may be helpful to consult the lists of input structures, constraints, and constraint rankings presented in the previous section. The four \(\lambda \)-templates in (18), repeated from section 9.1, are held to be active, as well as the poem-constraints.

\[
\begin{align*}
\text{λ-templates:} & \quad 1. \{ \lambda, \text{Defφ} \} \\
& \quad 2. \{ \lambda_{\min}, 1-φ \} \\
& \quad 3. \{ \lambda_{\max}, 3-φ \} \\
& \quad 4. \{ \lambda/λ_{\text{final}}, \text{Emphatic Speech}/\lambda_{\min} \} \\
\text{poem-constraints:} & \quad \text{Bound Verse: } \lambda_1 = \lambda_2 = \lambda_3 = \lambda_n \\
& \quad \text{Free Verse: } \lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \lambda_n
\end{align*}
\]

I start with Montale's poem.

9.3.1 The Prosodic Parsing of Montale's Perché tardi?

Montale’s Perché tardi? (M142) is a poem with seven \(\lambda = 11 \) lines and a final \(\lambda = 5 \) line. The poem can thus be said to be metrically bound: \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_n \).

For the sake of clarification, let me first present the poem without prosodic representations:
Perché tardi? Nel pino lo sciatto.
batte la coda a torcia sulla scorza.
La mezzaluna scende col suo picco
cel sole che la smorza. E' giorno fatto.
A un soffio il pigro fumo trasalisce,
si difende nel punto che ti chiude.
Nulla finisce, o tutto, se tu f6lgore
lasci la nube.

'Why do you delay? The squirrel in the pine
flicks his torch-tail against the bark.
The half-moon with her horns sinks, paling
into the sun. The day is done.
At a puff the sluggish smoke leaps up,
sheltering the point enclosing you.
Nothing - or everything - is over
O lighting, if you leave your cloud.'

In what follows, each line is represented with its textual/templatic features on the
left, and with its fully prosodic parsing on the right. For reasons of space, the
slashes delimiting the edges of words are left out, as well as the α-head features
associated with each full vowel. As before, angled brackets indicate violation of a
PARSE constraint, and empty square brackets, violation of a FILL constraint. Under
each line, the formal representations will be briefly commented upon.

1. perche tardi nel pino lo sciatto
cor perche tardi ne! pino lo sciatto

Line 1 is realized as Defp-Minq>-Defp. Since the textual input does not
provide any α-head features, the α-positions are represented as being empty.
The phonetic spell-out of the relevant FILL violation is addition of phrasal
prominence to the α-heads. All α-head features are properly parsed. The
Maxω positions, provided by the Defp-template, are not properly filled, as
indicated by the two empty brackets labeled Σ. The phonetic realization of
the FILL-Maxω violation is the addition of a secondary stress to /per/ of
perche, and to the monosyllabic determiner /lo/. The Σ-head feature of perche
is not properly parsed by virtue of the higher ranking of FILL-Σ; destressing
is the result. Finally, there is one PARSE-α violation: the α associated with sul
is not parsed into a foot.

2. batte la coda a torcia sulla scorza
batte la codatercia sulla scorza

Line 2 is realized as Defp-Minq-Defp. FILL-λ is satisfied: the Defp templates
of the λ are properly filled. In addition, the Narrow Focus template is active:
The phonetic realization is Pitch Jumping. Furthermore, the adjacent vowels [a a] are both fully realized. That is, FILL-Onset is violated. The higher ranking of the FILL-\Sigma and FILL-Minp constraints provides the explanation.

\[
\begin{array}{cccc}
\Sigma & \omega & \omega & \omega \\
& 0 & 0 & 0 \\
\end{array}
\]

Line 3 is realized as SupraMaxp-Defp: the \(\lambda=11\)-template is not properly filled. The trigger of the FILL-\(\lambda\) violation is the constraint FILL-Minp: if \textit{mezzaluna} and \textit{scende} formed two separate \(\varphi\)'s, the \(\varphi\) of \textit{scende} would be subminimal. In other words, FILL-Minp outranks FILL-\(\lambda\).

\[
\begin{array}{cccc}
\Sigma & \omega & \omega & \omega \\
& 0 & 0 & 0 \\
\end{array}
\]

Line 4 is realized as M unp-Defp-(expanded)Defp. The \(\omega\)-head feature of \textit{giorno} is not properly parsed: FILL-Maxp outranks PARSE-\(\omega\). And there are two weakly layered syllables (cf. (\(\omega\))).

\[
\begin{array}{cccc}
\omega & \omega & \omega \\
& 0 & 0 & 0 \\
\end{array}
\]

Line 5 is realized as Defp-(expanded)Defp-Defp. The adjacency of two full vowels allows for this realization. The \(\omega\)-head feature of \textit{pigro} is not properly parsed: FILL-Maxp outranks PARSE-\(\omega\). FILL-Maxp, in turn, is violated in the first and third \(\varphi\): prosodic foot stress properties are added to a syllable that is textually unspecified for foot stress.

\[
\begin{array}{cccc}
\omega & \omega & \omega \\
& 0 & 0 & 0 \\
\end{array}
\]
Line 6 was not submitted to the informants. Nevertheless, the prosodic parsing is straightforward. Except for the weakly layered syllable, there are no PARSE violations. The violation of FILL-Maxwp provides the addition of the foot stress to the textually unstressed pronouns si and che.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I I I
nulla finisce o tutto se tu folgore
nulla finisce o tutto se tu folgore

Line 7 is realized as Defp-Minwp-Defp. A number of PARSE violations can be observed. The lexical word nulla is realized with Σ-stress, and the strong pronoun tu is realized without any stress. The λ-template is properly filled with Defp's, at the expense, however, of textually specified features.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lasci la nube
lasci la nube

Line 8 too was not submitted to the informants. The bound verse constraint is violated, i.e., λ8 does not repeat the pattern of λ7. The line constitutes the final line of the poem, however. Thus, the (λ1/Minwp, Emphatic Speech /[]φmin) template is active. The line is indeed prosodically overparsing.

Summarizing, the λ-template {λ, Defp} is properly filled with respect to almost all lines of the poem. Line 3 violates FILL-λ by virtue of the higher ranking of FILL-Minwp. In Line 2, the constraint Defp is violated by virtue of the higher ranking of the constraint FILL-Narrow Focus. And the ‘expanded’ Defp’s (PARSE-σ is violated: (o)), in the lines 4 and 5, are caused by the constraint PARSE-segment, which is undominated in Italian. The poem is an example of bound verse: only the final line violates the bound verse constraint. Constraint Ranking C, given in section 9.2, can be enriched now with the ranking of FILL-λ beneath FILL-Minwp:

(21) **Partial Constraint Ranking C**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PARSE-segment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARSE-φ, FILL-φ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILL-Minwp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILL-λ (Defp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phonetic Realization:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phrasal Prominence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marked λ's (Maxwp/Minwp's)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
That is, {versification, prosody} principles are subordinated to core prosodic principles.

9.3.2 The Prosodic Parsing of Ungaretti’s Canto Quinto

Ungaretti’s Canto Quinto (U185) contains $\lambda=5$, $\lambda=7$, $\lambda=9$ and $\lambda=11$ lines, which alternate with one another in a rather random way. That is, the poem constitutes an example of free verse. The free verse constraint that is activated here is repeated in (22).

(22) Free Verse: $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \lambda_n$

Consider first the poem in its original form.

(23)
1. Hai chiuso gli occhi. $\lambda=5$ You have closed your eyes.
2. Nasce una notte $\lambda=5$ A night is born.
3. Piena di finte buche, $\lambda=7$ Full of false hollows.
4. Di suoni morti $\lambda=5$ Of dead sounds.
5. Come di sugheri $\lambda=5$ As of corks.
6. Di reti calate nell’acqua. $\lambda=9$ Of nets lowered into the water.
7. Le tue mani si fanno come un soffio $\lambda=11$ Your hands become a breath.
8. D’inviolabili lontananza, $\lambda=9$ Of inviolable distances.
9. Inafferrabili come le idee, $\lambda=11$ Unseizable as thoughts.
10. E l’equivoco della luna $\lambda=9$ And the moon’s ambiguity.
11. E il dondolio, dolcissimi, $\lambda=7$ And the swaying, softest.
12. Se vuoi posarmele sugli occhi, $\lambda=9$ If you would set them on my eyes.
13. Toccano l’anima. $\lambda=5$ Touch the soul.
14. Sei la donna che passa $\lambda=7$ You are the woman who passes.
15. Come una foglia $\lambda=5$ Like a leaf.
16. E lasci agli alberi un fuoco d’autunno. $\lambda=11$ And leaves unto the trees a fire of autumn.

The hypothesis is that the same set of λ-templates that is assumed to be active in bound verse, is also active in the metrically free poetry of Ungaretti.

(24) λ-templates: 1. $\{\lambda, \text{Def} \varphi\}$
2. $\{\lambda_{\text{min}}, -\varphi\}$
3. $\{\lambda_{\text{max}}, 3-\varphi\}$
4. $\{\lambda_1/\lambda_{\text{final}}, \text{Emphatic Speech}/[\lambda_{\text{min}}\}]$
The lines 1-9 as well as the final line of the poem are provided with a prosodic analysis. On the left, the input specifications are given, and on the right, the prosodic output.

(25)

\[\text{TextIn/Termln:} \quad \text{Prosodic Output:} \]

\[
\begin{array}{c}
| \text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\end{array}
\]

1. hai chiuso gli occhi

Line 1 is realized as an 'expanded' Defφ: PARSE-σ is violated (> weak layering). FILL-Maxω is also violated, as indicated by \(\text{\ } [\text{\ }] \text{\ } \). Instead of strong-weak alternation at the \(\Sigma-\omega \) level, the two \(\omega \)-heads are realized with two highly differing pitch accents: a \(\text{H}^{*} \) is associated with \textit{chiuso}, and a \(\text{L}^{*} \) with \textit{occhi}. PARSE-σ-Head is also violated (> deletion of the prosodic value of the vowel /i/ of \textit{gli}). In accordance with the \(\lambda \text{-} \lambda \) template, an overparsed \(\phi \) is realized.

\[
\begin{array}{c}
| \text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\end{array}
\]

2. nasce una notte

Line 2 is realized by two \(\phi \)'s: a Subminω plus a Defφ. The involved \(\lambda \text{-} \lambda \) type is identical to the \(\lambda \text{-} \lambda \) type of the first line, namely, a \(\lambda = 5 \). Line 2 violates thus the free-verse constraint: \(\lambda_1 \neq \lambda_2 \). The prosodic parsing is non-identical, however: 1-φ, 2-φ.

\[
\begin{array}{c}
| \text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\text{\ } \text{\ } | \text{\ } \text{\ } | \text{\ } \text{\ } | \\
\end{array}
\]

3. piena di finte buche

Like Line 2, Line 3 violates FILL-λ: the line is not parsed into default \(\phi \)'s but into (sub)minω's. I suggest that the alignment template which typically characterizes Ungaretti's diction, i.e. \{Emphatic speech, \(\text{\ } [\text{\ }] \text{\ } \emph{min} \} \), is active. FILL-φ ensures proper filling of this template. The phonetic realization of the violation of FILL-Minφ is addition of prosodic features: phrasal prominence properties are added to all the textually specified \(\omega \)-heads.
The prosodic parsing of Line 4 is identical to the parsing of Line 1. Like the other lines, an overparsed \(\varphi \) is realized instead of a default \(\varphi \). Again, all \(\omega \)-head features are properly parsed in the output. Notably, in the following lines too there are no \(\omega \)-head features that are left unparsed in the output in order to fulfill the requirement of the \(\Sigma - \omega \) alternation of the Def\(\varphi \) template. Why not rank PARSE-\(\omega \) as undominated constraint in Ungaretti’s grammar? The reasons arguing against such a re-ranking are multiple: (a) two different grammars, one for Montale and one for Ungaretti, must be assumed then, (b) undominated PARSE-\(\omega \) correctly implies absence of Destressing in the actual poem, but it leads to a false conclusion with respect to the whole of Ungaretti’s grammar (cf. section 5.2.3). Furthermore, by considering constraint rankings to be poem-specific, we implicitly deny the existence of a single generalizing framework of metrical prosody, characterizing (a) the poetry of Ungaretti as a whole, (b) the poetry of both Montale and Ungaretti, and (c) Italian in general. In other words, re-ranking of constraints is disregarded here as formal option in accounting for unexpected prosodic behavior.

Enjambment occurs across the edge of Line 5. The supramaximal \(\varphi \) output is licensed by FILL-\(\varphi \), as argued in chapter 7, section 7.3.2.3.

Line 6 is realized as the head of the enjambed supramaximal \(\varphi \) followed by an expanded Def\(\varphi \).
PROSODIC METRICS

Line 7 is realized as a standard \(\lambda=11 \) line: \(\text{Def}_p-\text{Min}_p-\text{Def}_p \).

\[
\begin{array}{ccc}
\text{Def}_p & \text{Def}_p & \text{Def}_p \\
\{o\} & \{o\} & \{o\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\text{d'inviolabili lontananze} & \text{d'inviolabili lontananze} \\
\end{array}
\]

Line 8 is realized as \(\text{Def}_p-\text{Def}_p \). No particular constraint interactions are involved.

\[
\begin{array}{ccc}
\text{Def}_p & \text{Def}_p & \text{Def}_p \\
\{o\} & \{o\} & \{o\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\text{Inafferrabili come le idee} & \text{inafferrabili come le idee} \\
\end{array}
\]

Line 9 is realized as a two-\(\varphi \) \(\lambda=11 \): \(\text{Def}_p-\text{Max}_p \). The \(\text{Max}_p \) output \text{come le idee} gives rise to a violation of \(\text{FILL-Max}_p \): the iambic Light-Heavy is not respected (cf. section 7.1). Focus is given to the determiner \(\epsilon \). That is, the determiner is realized as \(\omega \)-head.

\[
\begin{array}{ccc}
\text{Def}_p & \text{Def}_p & \text{Def}_p \\
\{o\} & \{o\} & \{o\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\{\epsilon\} & \{\epsilon\} & \{\epsilon\} \\
\text{e lasci agli alberi un fuoco d'autunno} & \text{e lasci agli alberi un fuoco d'autunno} \\
\end{array}
\]

The prosodic parsings of the lines 10-15 are presented in Appendix E. These lines do not involve constraint interactions which are not discussed already.

Line 16, by contrast, is realized as a four-\(\varphi \) \(\lambda=11 \): \(\text{Min}_p-\text{Def}_p-\text{Min}_p-\text{Min}_p \). That is, the \(\lambda \)-template \(\{\lambda_{\max}, 3-\varphi\} \) is not properly filled. The final-line template is involved, however. This template licenses the output. That is, the constraint \(\text{FILL-Max}_p \) outranks \(\lambda_{\max} \).

sum, like the bound verse poem of Montale, the free verse poem of Ungaretti is characterized by line parsings which do not exceed the maximum of three \(\varphi \)'s (the em-final line excluded). The free verse poem differs however from the bound \(\epsilon \)m with respect to the minimum of \(\varphi \)'s per line. That is, in the latter, each line attained minimally two \(\varphi \)'s (the poem-final \(\lambda=5 \) excluded), while in the former, 1-\(\varphi \)es occur. In addition to the different \(\lambda \)-types exhibited by the two poems, the prosodic variation in the free verse poem is also larger than in the bound verse \(\epsilon \)m. The following pattern is observed regarding the number of \(\varphi \)'s per line:
(26) Number of φ's per λ.

<table>
<thead>
<tr>
<th>Montale:</th>
<th>1. 3-φ</th>
<th>2. 3-φ</th>
<th>3. 2-φ</th>
<th>4. 3-φ</th>
<th>5. 3-φ</th>
<th>6. 3-φ</th>
<th>7. 3-φ</th>
<th>8. 1-φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungaretti:</td>
<td>1. 1-φ</td>
<td>2. 2-φ</td>
<td>3. 3-φ</td>
<td>4. 1-φ</td>
<td>5. 1++-φ</td>
<td>6. 2-φ</td>
<td>7. 3-φ</td>
<td>8. 2-φ</td>
</tr>
<tr>
<td></td>
<td>9. 2-φ</td>
<td>16. 4-φ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.4 Conclusions

This chapter applied the theory of Metrical Prosody to the domain of verse. An example is given of how an analysis of the metrical properties of a poem in terms of prosodic properties allows us to discover a number of poet-specific and poem-specific properties. Obviously, future research is needed in order to determine the relevance of this application.