Path-metadynamics: A computational study of conformational transitions in proteins

Díaz Leines, G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1

1-1 Protein structure and function 2
1-2 The mechanism of protein folding 4
 1-2.1 Transition pathways ... 4
 1-2.2 The free energy landscape view 5
1-3 Conformational changes in proteins 8
1-4 Computational modelling of complex transitions 11
 1-4.1 Conformational changes in proteins are rare events 11
 1-4.2 The development of new rare event algorithms to study conformational changes in proteins 13
1-5 Outline of this thesis ... 14
1-6 References ... 15

2 Computer Simulations of Rare Events 19

2-1 Molecular dynamics ... 20
2-2 Rare events ... 23
2-3 Finding the mechanism of a rare event 24
 2-3.1 Reaction coordinates: Defining collective variables to describe a transition ... 25
 2-3.2 Committor probabilities 25
 2-3.3 Free energy landscapes 27
 2-3.4 Rate constants ... 28
2-4 Free energy methods ... 30
 2-4.1 Umbrella sampling ... 30
 2-4.2 Metadynamics .. 32
2-5 Transition path methods ... 34
 2-5.1 The minimum energy path 35
 2-5.2 The minimum free energy path 36
 2-5.3 String method to determine the MFEP 37
 2-5.4 Calculation of the mean force and the metric tensor using MD 39
6 Predicting the Mechanism of Dissociation/Formation of the GCN4 Leucine Zipper Domain

6-1 Introduction 134
6-2 Methods 137
 6-2.1 Molecular dynamics 137
 6-2.2 Path-metadynamics 138
 6-2.3 Collective variables 138
 6-2.4 Set-up of path-metadynamics simulations 140
6-3 Results 144
 6-3.1 Formation/dissociation can occur via multiple routes 144
 6-3.2 Separate contributions to the unfolding/dissociation mechanism 146
6-4 Discussion and conclusion 158
 6-4.1 Molecular insight along the average transition paths 158
 6-4.2 Convergence of the free energy profiles 160
 6-4.3 A sufficient set of collective variables to describe the formation of GCN4 leucine zipper 160
6-5 References 162
CONTENTS

Summary 167
Samenvatting 171
Acknowledgments 177
About the author 181