Path-metadynamics: A computational study of conformational transitions in proteins

Díaz Leines, G.

Citation for published version (APA):
Contents

1 Introduction
1-1 Protein structure and function
1-2 The mechanism of protein folding
1-2.1 Transition pathways
1-2.2 The free energy landscape view
1-3 Conformational changes in proteins
1-4 Computational modelling of complex transitions
1-4.1 Conformational changes in proteins are rare events
1-4.2 The development of new rare event algorithms to study conformational changes in proteins
1-5 Outline of this thesis
1-6 References

2 Computer Simulations of Rare Events
2-1 Molecular dynamics
2-2 Rare events
2-3 Finding the mechanism of a rare event
2-3.1 Reaction coordinates: Defining collective variables to describe a transition
2-3.2 Committor probabilities
2-3.3 Free energy landscapes
2-3.4 Rate constants
2-4 Free energy methods
2-4.1 Umbrella sampling
2-4.2 Metadynamics
2-5 Transition path methods
2-5.1 The minimum energy path
2-5.2 The minimum free energy path
2-5.3 String method to determine the MFEP
2-5.4 Calculation of the mean force and the metric tensor using MD

vii
2-5.5 Finite temperature string method and the principal curves . . . 40
2-6 References ... 42
2.A Variational formulation of the MFEP as a maximum likelihood path . 45
2.A.1 MFEP and committor probabilities 45

3 Path Finding on High-Dimensional Free Energy Landscapes 49
3-1 Introduction .. 50
3-2 Path-Metadynamics method 51
3-2.1 Defining the average transition path 51
3-2.2 Flux density along the iso-committor surfaces 52
3-2.3 Localized transition tube assumption 52
3-2.4 Defining the path-collective variable σ 53
3-2.5 Sampling the average transition path 53
3-3 The algorithm ... 56
3-4 Test model: alanine dipeptide 57
3-4.1 Convergence of the path and the free energy 59
3-4.2 Using the gradient of the free energy landscape 61
3-5 References ... 64
3.A Geometrical derivation of the path-variable σ 67

4 An Assessment of Path-Metadynamics 71
4-1 Introduction .. 72
4-2 Method: path-metadynamics equations 74
4-2.1 Path-metadynamics algorithm 77
4-2.2 Steepest descent evolution of the path 78
4-3 A recipe for the computation of transition pathways 80
4-3.1 Simulation Details ... 81
4-3.2 Two-dimensional landscape using umbrella sampling 82
4-3.3 Minimum free energy path using the string method 82
4-3.4 Umbrella sampling along the average transition path 83
4-4 Fine-tuning of parameters to converge the transition pathways .. 85
4-4.1 Effective transition tube: Choosing parameter \(k_d\) 85
4-4.2 Fine-tuning the evolution of the path towards the MFEP; choosing \(T_{\text{conv}}\) and \(\delta \tau\) 90
4-4.3 Optimal choice of the time interval between path updates \(t_{\text{eval}}\) . 93
4-5 Discussion and conclusion 97
4-6 References ... 100

5 Mapping the Free Energy Profile of the Light-induced Unfolding of Photoactive Yellow Protein 103
5-1 Introduction .. 104
5-2 Methods ... 107
5-2.1 Metadynamics ... 107
CONTENTS

5-2.2 Path-metadynamics .. 107
5-2.3 Finding a sufficient set of CVs 108
5-3 Computational details .. 110
 5-3.1 MD setup ... 110
 5-3.2 Definition of CVs .. 110
5-4 Results ... 111
 5-4.1 Unfolding of the region α_3 111
 5-4.2 Heterogeneity in the U_α state 112
 5-4.3 Solvent exposure of Gly46 114
 5-4.4 Solvent exposure of pCA .. 116
 5-4.5 Time constants of the transition pB' to pB 116
5-5 Discussion ... 117
 5-5.1 Intermediate states and molecular insight along the reaction paths 117
 5-5.2 Path-metadynamics for the study of complex transitions 119
5-6 References ... 120
 5.A Computational details ... 124
 5.A.1 Set up of path-metadynamics 124
 5.A.2 Adaptive algorithm for the convergence of the free energy profiles 125
 5.A.3 CVs to describe the transitions 125
 5.A.4 Stable states definitions 127
 5.B Complementary results .. 128
 5.B.1 Representative path projections for transitions from pB' to pB 128
 5.B.2 Re-crossings of the path collective variable σ and the CVs as a function of time ... 128

6 Predicting the Mechanism of Dissociation/Formation of the GCN4 Leucine Zipper Domain .. 133
 6-1 Introduction ... 134
 6-2 Methods ... 137
 6-2.1 Molecular dynamics .. 137
 6-2.2 Path-metadynamics .. 138
 6-2.3 Collective variables .. 138
 6-2.4 Set-up of path-metadynamics simulations 140
 6-3 Results ... 144
 6-3.1 Formation/dissociation can occur via multiple routes 144
 6-3.2 Separate contributions to the unfolding/dissociation mechanism 146
 6-4 Discussion and conclusion ... 158
 6-4.1 Molecular insight along the average transition paths 158
 6-4.2 Convergence of the free energy profiles 160
 6-4.3 A sufficient set of collective variables to describe the formation of GCN4 leucine zipper 160
 6-5 References ... 162
CONTENTS

Summary 167
Samenvatting 171
Acknowledgments 177
About the author 181