Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at √s = 7 TeV with the ATLAS detector

DOI
10.1016/j.physletb.2012.11.071

Publication date
2013

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Search for pair production of heavy top-like quarks decaying to a high-p_T W boson and a b quark in the lepton plus jets final state at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

Since the discovery of the top quark [1,2], which completed the third generation of fundamental fermions in the quark sector of the Standard Model (SM) of particle physics, searches for heavier quarks have been of particular interest in high-energy physics research. These quarks are often present in new physics models aimed at solving some of the limitations of the SM.

One possibility is the addition of a fourth generation of heavy chiral fermions [3,4], which can provide new sources of CP violation that could explain the matter–antimatter asymmetry in the universe. The new weak-isospin doublet contains heavy up-type (t') and down-type (b') quarks that mix with the lighter quarks via an extended CKM matrix. In order to be consistent with precision electroweak data, a relatively small mass splitting between the new quarks is required [5]. Assuming that $m_t - m_b < m_W$, where m_W is the W boson mass, the t' quark decays predominantly to a W boson and a down-type quark q ($q = d, s, b$). Based on the mixing pattern of the known quarks, it is natural to expect that this quark would be dominantly a b quark, which has motivated the assumption of $BR(t' \rightarrow Wb) = 1$ in most experimental searches.

Another possibility is the addition of weak-isospin singlets, doublets or triplets of vector-like quarks [6], defined as quarks for which both chiralities have the same transformation properties under the electroweak group $SU(2) \times U(1)$. Vector-like quarks appear in many extensions of the SM such as little Higgs or extra-dimensional models. In these models, a top-partner quark, for simplicity referred to here as t', often plays a key role in canceling the quadratic divergences in the Higgs boson mass induced by radiative corrections involving the top quark. Vector-like quarks can mix preferentially with third-generation quarks, as the mixing is proportional to the mass of the SM quark [7], and they present a richer phenomenology than chiral quarks in fourth-generation models. In particular, a vector-like t' quark has a priori three possible decay modes, $t' \rightarrow Wb$, $t' \rightarrow Zt$, and $t' \rightarrow Ht$, with branching ratios that vary as a function of $m_{t'}$ and depend on the weak-isospin quantum number of the t' quark. While all three decay modes can be sizable for a weak-isospin singlet, decays to only Zt and Ht are most natural for a doublet. In the case of a triplet, the t' quark can decay either as a singlet or a doublet depending on its hypercharge.

The large centre-of-mass energy (\sqrt{s}) and integrated luminosity in proton–proton (pp) collisions produced at the CERN Large Hadron Collider (LHC) offer a unique opportunity to probe these models. At the LHC, these new heavy quarks would be produced predominantly in pairs via the strong interaction for masses below $O(1$ TeV) [6], with sizable cross sections and clean experimental signatures. For higher masses, single production mediated by

© CERN for the benefit of the ATLAS Collaboration.

✩ E-mail address: atlas.publications@cern.ch
the electroweak interaction can potentially dominate, depending on the strength of the interaction between the t' quark and the weak gauge bosons.

Recent results of SM Higgs boson searches at the LHC have significantly impacted the prospects and focus of heavy-quark searches. In particular, the observation of a new boson by the ATLAS [8] and CMS [9] Collaborations with a mass of ~126 GeV and couplings close to those expected for the SM Higgs boson disfavors [5,10] fourth-generation models. These models predict a large increase in the production rate for $gg \rightarrow H$, which is in tension with searches in the $H \rightarrow WW^{(*)}$ and $H \rightarrow ZZ^{(*)}$ decay channels [11,12]. These results severely constrain perturbative fourth-generation models, although they may not completely exclude them yet. For example, it has been pointed out that a fourth family of fermions can substantially modify the Higgs boson partial decay widths [13] and various scenarios may still remain viable [5, 14]. At the same time, the observation of this new boson raises the level of interest for vector-like quark searches, as $t' \rightarrow Ht$ and $b' \rightarrow Hb$ decays now have completely specified final states which offer an exciting opportunity for discovery of new heavy quarks.

In this Letter a search is presented for $t't'$ production using pp collision data at $\sqrt{s} = 7$ TeV collected with the ATLAS detector. The search is optimized for t' quark decays with large branching ratio to Wb. The lepton+jets final state signature, where one of the W bosons decays leptonically and the other hadronically, is considered. The most recent search by the ATLAS Collaboration in this final state [15] was based on 1.04 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV and, under the assumption of $BR(t' \rightarrow Wb) = 1$, excluded the existence of a t' quark with a mass below 404 GeV at 95% confidence level (CL). A more stringent lower 95% CL limit of $m_{t'} > 570$ GeV [16] was obtained by the CMS Collaboration using 5.0 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV. Searches have also been performed exploiting the dilepton signature resulting from the leptonic decay of both W bosons. A search by the ATLAS Collaboration in the dilepton final state using 1.04 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV obtained a lower 95% CL limit of $m_{t'} > 350$ GeV [17]. This search did not attempt to identify the flavor of the jets, making a more relaxed assumption of $BR(t' \rightarrow Wq) = 1$, where q could be any down-type quark. A 95% CL limit of $m_{t'} > 557$ GeV [18], assuming $BR(t' \rightarrow Wb) = 1$, was obtained by the CMS Collaboration using 5.0 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV.

In comparison with the previous result by the ATLAS Collaboration in the lepton+jets final state [15], the search presented in this Letter uses almost a factor of five more data and has revisited the overall strategy, as advocated in Refs. [19–21], to take advantage of the kinematic differences that exist between top quark and t' quark decays when $m_{t'} \gtrsim 400$ GeV. In particular, the hadronically-decaying W boson can be reconstructed as a single isolated jet when it is sufficiently boosted, leading to a significantly improved sensitivity in comparison to previous searches. In addition, the result of this search is interpreted more generically in the context of vector-like quark models where $BR(t' \rightarrow Wb)$ can be substantially smaller than unity. In this case the additional signals, other than $t't' \rightarrow WbWb$, contribute to the signal acceptance and are accounted for in the analysis.

2. ATLAS detector

The ATLAS detector [22] consists of an inner tracking system surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking system is immersed in a 2 T axial magnetic field and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker, providing charged particle identification in the region $|\eta| < 2.5$. The electromagnetic (EM) sampling calorimeter uses lead and liquid argon. The hadron calorimetry is based on two different detector technologies with either scintillator tiles or liquid argon as the active medium. The barrel hadronic calorimeter consists of scintillating tiles with steel plates as the absorber material. The endcap and forward hadronic calorimeters both use liquid argon, and copper or tungsten as the absorber, respectively. The calorimeters provide coverage up to $|\eta| = 4.9$. The muon spectrometer consists of superconducting air-core toroids, a system of trigger chambers covering the range $|\eta| < 2.4$, and high-precision tracking chambers allowing muon momentum measurements in the range $|\eta| < 2.7$.

3. Data sample and event preselection

The data used in this analysis correspond to the full dataset recorded in 2011, and were acquired using single-electron and single-muon triggers. The corresponding integrated luminosity is 4.7 fb$^{-1}$.

The event preselection criteria closely follow those used in recent ATLAS top quark studies [23] and require exactly one isolated electron or muon with large transverse momentum (p_T), at least three jets among which at least one is identified as originating from a b quark, and large missing transverse momentum (E_T^{miss}).

Electron candidates are required to have transverse momentum $p_T > 25$ GeV and $|\eta| < 2.47$, excluding the transition region ($1.37 < |\eta| < 1.52$) between the barrel and endcap EM calorimeters. Muon candidates are required to satisfy $p_T > 20$ GeV and $|\eta| < 2.5$. For leptons satisfying these p_T requirements the efficiencies of the relevant single-lepton triggers have reached their plateau values. To reduce background from non-prompt leptons produced in semileptonic b- or c-hadron decays, or in π^\pm/K^\pm decays, the selected leptons are required to be isolated, i.e. to have little calorimetric energy or track transverse momentum around them [24]. In this analysis τ leptons are not explicitly reconstructed. Because of the high-p_T threshold requirements, only a small fraction of τ leptons decaying leptonically are reconstructed as electrons or muons, while the majority of τ leptons decaying hadronically are reconstructed as jets.

Jets are reconstructed with the anti-k_T algorithm [25] with radius parameter $R = 0.4$, from topological clusters [26] of energy deposits in the calorimeters, calibrated at the EM scale. These jets are then calibrated to the particle (truth) level [27] using p_T- and y-dependent correction factors derived from a combination of data and simulation. Jets are required to have $p_T > 25$ GeV and $|\eta| < 2.5$ to avoid selecting jets from other pp interactions in the same bunch crossing, at least 75% of the sum of the p_T of tracks associated with a jet is required to come from tracks compatible with originating from the identified hard-scatter primary vertex. This primary vertex is chosen among the reconstructed candidates as the one with the highest $\sum p_T^2$ of associated tracks and is required to have at least three tracks with $p_T > 0.4$ GeV.

To identify jets as originating from the hadronization of a b quark (b tagging), a continuous discriminant is produced by an algorithm [28] using multivariate techniques to combine information from the impact parameter of displaced tracks, as well as topological properties of secondary and tertiary decay vertices reconstructed within the jet. In the preselection, at least one jet is

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse (x, y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

required to have a discriminant value larger than the point corre-
sponding to an average efficiency in simulated $t\bar{t}$ events of $>70\%$
for b-quark jets, of $>20\%$ for c-quark jets and of $<0.7\%$ for jets
originating from light quarks (u, d, s) or gluons.

The E_T^{miss} is constructed [29] from the vector sum of all
calorimeter energy deposits2 contained in topological clusters, cal-
ibrated at the energy scale of the associated high-pT object (e.g.
jet or electron), and including contributions from selected muons.
Background from multi-jet production is suppressed by the re-
quirement $E_T^{\text{miss}} > 35 \ (20) \ \text{GeV}$ in the electron (muon) channel,
and $E_T^{\text{miss}} + m_t > 60 \ \text{GeV}$, where m_t is the transverse mass3 of
the lepton and E_T^{miss}.

4. Background and signal modeling

After event preselection the main background is $t\bar{t}$ production, with
lesser contributions from the production of a W boson in association
with jets ($W + jets$) and multi-jet events. Small con-
tributions arise from single top-quark, $Z + jets$ and diboson pro-
duction. Multi-jet events contribute to the selected sample mostly
via the misidentification of a jet or a photon as an electron, or
via the presence of a non-prompt lepton, e.g. from a semileptonic
lepton and

the s-channel and for the associated production with a

MC@NLO

s-channel and for the associated production with a

MC@NLO

The transverse mass is defined by the formula

$m_t = \sqrt{2(p_T \cdot \Delta E_T^{\text{miss}})(1 - \cos \Delta \phi)}$,

where p_T is the p_T of the lepton and $\Delta \phi$ is the azimuthal angle separation between
the lepton and E_T^{miss} directions.

2 Each calorimeter cluster/cell is considered a massless object and is assigned the
calorimeter energy deposits contained in topological clusters, cal-
ibrated at the energy scale of the associated high-pT object (e.g.
jet or electron), and including contributions from selected muons.

3 The transverse mass is defined by the formula $m_t = \sqrt{2(p_T \cdot \Delta E_T^{\text{miss}})(1 - \cos \Delta \phi)}$, where p_T is the p_T of the lepton and $\Delta \phi$ is the azimuthal angle separation between the lepton and E_T^{miss} directions.
invariant mass of the lepton–neutrino system equals the nominal W boson mass allows reconstruction of the neutrino longitudinal momentum up to a two-fold ambiguity. In case no real solution exists, the neutrino pseudorapidity is set equal to that of the lepton, since in the kinematic regime of interest for this analysis the decay products of the W boson tend to be collinear.

Two final selections, loose and tight, are defined. The loose selection considers events with either ≥ 3 jets, at least one of which is a $W^\text{typeI}_\text{had}$ candidate, or ≥ 4 jets, two of which combine to make at least one $W^\text{typeII}_\text{had}$ candidate, and no $W^\text{typeI}_\text{had}$ candidate. The events must satisfy $H_T > 750$ GeV, where H_T is the scalar sum of the lepton p_T, E^{miss}_T and the p_T of the four (or three if there are only three) highest-p_T jets. The H_T distribution peaks at $\sim 2m_V$ for signal events, which makes the $H_T > 750$ GeV requirement particularly efficient for signal with $m_V \sim 400$ GeV, while rejecting a large fraction of the background. In addition, the highest-p_T b-jet candidate (b_1) and the next-to-highest-p_T b-jet candidate (b_2) are required to have $p_T > 160$ GeV and $p_T > 60$ GeV, respectively. Finally, the angular separation between the lepton and the reconstructed neutrino is required to satisfy $\Delta R(\ell, \nu) < 1.4$. The tight selection adds the following isolation requirements to the loose selection: $\min(\Delta R(W_\text{had}, b_{1,2})) > 1.4$ and $\min(\Delta R(\ell, b_{1,2})) > 1.4$, which are particularly effective at suppressing $t\bar{t}$ background. Table 1 presents a summary of the background estimates for the loose and tight selections, as well as a comparison of the total predicted and observed yields. The quoted uncertainties include both statistical and systematic contributions. The latter are discussed in Section 7. The predicted and observed yields are in agreement within these uncertainties.

6. Heavy-quark mass reconstruction

The main discriminant variable used in this search is the reconstructed heavy-quark mass (m_{reco}), built from the W_{had} candidate and one of the two b-jet candidates. The reconstruction of the leptonically-decaying W boson usually yields two solutions, and there are two possible ways to pair the b-jet candidates with the W boson candidates to form the heavy quarks. Among the four possible combinations, the one yielding the smallest absolute difference between the two reconstructed heavy quark masses is chosen. The resulting m_{reco} distributions in Fig. 2 show that the SM background has been effectively suppressed, and that, as is most visible for the loose selection, good discrimination between signal and background is achieved. The small contributions from $W +$ jets, $Z +$ jets, diboson, single-top and multi-jet events are combined into a single background source referred to as non-$t\bar{t}$. It was verified a priori that the tight selection has the better sensitivity, and it is therefore chosen to derive the final result for the search. The loose selection, displaying a significant $t\bar{t}$ background at low m_{reco} which is in good agreement with the expectation, provides further confidence in the background modeling prior to the application of b-jet isolation requirements in the tight selection.

Table 1

<table>
<thead>
<tr>
<th>Selection</th>
<th>Loose selection</th>
<th>Tight selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>$W +$ jets</td>
<td>5.4 ± 4.2</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>5.4 ± 4.2</td>
<td>2.3 ± 1.4</td>
</tr>
<tr>
<td>Single top</td>
<td>0.5 ± 0.4</td>
<td>0.2 ± 0.2</td>
</tr>
<tr>
<td>Dibosons</td>
<td>0.1 ± 0.1</td>
<td>0.04 ± 0.04</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>5.9 ± 8.4</td>
<td>3.8 ± 3.2</td>
</tr>
<tr>
<td>Total background</td>
<td>113 ± 30</td>
<td>113.4 ± 4.8</td>
</tr>
<tr>
<td>Data</td>
<td>122</td>
<td>11</td>
</tr>
<tr>
<td>$W + Z$</td>
<td>47.4 ± 6.3</td>
<td>28.2 ± 3.6</td>
</tr>
<tr>
<td>$W + Z + t\bar{t}$</td>
<td>25.4 ± 3.6</td>
<td>11.2 ± 1.5</td>
</tr>
</tbody>
</table>
Systematic uncertainties affecting the normalization and shape of the m_{reco} distribution are estimated taking into account correlations.

Uncertainties affecting only the normalization include the integrated luminosity (3.9%), lepton identification and trigger efficiencies (2%), jet identification efficiency (2%), and cross sections for the various background processes. The uncertainties on the theoretical cross sections for $t\bar{t}$, single-top and diboson production are (+9.9/−10.7)% [38], (+4.7/−3.7)% [39, 40], and ±5% [49] respectively. A total uncertainty on the $W^+ +$ jets normalization of 58% is assumed, including contributions from uncertainties on the $W + 4$-jets cross section [48], [59], the heavy-flavor content measured in $W + 1, 2$-jets data samples [23%] [47], as well as its extrapolation to higher jet multiplicities (19%). The latter is estimated from the simulation where the W + heavy-flavor fractions are studied as a function of variations in the Alpgen generator parameters. Similarly, the $Z +$ jets normalization is assigned an uncertainty of 48% due to the dominant $Z + 4$-jets contribution after final selection, which is evaluated at LO by Alpgen. The multi-jet normalization is assigned an uncertainty of 80% including contributions from the limited size of the data sample (64%) as well as the uncertainty on the jet misidentification rate (50%) in the data-driven prediction.

The rest of the systematic uncertainties modify both the normalization and shape of the m_{reco} distribution. To indicate their magnitudes, their impact on the normalization for the tight selection is discussed in the following. Among the largest uncertainties affecting the $t\bar{t}$ background are those related to modeling, such as (1) the choice of NLO event generator (evaluated by comparing MC@NLO and Powheg [56]), (2) the modeling of initial- and final-state QCD radiation (evaluated by varying the relevant parameters in Pythia in a range given by current experimental data [57]), and (3) the choice of parton-shower and fragmentation models (based on the comparison of Herwig and Pythia). These result in $t\bar{t}$ normalization uncertainties of 55%, 1%, and 26%, respectively. The uncertainty on the jet energy scale [27] affects the normalization of the $t\bar{t}$ signal, $t\bar{t}$ background and non-$t\bar{t}$ backgrounds by ±6%, (+22/−25)%, and (+19/−10)%, respectively. The uncertainties due to the jet energy resolution are 2%, 3% and 3%, respectively. Uncertainties associated with the jet mass scale and resolution, affecting the selection of $W^{\text{typ}}_{\text{had}}$ candidates, are smaller in magnitude but are also taken into account. Uncertainties on the modeling of the b-tagging algorithms affect the identification of b, c and light jets [28, 58, 59], and collectively result in uncertainties for the $t\bar{t}$ signal, as well as the $t\bar{t}$ and non-$t\bar{t}$ backgrounds, of (5–6)%.

Other systematic uncertainties such as those on jet reconstruction efficiency or the effect of multiple pp interactions on the modeling of $E_{\text{T}}^{\text{miss}}$ have been verified to be negligible.

In summary, taking into account all systematic uncertainties discussed above, the total uncertainty on the normalization affecting the tight selection for a $t\bar{t}$ signal with $m_{t} = 500$ GeV, $t\bar{t}$ and non-$t\bar{t}$ backgrounds is 11%, 67% and 50%, respectively.

8. Statistical analysis

In the absence of any significant data excess, the m_{reco} spectrum shown in Fig. 2(b) is used to derive 95% CL upper limits on the $t\bar{t}$ production cross section using the CLs method [60, 61].
This method employs a log-likelihood ratio $LLR = -2 \log(L_{t+b}/L_b)$ as test-statistic, where L_{t+b} (L_b) is a binned likelihood function (product of Poisson probabilities) to observe the data under the signal-plus-background (background-only) hypothesis. Pseudo-experiments are generated for both hypotheses, taking into account per-bin statistical fluctuations of the total predictions according to Poisson statistics, as well as Gaussian fluctuations describing the effect of systematic uncertainties. The fraction of pseudo-experiments for the signal-plus-background (background-only) hypothesis with $CL = \text{Protos}$ is set to the observed (median) CL for the expected limit. Signal cross sections for which $BR = \text{Protos}$ are excluded at 95% CL and as a given threshold defines CL_{t+b} (CL_b). Such threshold is set to be $CL_{t+b}/CL_b < 0.05$ are deemed to be excluded at 95% CL. Dividing by CL_b minimizes the possibility of mistakenly excluding a small signal due to a downward fluctuation of the background.

9. Results

The resulting observed and expected upper limits on the $t\bar{t}$ production cross section are shown in Fig. 3 as a function of m_t, and compared to the theoretical prediction, assuming $BR(t' \rightarrow Wb) = 1$. The total uncertainty on the theoretical cross section includes the contributions from scale variations and PDF uncertainties. An observed (expected) 95% CL limit $m_t > 656$ (638) GeV is obtained for the central value of the theoretical cross section. This represents the most stringent limit to date on the mass of a fourth-generation t' quark decaying exclusively into a W boson and a b quark. This limit is also applicable to a down-type vector-like quark with electric charge of $-4/3$ and decaying into a W boson and a b quark [6].

The same analysis is used to derive exclusion limits on vector-like t' quark production, for different values of m_t and as a function of the two branching ratios $BR(t' \rightarrow Wb)$ and $BR(t' \rightarrow Ht)$. The branching ratio $BR(t' \rightarrow Zt)$ is fixed by $BR(t' \rightarrow Zt) = 1 - BR(t' \rightarrow Wb) - BR(t' \rightarrow Ht)$. To probe this two-dimensional branching-ratio plane, the signal samples with the original branching ratios as generated by Protos are weighted. The resulting 95% CL exclusion limits are shown in Fig. 4 for different values of m_t. For instance, a t' quark with a mass of 550 GeV and $BR(t' \rightarrow Wb) > 0.63$ is excluded at 95% CL, regardless of the value of its branching ratios to Ht and Zt. All the decay modes contribute to the final sensitivity when setting limits. For example, assuming $m_t = 550$ GeV, the efficiency of the $t\bar{t}$ selection with at least four jets is 2.67%, 0.64%, 0.81%, 0.27%, 0.24% and 0.25%, for decays to $WbWb$, $WbHt$, $WbZt$, $ZtHt$, $ZtZt$ and $HtHt$, respectively. The default predictions from Protos for the weak-isospin singlet and doublet cases are also shown. A weak-isospin singlet t' quark with 400 GeV is excluded at 95% CL. All the decay modes contribute to the final sensitivity when setting limits. For example, assuming $m_t = 550$ GeV, the efficiency of the $t\bar{t}$ selection with at least four jets is 2.67%, 0.64%, 0.81%, 0.27%, 0.24% and 0.25%, for decays to $WbWb$, $WbHt$, $WbZt$, $ZtHt$, $ZtZt$ and $HtHt$, respectively. The default predictions from Protos for the weak-isospin singlet and doublet cases are also shown. A weak-isospin singlet t' quark with 400 GeV is excluded at 95% CL. It should be noted that since this analysis is optimized for $m_t \geq 400$ GeV (recall the $H_t > 750$ GeV requirement), it is not sensitive for vector-like quark scenarios where $m_t < 400$ GeV. The doublet scenarios are shown in Fig. 4 to illustrate the fact that this analysis has no sensitivity in these cases.

10. Conclusion

The strategy followed in this search, directly exploiting the distinct boosted signature expected in the decay of a heavy t' quark, has resulted in the most stringent limits to date on a fourth-generation t' quark. This approach shows great promise for improved sensitivity in future LHC searches at higher centre-of-mass energy and integrated luminosity. This search is also interpreted more generically in the context of vector-like quark models, resulting in the first quasi-model-independent exclusions in the two-dimensional plane of $BR(t' \rightarrow Wb)$ versus $BR(t' \rightarrow Ht)$, for different values of the t' quark mass.
Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GUST, Greece; ISF, MINEVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRCES and CFT, Portugal; MERVYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARIES and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NICT, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partnerships is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

103 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb, IL, United States
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York, NY, United States
109 Ohio State University, Columbus, OH, United States
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
112 Department of Physics, Oklahoma State University, Stillwater, OK, United States
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 INFN Sezione di Pavia; (d) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 INFN Sezione di Pisa; (d) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
124 Laboratoire de Instrumentation et Fisica Experimental de Particulas – LP2P, Lisboa, Portugal; (d) Departamento de Fisica Teorica y del Cosmos and CARPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina, SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (d) INFN Sezione di Roma I; (d) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (d) INFN Sezione di Roma Tor Vergata; (d) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (d) INFN Sezione di Roma Tre; (d) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 Faculté des Sciences Am Chouk, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LHEA-Marrakech; (b) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (b) Facultés des sciences, Université Mohammed V – Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), GIF-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
138 Department of Physics, University of Washington, Seattle, WA, United States
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, United States
144 (c) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (d) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Košice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg; (a) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, ON, Canada
159 TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford, MA, United States
162 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
164 INFN Gruppo Collegato di Udine; (c) ICTP, Trieste; (b) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois Urbana, IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), Universitat de Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, WI, United States
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, CT, United States