Continuous glucose and exhaled breath analysis in the Intensive Care Unit

Leopold, J.H.

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
This thesis covers studies on continuous glucose and exhaled breath analysis in the ICU. It is divided into three parts. First, we aimed to compare and test different (continuous) blood glucose measurement methods (part I). Second, we aimed to predict blood glucose levels by analysis of exhaled breath in intubated and ventilated ICU patients (part II). Finally, we aimed to investigate further development of exhaled breath analysis techniques and data analysis methods (part III). We hope that the results of the research in this thesis will enhance the understanding of (continuous) blood glucose measurements and exhaled breath analysis in ICU patients.
COLOPON

Continuous glucose and exhaled breath analysis in the Intensive Care Unit

Author: Jan Hendrik Leopold
Lay-out and cover design: Stephan Achterberg, www.vanlennep.eu
Print: Brill, www.brill.com
Continuous glucose and exhaled breath analysis in the Intensive Care Unit

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op donderdag 26 oktober 2017, te 14.00 uur
door Jan Hendrik Leopold
egeboren te Leiden
Promotiecommissie:

Promotores: prof. dr. M.J. Schultz AMC-UvA
 prof. dr. A. Abu-Hanna AMC-UvA

Copromotor: dr. L.D.J. Bos AMC-UvA

Overige leden: prof. dr. N.P. Juffermans AMC-UvA
 prof. dr. E.H.D. Bel AMC-UvA
 prof. dr. A.H. Zwinderman AMC-UvA
 prof. dr. T. Bein Universität Regensburg
 dr. M.C. Schut AMC-UvA
 dr. A.W. Boots Universiteit Maastricht

Faculteit: Faculteit der Geneeskunde
Chapter 1 General introduction and outline of this thesis pag 5

Part 1
Chapter 2 Continuous Glucose Monitoring–devices for Use in Intensive Care Units .. pag 15
Chapter 3 Point Accuracy and Reliability of an Interstitial Continuous Glucose Monitoring Device in Critically Ill Patients: A Prospective Study pag 31
Chapter 4 Point and Trend Accuracy of a Continuous Intravenous Microdialysis–based Glucose–monitoring Device in Critically Ill Patients – a Prospective Study .. pag 55

Part 2
Chapter 5 Glucose Prediction by Analysis of Exhaled Metabolites – a Systematic Review .. pag 79
Chapter 6 Factors influencing continuous breath signal in intubated and mechanically–ventilated intensive care unit patients measured by an electronic nose ... pag 99
Chapter 7 Non-invasive breath monitoring with eNose does not improve glucose diagnostics in critically ill patients in comparison to Continuous Glucose Monitoring in blood ... pag 119

Part 3
Chapter 8 Comparison of classification methods in breath analysis by electronic nose .. pag 133
Chapter 9 Volatile organic compound profiles in outlet air from extracorporeal life-support devices differ from breath profiles in critically ill patients pag 157
Chapter 10 Summary and General Discussion pag 173
Chapter 11 Nederlandse Samenvatting .. pag 181

Appendices
Author Contributions
Portfolio