Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at $\sqrt{s} = 7$ TeV with the ATLAS detector

Published in: Physics Letters B

DOI: 10.1016/j.physletb.2012.11.071

Link to publication

Citation for published version (APA):
https://doi.org/10.1016/j.physletb.2012.11.071

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for pair production of heavy top-like quarks decaying to a high-p_T W boson and a b quark in the lepton plus jets final state at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration*

A B S T R A C T

A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming a significant branching ratio for subsequent decay into a W boson and a b quark. The search is based on 4.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton + jets final state, characterized by a high-transverse-momentum isolated electron or muon, large missing transverse momentum and at least three jets. The analysis strategy relies on the substantial boost of the W bosons in the $t'\bar{t}'$ signal when $m_{t'} \geq 400$ GeV. No significant excess of events above the Standard Model expectation is observed and the result of the search is interpreted in the context of fourth-generation and vector-like quark models. Under the assumption of a branching ratio $BR(t' \to Wb) = 1$, a fourth-generation t' quark with mass lower than 656 GeV is excluded at 95% confidence level. In addition, in light of the recent discovery of a new boson of mass ~ 126 GeV at the LHC, upper limits are derived in the two-dimensional plane of $BR(t' \to Wb)$ versus $BR(t' \to Ht)$, where H is the Standard Model Higgs boson, for vector-like quarks of various masses.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of the top quark [1,2], which completed the third generation of fundamental fermions in the quark sector of the Standard Model (SM) of particle physics, searches for heavier quarks have been of particular interest in high-energy physics research. These quarks are often present in new physics models aimed at solving some of the limitations of the SM.

One possibility is the addition of a fourth generation of heavy chiral fermions [3,4], which can provide new sources of CP violation that could explain the matter–antimatter asymmetry in the universe. The new weak-isospin doublet contains heavy up-type (t') and down-type (b') quarks that mix with the lighter quarks via an extended CKM matrix. In order to be consistent with precision electroweak data, a relatively small mass splitting between the new quarks is required [5]. Assuming that $m_{t'} - m_b < m_W$, where m_W is the W boson mass, the t' quark decays predominantly to a W boson and a down-type quark q ($q = d,s,b$). Based on the mixing pattern of the known quarks, it is natural to expect that this quark would be dominantly a b quark, which has motivated the assumption of $BR(t' \to Wb) = 1$ in most experimental searches.

Another possibility is the addition of weak-isospin singlets, doublets or triplets of vector-like quarks [6], defined as quarks for which both chiralities have the same transformation properties under the electroweak group $SU(2) \times U(1)$. Vector-like quarks appear in many extensions of the SM such as little Higgs or extra-dimensional models. In these models, a top-partner quark, for simplicity referred to here as t', often plays a key role in canceling the quadratic divergences in the Higgs boson mass induced by radiative corrections involving the top quark. Vector-like quarks can mix preferentially with third-generation quarks, as the mixing is proportional to the mass of the SM quark [7], and they present a richer phenomenology than chiral quarks in fourth-generation models. In particular, a vector-like t' quark has a priori three possible decay modes, $t' \to Wb$, $t' \to Zt$, and $t' \to Ht$, with branching ratios that vary as a function of $m_{t'}$ and depend on the weak-isospin quantum number of the t' quark. While all three decay modes can be sizable for a weak-isospin singlet, decays to only Zt and Ht are most natural for a doublet. In the case of a triplet, the t' quark can decay either as a singlet or a doublet depending on its hypercharge.

The large centre-of-mass energy (\sqrt{s}) and integrated luminosity in proton–proton (pp) collisions produced at the CERN Large Hadron Collider (LHC) offer a unique opportunity to probe these models. At the LHC, these new heavy quarks would be produced predominantly in pairs via the strong interaction for masses below $O(1$ TeV) [6], with sizable cross sections and clean experimental signatures. For higher masses, single production mediated by...
the electroweak interaction can potentially dominate, depending on the strength of the interaction between the t' quark and the weak gauge bosons.

Recent results of SM Higgs boson searches at the LHC have significantly impacted the prospects and focus of heavy-quark searches. In particular, the observation of a new boson by the ATLAS [8] and CMS [9] Collaborations with a mass of \sim126 GeV and couplings close to those expected for the SM Higgs boson disfavors [5,10] fourth-generation models. These models predict a large increase in the production rate for $gg \rightarrow H$, which is in tension with searches in the $H \rightarrow WW^{(*)}$ and $H \rightarrow ZZ^{(*)}$ decay channels [11,12]. These results severely constrain perturbative fourth-generation models, although they may not completely exclude them yet. For example, it has been pointed out that a fourth family of fermions can substantially modify the Higgs boson partial decay widths [13] and various scenarios may still remain viable [5,14]. At the same time, the observation of this new boson raises the level of interest for vector-like quark searches, as $t' \rightarrow Ht$ and $b' \rightarrow Hb$ decays now have completely specified final states which offer an exciting opportunity for discovery of new heavy quarks.

In this Letter a search is presented for $t't'$ production using pp collision data at $\sqrt{s} = 7$ TeV collected with the ATLAS detector. The search is optimized for t' quark decays with large branching ratio to Wb. The lepton + jets final state signature, where one of the W bosons decays leptonically and the other hadronically, is considered. The most recent search by the ATLAS Collaboration in this final state [15] was based on 1.04 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV and, under the assumption of $BR(t' \rightarrow Wb) = 1$, excluded the existence of a t' quark with a mass below 404 GeV at 95% confidence level (CL). A more stringent lower 95% CL limit of $m_{t'} > 570$ GeV [16] was obtained by the CMS Collaboration using 5.0 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV. Searches have also been performed exploiting the dilepton signature resulting from the leptonic decay of both W bosons. A search by the ATLAS Collaboration in the dilepton final state using 1.04 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV obtained a lower 95% CL limit of $m_{t'} > 350$ GeV [17]. This search did not attempt to identify the flavor of the jets, making a more relaxed assumption of $BR(t' \rightarrow Wq) = 1$, where q could be any down-type SM quark. A 95% CL limit of $m_{t'} > 557$ GeV [18], assuming $BR(t' \rightarrow Wb) = 1$, was obtained by the CMS Collaboration using 5.0 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV. In comparison with the previous result by the ATLAS Collaboration in the lepton+jets final state [15], the search presented in this Letter uses almost a factor of five more data and has revisited the overall strategy, as advocated in Refs. [19–21], to take advantage of the kinematic differences that exist between top quark and t' quark decays when $m_{t'} \gtrsim 400$ GeV. In particular, the hadronically-decaying W boson can be reconstructed as a single isolated jet when it is sufficiently boosted, leading to a significantly improved sensitivity in comparison to previous searches. In addition, the result of this search is interpreted more generically in the context of vector-like quark models where $BR(t' \rightarrow Wb)$ can be substantially smaller than unity. In this case the additional signals, other than $t't' \rightarrow WbWb$, contribute to the signal acceptance and are accounted for in the analysis.

2. ATLAS detector

The ATLAS detector [22] consists of an inner tracking system surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking system is immersed in a 2 T axial magnetic field and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker, providing charged particle identification in the region $|\eta| < 2.5$. The electromagnetic (EM) sampling calorimeter uses lead and liquid argon. The hadron calorimeter is based on two different detector technologies with either scintillator tiles or liquid argon as the active medium. The barrel hadronic calorimeter consists of scintillating tiles with steel plates as the absorber material. The endcap and forward hadronic calorimeters both use liquid argon, and copper or tungsten as the absorber, respectively. The calorimeters provide coverage up to $|\eta| = 4.9$. The muon spectrometer consists of superconducting air-core toroids, a system of trigger chambers covering the range $|\eta| < 2.4$, and high-precision tracking chambers allowing muon momentum measurements in the range $|\eta| < 2.7$.

3. Data sample and event preselection

The data used in this analysis correspond to the full dataset recorded in 2011, and were acquired using single-electron and single-muon triggers. The corresponding integrated luminosity is 4.7 fb$^{-1}$.

The event preselection criteria closely follow those used in recent ATLAS top quark studies [23] and require exactly one isolated electron or muon with large transverse momentum (p_T^{l*}), at least three jets among which at least one is identified as originating from a b quark, and large missing transverse momentum (E_T^{miss}).

Electron candidates are required to have transverse momentum $p_T > 25$ GeV and $|\eta| < 2.47$, excluding the transition region ($1.37 < |\eta| < 1.52$) between the barrel and endcap EM calorimeters. Muon candidates are required to satisfy $p_T > 20$ GeV and $|\eta| < 2.5$. For leptons satisfying these p_T requirements the efficiencies of the relevant single-lepton triggers have reached their plateau values. To reduce background from non-prompt leptons produced in semileptonic b- or c-hadron decays, or in π^\pm/K^\pm decays, the selected leptons are required to be isolated, i.e. to have little calorimetric energy or track transverse momentum around them [24]. In this analysis τ leptons are not explicitly reconstructed. Because of the high-p_T threshold requirements, only a small fraction of τ leptons decaying leptonically are reconstructed as electrons or muons, while the majority of τ leptons decaying hadronically are reconstructed as jets.

Jets are reconstructed with the anti-k_t algorithm [25] with radius parameter $R = 0.4$, from topological clusters [26] of energy deposits in the calorimeters, calibrated at the EM scale. These jets are then calibrated to the particle (truth) level [27] using p_T- and η-dependent correction factors derived from a combination of data and simulation. Jets are required to have $p_T > 25$ GeV and $|\eta| < 2.5$. To avoid selecting jets from other pp interactions in the same bunch crossing, at least 75% of the sum of the p_T of tracks associated with a jet is required to come from tracks compatible with originating from the identified hard-scatter primary vertex. This primary vertex is chosen among the reconstructed candidates as the one with the highest Σp_T^2 of associated tracks and is required to have at least three tracks with $p_T > 0.4$ GeV.

To identify jets as originating from the hadronization of a b quark (b tagging), a continuous discriminant is produced by an algorithm [28] using multivariate techniques to combine information from the impact parameter of displaced tracks, as well as topological properties of secondary and tertiary decay vertices reconstructed within the jet. In the preselection, at least one jet is

\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (ρ, ϕ) are used in the transverse (x, y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$.}
required to have a discriminant value larger than the point corresponding to an average efficiency in simulated $t\bar{t}$ events of \sim70% for b-quark jets, of \sim20% for c-quark jets and of \sim0.7% for jets originating from light quarks (u, d, s) or gluons.

The E_{T}^{miss} is constructed [29] from the vector sum of all calorimeter energy deposits in topological clusters, calibrated at the energy scale of the associated high-pT object (e.g. jet or electron), and including contributions from selected muons. Background from multi-jet production is suppressed by the requirement $E_{T}^{\text{miss}} > 35$ (20) GeV in the electron (muon) channel, and $E_{T}^{\text{miss}} + m_{t} > 60$ GeV, where m_{t} is the transverse mass of the lepton and E_{T}^{miss}.

4. Background and signal modeling

After event preselection the main background is $t\bar{t}$ production, with lesser contributions from the production of a W boson in association with jets ($W + jets$) and multi-jet events. Small contributions arise from single top-quark, Z + jets and diboson production. Multi-jet events contribute to the selected sample mostly via the misidentification of a jet or a photon as an electron, or via the presence of a non-prompt lepton, e.g. from a semileptonic b- or c-hadron decay. The corresponding yield is estimated via a data-driven method [30], which compares the number of events obtained with either standard or relaxed criteria for the selection of leptons. For the $W +$ jets background, the shape of the distributions of kinematic variables is estimated from simulation but the normalization is estimated from data using the predicted asymmetry between $W^{+} +$ jets and $W^{-} +$ jets production in pp collisions [31]. All other backgrounds, including the dominant $t\bar{t}$ background, and the signal, are estimated from simulation and normalized to their theoretical cross sections.

Simulated samples of $t\bar{t}$ and single top-quark backgrounds (in the s-channel and for the associated production with a W boson) are generated with MC@NLO v4.01 [32–34] using the CT10 set of parton distribution functions (PDFs) [35]. In the case of t-channel single top-quark production, the AcerMC v3.8 leading-order (LO) generator [36] with the MRST LO** PDF set [37] is used. These samples are generated assuming a top quark mass of 172.5 GeV and are normalized to approximate next-to-next-to-LO (NNLO) theoretical cross sections [38–40] using the MSTW2008 NNLO PDF set [41]. Samples of $W/Z + jets$ events are generated with up to five additional partons using the ALPGEN v2.13 [42] LO generator and the CTEQ6L1 PDF set [43]. The parton-shower and fragmentation steps are performed by HERWIC v6.520 [44] in the case of MC@NLO and ALPGEN, and by PYTHIA 6.421 [45] in the case of AcerMC. To avoid double-counting of partonic configurations in $W/Z +$ jets events generated by both the matrix-element calculation and the parton shower, a matching scheme [46] is employed. The $W +$ jets samples are generated separately for $W +$ light jets, $Wb\bar{b}$ + jets, $Wc\bar{c}$ + jets, and $Wc +$ jets, and their relative contributions are normalized using the fraction of b-tagged jets in $W +$1-jet and $W + 2$-jets data control samples [47]. The $Z +$ jets background is normalized to the inclusive NNLO theoretical cross section [48]. The diboson backgrounds are modeled using HERWIC with the MRST LO** PDF set, and are normalized to their NLO theoretical cross sections [49]. In all cases where HERWIG is used, the underlying event is simulated with JIMMY v4.31 [50].

For fourth-generation t' quark signals, samples are generated with PYTHIA using the CTEQ6.6 PDF set [43] for a range of masses, $m_{t'}$, from 400 GeV to 750 GeV in steps of 50 GeV. For vector-like t' signals, samples corresponding to a singlet t' quark decaying to Wb, Zt and Ht are generated with the Probos v2.2 LO generator [61] using the CTEQ6L1 PDF set, and interfaced to PYTHIA for the parton shower and fragmentation. The $m_{t'}$ values considered range from 400 GeV to 600 GeV in steps of 50 GeV, and the Higgs boson mass is assumed to be 125 GeV. All Higgs boson decay modes are considered, with branching ratios as predicted by HDECAY [52]. For both types of signal, the samples are normalized to the approximate NNLO theoretical cross sections [38] using the MSTW2008 NNLO PDF set.

All simulated samples include multiple pp interactions and simulated events are weighted such that the distribution of the average number of interactions per bunch crossing agrees with data. The simulated samples are processed through a simulation [53] of the detector geometry and response using GEANT4 [54], and the same reconstruction software as the data. Simulated events are corrected so that the physics object identification efficiencies, energy scales and energy resolutions match those determined in data control samples, enriched in the physics objects of interest.

5. Final selection

After preselection, further background suppression is achieved by applying requirements aimed at exploiting the distinct kinematic features of the signal. The large t' quark mass results in energetic W bosons and b quarks in the final state with large angular separation between them, while the decay products from the boosted W bosons have small angular separation. The combination of these properties is very effective in suppressing the dominant $t\bar{t}$ background since $t\bar{t}$ events with boosted W boson configurations are rare, and are typically characterized by a small angular separation between the W boson and b quark from the top quark decay.

To take advantage of these properties, it is necessary to identify the hadronically-decaying W boson (W_{had}) as well as the b jets in the event. The candidate b jets are defined as the two jets with the highest b-tag discriminant (although only one of them is explicitly required to be b tagged in the event selection). Two types of W_{had} candidates are defined, $W_{\text{typeI}}^{\text{had}}$ and $W_{\text{typeII}}^{\text{had}}$, depending on the angular separation between their decay products. $W_{\text{had}}^{\text{typeI}}$ is defined as a single jet with $p_{T} > 250$ GeV and mass in the range of 60–110 GeV. The mass distribution for $W_{\text{had}}^{\text{typeI}}$ candidates, prior to the jet mass requirement itself, is shown in Fig. 1(a). $W_{\text{had}}^{\text{typeII}}$ is defined as a dijet system with $p_{T} > 150$ GeV, angular separation $\Delta R(j, j') < 0.8$ and mass within the range of 60–110 GeV. If multiple pairs satisfy the above requirements, the one with mass closest to the nominal W boson mass is chosen. The mass distribution for $W_{\text{had}}^{\text{typeII}}$ candidates, prior to the dijet mass requirement, is shown in Fig. 1(b). In the construction of both types of W_{had} candidates, all selected jets except for the two candidate b jets are considered. Small discrepancies observed between the data and the background prediction, e.g. at low $W_{\text{had}}^{\text{typeI}}$ candidate invariant mass, are not significant and are covered by the systematic uncertainties.

The leptonically-decaying W boson is reconstructed using the lepton and E_{T}^{miss}, identified as the neutrino ν_{T}. Requiring that the

\[E_{T}^{\text{miss}} > 35 \text{ GeV} \]

\[m_{t} + m_{t'} > 60 \text{ GeV} \]

\[\Delta R(j, j') < 0.8 \]

\[m_{W_{\text{had}}} < 60 \text{–} 110 \text{ GeV} \]

\[m_{W_{\text{had}}^{\text{typeII}}} < 60 \text{–} 110 \text{ GeV} \]

\[\Delta \phi < \pi \]

\[E_{T}^{\text{miss}} > 50 \text{ GeV} \]

\[m_{W_{\text{had}}} > 125 \text{ GeV} \]

\[m_{W_{\text{had}}^{\text{typeII}}} > 125 \text{ GeV} \]
invariant mass of the lepton–neutrino system equals the nominal W boson mass allows reconstruction of the neutrino longitudinal momentum up to a two-fold ambiguity. In case no real solution exists, the neutrino pseudorapidity is set equal to that of the lepton, since in the kinematic regime of interest for this analysis the decay products of the W boson tend to be collinear.

Two final selections, *loose* and *tight*, are defined. The *loose* selection considers events with either ≥ 3 jets, at least one of which is a $W_{\text{had}}^{\text{typeI}}$ candidate, or ≥ 4 jets, two of which combine to make at least one $W_{\text{had}}^{\text{typeII}}$ candidate, and no $W_{\text{had}}^{\text{typeI}}$ candidate. The events must satisfy $H_T > 750$ GeV, where H_T is the scalar sum of the lepton p_T, E_T^{miss} and the p_T of the four (or three if there are only three) highest-p_T jets. The H_T distribution peaks at $\sim 2m_V$ for signal events, which makes the $H_T > 750$ GeV requirement particularly efficient for signal with $m_V \geq 400$ GeV, while rejecting a large fraction of the background. In addition, the highest-p_T b-jet candidate (b_1) and the next-to-highest-p_T b-jet candidate (b_2) are required to have $p_T > 160$ GeV and $p_T > 60$ GeV, respectively. Finally, the angular separation between the lepton and the reconstructed neutrino is required to satisfy $\Delta R(\ell, \nu) < 1.4$. The *tight* selection adds the following isolation requirements to the *loose* selection: $\min(\Delta R(W_{\text{had}}, b_{1,2})) > 1.4$ and $\min(\Delta R(\ell, b_{1,2})) > 1.4$, which are particularly effective at suppressing tt background. Table 1 presents a summary of the background estimates for the *loose* and *tight* selections, as well as a comparison of the total predicted and observed yields. The quoted uncertainties include both statistical and systematic contributions. The latter are discussed in Section 7. The predicted and observed yields are in agreement within these uncertainties.

6. Heavy-quark mass reconstruction

The main discriminant variable used in this search is the reconstructed heavy-quark mass (m_{reco}), built from the W_{had} candidate and one of the two b-jet candidates. The reconstruction of the leptonically-decaying W boson usually yields two solutions, and there are two possible ways to pair the b-jet candidates with the W boson candidates to form the heavy quarks. Among the four possible combinations, the one yielding the smallest absolute difference between the two reconstructed heavy quark masses is chosen. The resulting m_{reco} distributions in Fig. 2 show that the SM background has been effectively suppressed, and that, as is most visible for the loose selection, good discrimination between signal and background is achieved. The small contributions from $W +$ jets, $Z +$ jets, diboson, single-top and multi-jet events are combined into a single background source referred to as non-$t\bar{t}$. It was verified a priori that the tight selection has the better sensitivity, and it is therefore chosen to derive the final result for the search. The loose selection, displaying a significant $t\bar{t}$ background at low m_{reco}, which is in good agreement with the expectation, provides further confidence in the background modeling prior to the application of b-jet isolation requirements in the tight selection.
7. Systematic uncertainties

Systematic uncertainties affecting the normalization and shape of the m_{reco} distribution are estimated taking into account correlations.

Uncertainties affecting only the normalization include the integrated luminosity (3.3%), lepton identification and trigger efficiencies (2%), jet identification efficiency (2%), and cross sections for the various background processes. The uncertainties on the theoretical cross sections for $t\bar{t}$, single-top and diboson production are $(-9.9/-10.7\%$ [38], $(-4.7/-3.7\%$ [39,40], and $\pm 5\%$ [49], respectively. A total uncertainty on the $W + \text{jets}$ normalization of 58% is assumed, including contributions from uncertainties on the $W + 2$-jets cross section (48%) [55], the heavy-flavor content measured in $W + 1, 2$-jets data samples (23%) [47], as well as its extrapolation to higher jet multiplicities (19%). The latter is estimated from the simulation where the $W + $ heavy-flavor fractions are studied as a function of variations in the ALPGEN generator parameters. Similarly, the $Z + \text{jets}$ normalization is assigned an uncertainty of 48% due to the dominant $Z + 4$-jets contribution after final selection, which is evaluated at LO by ALPGEN. The multi-jet normalization is assigned an uncertainty of 80% including contributions from the limited size of the data sample (64%) as well as the uncertainty on the jet misidentification rate (50%) in the data-driven prediction.

The rest of the systematic uncertainties modify both the normalization and shape of the m_{reco} distribution. To indicate their magnitudes, their impact on the normalization for the tight selection is discussed in the following. Among the largest uncertainties affecting the $t\bar{t}$ background are those related to modeling, such as (1) the choice of NLO event generator (evaluated by comparing MC@NLO and POWHEG [56]), (2) the modeling of initial- and final-state QCD radiation (evaluated by varying the relevant parameters in PYTHIA in a range given by current experimental data [57]), and (3) the choice of parton-shower and fragmentation models (based on the comparison of HERWIG and PYTHIA). These result in $t\bar{t}$ normalization uncertainties of 55%, 1% and 26%, respectively. The uncertainty on the jet energy scale [27] affects the normalization of the $t\bar{t}'$ signal, $t\bar{t}$ background and non-$t\bar{t}$ backgrounds by $\pm 6\%$, $(+22/-25)\%$, and $(+19/-10)\%$, respectively. The uncertainties due to the jet energy resolution are 2%, 3% and 3%, respectively. Uncertainties associated with the jet mass scale and resolution, affecting the selection of $W^{\text{Type1}}_{\text{had}}$ candidates, are smaller in magnitude but are also taken into account. Uncertainties on the modeling of the b-tagging algorithms affect the identification of b, c and light jets [28,58,59], and collectively result in uncertainties for the $t\bar{t}'$ signal, as well as the $t\bar{t}$ and non-$t\bar{t}$ backgrounds, of (5–6)%.

Other systematic uncertainties such as those on jet reconstruction efficiency or the effect of multiple pp interactions on the modeling of $E_{\text{T}}^{\text{miss}}$ have been verified to be negligible.

In summary, taking into account all systematic uncertainties discussed above, the total uncertainty on the normalization affecting the tight selection for a $t\bar{t}'$ signal with $m_{t'} = 500$ GeV, $t\bar{t}$ and non-$t\bar{t}$ backgrounds is 11%, 67% and 50%, respectively.

8. Statistical analysis

In the absence of any significant data excess, the m_{reco} spectrum shown in Fig. 2(b) is used to derive 95% CL upper limits on the $t\bar{t}'$ production cross section using the CL$_s$ method [60,61].
This method employs a log-likelihood ratio $\text{LLR} = -2\log(L_{s+b}/L_b)$ as test-statistic, where L_{s+b} (L_b) is a binned likelihood function (product of Poisson probabilities) to observe the data under the signal-plus-background (background-only) hypothesis. Pseudo-experiments are generated for both hypotheses, taking into account per-bin statistical fluctuations of the total predictions according to Poisson statistics, as well as Gaussian fluctuations describing the effect of systematic uncertainties. The fraction of pseudo-experiments for the signal-plus-background (background-only) hypothesis with LLR larger than a given threshold defines C_{s+b}/C_b. Such threshold is set to the observed (median) LLR for the observed (expected) limit. Signal cross sections for which $C_s = C_{s+b}/C_b < 0.05$ are deemed to be excluded at 95% CL. Dividing by C_b minimizes the possibility of mistakenly excluding a small signal due to a downward fluctuation of the background.

9. Results

The resulting observed and expected upper limits on the $t\bar{t}t'$ production cross section are shown in Fig. 3 as a function of $m_{t'}$, and compared to the theoretical prediction, assuming $\text{BR}(t'\rightarrow Wb) = 1$. The total uncertainty on the theoretical cross section includes the contributions from scale variations and PDF uncertainties. An observed (expected) 95% CL limit $m_{t'} > 656 (638)$ GeV is obtained for the central value of the theoretical cross section. This represents the most stringent limit to date on the mass of a fourth-generation t' quark decaying exclusively into a W boson and a b quark. This limit is also applicable to a down-type vector-like quark with electric charge of $-4/3$ and decaying into a W boson and a b quark.

The same analysis is used to derive exclusion limits on vector-like t' quark production, for different values of $m_{t'}$ and as a function of the two branching ratios $\text{BR}(t'\rightarrow Wb)$ and $\text{BR}(t'\rightarrow Ht)$. The branching ratio $\text{BR}(t'\rightarrow Ht)$ is fixed by $\text{BR}(t'\rightarrow Ht) = 1 - \text{BR}(t'\rightarrow Wb) - \text{BR}(t'\rightarrow Ht)$. To probe this two-dimensional branching-ratio plane, the signal samples with the original branching ratios as generated by Protos are weighted. The resulting 95% CL exclusion limits are shown in Fig. 4 for different values of $m_{t'}$. For instance, a t' quark with a mass of 550 GeV and $\text{BR}(t'\rightarrow Wb) > 0.63$ is excluded at $\geq 95\%$ CL, regardless of the value of its branching ratios to Ht and Zt. All the decay modes contribute to the final sensitivity when setting limits. For example, assuming $m_{t'} = 550$ GeV, the efficiency of the t' selection with at least four jets is 2.67%, 0.64%, 0.81%, 0.27%, 0.24% and 0.25%, for decays to $WbWb$, $WbHt$, $WbZt$, $ZtHt$, $ZtZt$ and $HtHt$, respectively. The default predictions from Protos for the weak-isospin singlet and doublet cases are also shown. A weak-isospin singlet t' quark with $400 \leq m_{t'} \leq 500$ GeV is excluded at $\geq 95\%$ CL. It should be noted that since this analysis is optimized for $m_{t'} \geq 400$ GeV (recall the $H_t > 750$ GeV requirement), it is not sensitive for vector-like quark scenarios where $m_{t'} < 400$ GeV. The doublet scenarios are shown in Fig. 4 to illustrate the fact that this analysis has no sensitivity in these cases.

10. Conclusion

The strategy followed in this search, directly exploiting the distinct boosted signature expected in the decay of a heavy t' quark, has resulted in the most stringent limits to date on a fourth-generation t' quark. This approach shows great promise for improved sensitivity in future LHC searches at higher centre-of-mass energy and integrated luminosity. This search is also interpreted more generically in the context of vector-like quark models, resulting in the first quasi-model-independent exclusions in the two-dimensional plane of $\text{BR}(t'\rightarrow Wb)$ versus $\text{BR}(t'\rightarrow Ht)$, for different values of the t' quark mass.
Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (c) Department of Physics, Ankara University, Ankara; (d) Department of Physics, Cumhuriyet University, Konya; (e) Department of Physics, Gazi University, Ankara; (f) Division of Physics, TOBB University of Economics and Technology, Ankara; (g) Turkish Atomic Energy Authority, Ankara, Turkey
5 IAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Fisica d’Altes Energies and Departament de Fisica de la Universitat Autonoma de Barcelona and ICREA, Barcelona, Spain
13 (b) Department of Physics, University of Belgrade, Belgrade, Serbia
14 Division of Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (c) Department of Physics, Bogazici University, Istanbul; (d) Division of Physics, Bogazici University, Istanbul, Turkey
20 (c) Department of Physics, Istanbul Technical University, Istanbul, Turkey
21 (d) INFN Sezione di Bologna; (e) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
22 Physikalisches Institut, Universität Bonn, Bonn, Germany
23 Department of Physics, Boston University, Boston, MA, United States
24 Department of Physics, Brandeis University, Waltham, MA, United States
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 University of California, Davis, CA, United States
27 Department of Physics, Bogazici University, Istanbul; Division of Physics, Bogazici University, Istanbul, Turkey
28 (c) INFN Sezione di Bologna; (e) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
29 Physikalisches Institut, Universität Bonn, Bonn, Germany
30 Department of Physics, Boston University, Boston, MA, United States
31 (d) INFN Sezione di Bologna; (e) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
32 Physikalisches Institut, Universität Bonn, Bonn, Germany
33 (d) INFN Sezione di Bologna; (e) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
34 Physikalisches Institut, Universität Bonn, Bonn, Germany
35 Department of Physics, Boston University, Boston, MA, United States
36 Institute of Physics, Turkey
37 Physics Department, Bogazici University, Istanbul, Turkey
38 Department of Physics, Bogazici University, Istanbul, Turkey
39 Physics Department, Bogazici University, Istanbul, Turkey
40 (b) INFN Sezione di Bologna; (c) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
41 Physikalisches Institut, Universität Bonn, Bonn, Germany
42 Physics Department, Boston University, Boston, MA, United States
43 Department of Physics, Brandeis University, Waltham, MA, United States
44 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
45 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

Department of Physics, ETH Zurich, Switzerland

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFO Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics, University of Pittsburgh, Pittsburgh, PA, United States

INFN Sezione di Roma 1; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma T; Dipartimento di Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Aui Chock, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; Faculté des Sciences Semlalia. Université Cadi Ayyad, LHEA-Marrakech; Faculté des Sciences, Université Mohmed Premier and UPTPM, Oujda;

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

Department of Physics, University of Washington, Seattle, WA, United States

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, BC, Canada

SLAC National Accelerator Laboratory, Stanford, CA, United States

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Košice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Department of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

TRIUMF, Vancouver, BC; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada

Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tsukuba University, Medford, MA, United States

Centro de Investigaciones, Universidad Antonio Nario, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States

INFN Gruppo Collegato di Udine; ITP, Trieste; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois Urbana, IL, United States

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CEIB), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, United States

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, United States