Moral misfits: The role of moral judgments and emotions in derogating other groups

Wirtz, C.

Citation for published version (APA):
Chapter 3

Overweight and Undervalued: Blame Attributions, Contempt, and Derogation of Obese Individuals
Derogation of overweight individuals is widespread (Puhl & Brownell, 2001) and has increased over the past decades (Andreyeva, Puhl, & Brownell, 2008; Latner & Stunkard, 2003). Discrimination of obese people is well documented in employment settings, education, and health-care facilities (Puhl & Heuer, 2009) and these inequities can have profound psychological, social, and health-related effects on this group of people. Obesity often leads to lower levels of self-acceptance (Carr & Friedman, 2005), reduced body dissatisfaction, lower self-esteem, dysfunctional appearance investment, and less satisfaction with life in general (Annis, Cash, & Hrabosky, 2004). Weight discrimination is related to psychiatric disorders (Hatzenbuehler, Keyes, & Hasin, 2009), and can also cause obese people to avoid exercise (Vartanian & Novak, 2010), or undergo risky weight loss surgery (Throsby, 2007).

Stigmatization of obese individuals is often accompanied with derogation (Brochu & Morrison, 2007; Crandall, 1994; Puhl & Brownell, 2003). Some consider the stigma of obesity to be one of the most severe stigmas (Crandall & Eshleman, 2003; King, Shapiro, Hebl, Singletary, & Turner, 2006). Latner, O’Brien, Durso, Brinkman, and MacDonald (2008), for instance, showed that anti-fat biases were more pronounced than biases against gays and Muslims. Overweight individuals tend to be associated with negative traits such as laziness, self-indulgence, and lack of willpower (DeJong, 1980; Puhl & Brownell, 2003; Throsby, 2007). Attributing these characteristics to overweight men and women implies some form of personal responsibility or blame. These attributions tend to deny that obesity can have a variety of causes that differ in controllability and changeability (e.g., glandular dysfunction, parental influence, lack of control, indulgence), and that there are many barriers that undermine obesity management strategies (Mauro, Taylor, Wharton, & Sharma, 2008).

Several studies showed that blaming stigmatized groups for the causes of their condition is a strong predictor of attitudes and behaviour towards these groups and its members (Crandall & Moriarty, 1995; Dijker & Koomen, 2003; Weiner, Perry, & Magnusson, 1988). In these studies, people attributed more responsibility and blame to so-called mental-behavioural stigmas, such as drug abuse and obesity, as compared to stigmas with a physical origin, such as
blindness and cancer. These attributions of responsibility were associated with increased prejudice towards people who were seen as agents of their state of health and well-being (Crandall, 1994; Crandall et al., 2001; DeJong, 1980; Teachman, Gapinski, Brownell, Rawlins, & Jeyaram, 2003). Importantly, stigmatized groups that were held personally responsible for their adverse physical and psychological state also tended to be avoided by others and received less help, as compared to victims of less controllable processes (Angemeyer et al., 2013; Corrigan, Markowitz, Watson, Rowan, & Kubiak, 2003; Dijker & Koomen, 2003; Weiner et al., 1988).

Some argue that affect plays an important role in shaping behaviour towards members of stigmatized groups. According to Weiner (1993; Weiner et al., 1988), blaming stigmatized groups for their condition is likely to be related to strong emotions. Research based on his attribution-emotion approach focused on the emotions anger and pity. If the cause of the state of a specific person is perceived as controllable, the stigmatized person is held responsible for his or her predicament, which will evoke anger. On the contrary, pity is elicited if the cause is perceived as uncontrollable (e.g., biogenetic factors), and people are not held personally responsible for their plight. Many studies support these causal links and showed that attributed personal responsibility generally results in more anger and less pity (see Menec & Perry, 1998; Rudolph, Roesch, Greitemeyer, & Weiner, 2004; Weiner, 1995, for reviews). Moreover, these two emotions mediated the effect of blame on behavioural intentions towards these groups. Thus blaming people for their condition induces anger and reduces pity; this in turn is related to avoidance and decreased willingness to help them (e.g., Dijker & Koomen, 2003).

In the aforementioned studies, the stigma of obesity was investigated alongside other stigmas, such as child abuse, drug abuse, and AIDS (Dijker & Koomen, 2003; Weiner et al., 1988). In these studies, emotional reactions to different groups were aggregated and the results are therefore quite general and do not specify differences between stigmas. Menec and Perry (1998) also studied reactions towards multiple stigmas, and reported results for each stigma separately. Their results showed that anger played a minor role in reactions to obesity and was unrelated to willingness to help obese individuals with a small
problem. Pity was associated with more willingness to help obese individuals. Unfortunately they did not measure the intention to harm or avoid members of that particular group. Importantly, they also did not include other moral emotions such as contempt in their studies. In the present studies we focus on the role of contempt.

In our view contempt may help us to understand the processes that link attributions of blame to biases against obese individuals. As indicated before, attributing personal responsibility to an obese individual often goes hand in hand with perceiving this person as lazy and lacking willpower. In many situations then, blame is related to the perception of the other as a moral failure (see Weiner, Osborne, & Rudolph, 2011). When people fail to live up to the moral standards of society, they are likely to evoke contempt in others (Haidt, 2003; Hutcherson & Gross, 2011; Rozin, Lowery, Imada, & Haidt, 1999). This emotion is strongly associated with the action tendency to avoid, expel or disregard the object of contempt (Fischer & Roseman, 2007; Mackie, Devos, & Smith, 2000). Like other (moral) emotions, contempt can have a strong and immediate effect on behaviour, even more so than causal attributions (Haidt, 2001; Weiner et al., 2011).

In line with earlier work on stigmatization, we expect that pity will also have an impact on reactions towards obese people. When people do not attribute personal responsibility to obese individuals, but instead believe that obesity is the result of something uncontrollable, such as glandular dysfunction, they may feel pity. As indicated in the introduction of this dissertation, pity (like compassion and sympathy) is considered an other-suffering emotion that is elicited when other people need help or are otherwise disadvantaged (Goetz, Keltner, & Simon-Tomas, 2010, Haidt, 2003). Pity motivates people to help others and is not likely to lead to avoidance of those who evoke the feeling (e.g., Dijker & Koomen, 2003).

Although anger has been extensively studied in work on blame and behaviour towards members of stigmatized groups, we expect anger to have a relatively modest effect on reactions towards obese individuals (cf., Menec & Perry, 1998), especially when contempt is taken into account. Anger is often elicited when individual freedom or rights are violated, or when people are confronted with injustice or unfairness (Cottrell & Neuberg, 2005; Haidt, 2003;
Kuppens, van Mechelen, Smits, & de Boeck, 2003; Rozin et al., 1999). This emotion is less likely to result from deeming obese individuals responsible for their weight problem. Instead, as indicated before, blaming obese individuals for their weight could be associated with perceived failure to live up to moral standards (e.g., by being lazy), which is likely to result in contempt. Moreover, the tendency to avoid and isolate obese individuals is more likely to be related to contempt than to anger; the latter emotion is more strongly related to aggression against the target evoking that emotion (e.g., Mackie et al., 2000).

In three studies we assessed blame attributions, contempt, anger and pity, and investigated their relative impact on three outcome variables. We measured prejudice, social distance and support for policy measures with detrimental effects for obese people (i.e., higher taxes, increased insurance premiums). We added prejudice because stigma generally implies not only avoidance and discrimination but also negative evaluations. Previous research based on the attribution-emotion approach to stigmatization tended to focus on intentions to help or harm individuals, but often did not include prejudice as an outcome variable. We expect blame to be a strong predictor of prejudice, support for harmful policy measures and social distance. Furthermore, we expect these effects of blame to be mediated by anger and pity. However, when contempt is added as a predictor of the outcome variables, we expect this emotional reaction to have a strong and unique impact on these variables. So we test whether contempt is a useful component to add to the attribution of blame and the other emotions when predicting reactions to obese individuals.

Study 3.1

In this study we explored the role of contempt in the relation between the attribution of blame and two reactions towards obese individuals: social distance and prejudice. We investigated whether contempt is distinguishable from other moral emotions and whether it has a unique impact on the outcome variables. We therefore first tested the effects of blame, anger and pity, following Weiner et al. (1988). We then investigated the additional impact of contempt.
Method

Participants. Ninety-four undergraduates (68 women, 26 men) from the University of Amsterdam participated in this study. Their mean age was 22.17 ($SD = 4.92$). All participants did a major in psychology and the vast majority of this sample had normal weight; their mean Body Mass Index (BMI) was 21.20 ($SD = 1.98$).

Materials and procedure. Participants were told that the study was part of a large survey on attitudes towards a variety of groups in Western societies, and that the focus in the present study was on obese people. We presented a brief description and definition of obesity, illustrated with four pictures of obese people. These pictures depicted white middle-aged males and females who were obese, but not excessively (estimated BMI between 30-35); they were smiling and well-dressed. We presented these pictures in order to create a neutral, non-stereotypical image of obesity, and to achieve that all our participants were judging similar targets in terms of attractiveness and BMI.

After this introduction, we presented participants with a questionnaire. The first question aimed to assess participants’ prejudice towards obese people with the following statement: “My overall evaluation of a typical obese individual is...” Participants could complete this statement on a bipolar adjective scale ranging from 1 (negative) to 11 (positive). This measure is similar to the evaluation thermometer that has been successfully used in past research to capture out-group attitudes (e.g., Haddock, Zanna, & Esses, 1993). We reverse scored this measure so a higher score indicated more prejudice.

Next, we presented a list of emotion words and asked participants to indicate the extent to which they felt each emotion when they imagined having contact with an obese individual. They could answer these items on 7-point scales ranging from 1 (not at all) to 7 (to a large extent). We included five negative emotion words: “contempt”, “disgust”, “disdain”, “anger”, and “fear”. The latter

7 Body Mass Index (BMI) is a weight/height ratio used as a standard measure of weight. For adults, BMIs between 19-25 are considered normal weight, between 25-30 overweight, BMIs above 30 are considered obese.
emotion was included because it is has been mentioned in the literature on stigma (e.g., Connors & Hely, 2007; Dijker & Koomen, 2003). It needs to be added that we do not expect fear to play an important role in reactions to obese individuals. However, in order to control for any shared variance with the other emotions, we include this item as a covariate in the analyses. The list was completed with four positive emotion words: “compassion”, “pity”, “empathy”, and “sympathy”.

Next, we assessed blame by measuring participants’ agreement with four statements: (obese people) “… do not have enough willpower”, “… eat too much which causes their weight problem”, “… should exercise more to lose weight”, and “… are responsible for their own weight”. These items were derived for the Anti-Fat Attitude scale (Crandall, 1994) and the Beliefs About Obese Persons Scale (Allison, Basile, & Yuker, 1991). Agreement on these items could be indicated on 7-point scales that ranged from 1 (totally disagree) to 7 (totally agree). We combined the scores on these items in order to capture blame (Cronbach’s $\alpha = .79$).

We measured social distance with eight items based on scales used by Crandall (1991) and Skitka, Bauman, and Sargis (2005). Participants were asked their agreement with statements that followed the sentence: “I would be happy to have an obese person...”; the statements were: “as my teacher”, “as a neighbour”, “as my doctor”, “as a colleague”, “as my roommate”, “as a close friend”, “to marry into my family”, and “as my personal date to a party”. The answers to these statements could be given on 7-point scale ranging from 1 (totally disagree) to 7 (totally agree). We reverse scored these answers for interpretation purposes, and we averaged these scores to assess social distance ($\alpha = .84$). A higher score on this scale indicated more social distance.

Finally, we asked participants to indicate their weight and height so that we could calculate their BMI. We also asked participants whether they knew any obese individuals and how well they knew them.\(^8\)

\(^8\) Acquaintance with obese individuals did not have any effect on the other variables, so we do not report this variable further.
Results

Exploratory factor analysis. In order to test whether the emotion words captured distinct emotions, we performed a principal factor analysis with varimax rotation on these items. As expected, this analysis resulted in three factors. The first factor explained 33.5% of the total variance and comprised “contempt”, “disgust”, and “disdain” (factor loadings from .81-.85). We combined these items to assess contempt (α = .84). The second factor explained 23.0% of the total variance and comprised the items “compassion”, “pity”, and “empathy” (factor loadings: .79-.89; α = .79). This factor included the so-called other-suffering emotions, and was labelled pity. Unexpectedly, the item “sympathy” loaded on the first and second factor (-.50 and .47, respectively), and did not reliably correlate with the other positive emotions.9 The last factor explained 11.3% of the total variance and captured “anger” (.67) and “fear” (.87). Although these items correlated moderately (r = .28, p = .006), we decided to treat them as different variables because we particularly interested in the impact of anger compared to contempt. These results thus indicate that contempt is distinguishable from anger, pity, and fear.

Descriptive statistics. Six participants failed to answer the prejudice question, and therefore all analyses regarding prejudice were based on 91 participants. Means of the main variables and their inter-correlations are presented in Table 3.1. This table shows that participants were generally prejudiced towards obese individuals, with an overall mean above midpoint of the 11-point scale. Not surprisingly, the mean score on blame was above midpoint of the 7-point scale, indicating that people tended to hold obese individuals responsible for their overweight. Gender, BMI and familiarity with obese individuals were unrelated to the other variables. Age was negatively related to anger (r = -.23, p = .026) and blame (r = -.23, p = .026), indicating that the younger participants were, the more they tended to feel anger, and the more they blamed obese individuals for their condition.

9 The Dutch translation of sympathy (sympathie) has a more positive connotation than the English word; it is more often used in the context of liking than in the context of pity.
Main analyses. The first goal of this study was to explore the role of contempt in the context of Weiner's attribution-emotion model. We therefore investigated whether contempt would have an impact on social distance over and above the effects of blame, anger, and pity. In order to test this, we performed a series of multiple regression analyses. In a first step, we entered blame as predictor and age as covariate to test whether blame still had an effect on social distance when controlled for age. Table 3.2 presents the results of this analysis and shows that age had no effect, but blame was significantly related to social distance. In a second step, following Weiner's attribution-emotion approach, we added anger and pity to the equation. Unexpectedly, neither emotion contributed significantly to the prediction of social distance. We will get back to this result in more detail in our discussion. The effect of blame remained significant. In the last step, we added contempt. Results showed that this emotion uniquely contributed to the prediction of social distance. As can be seen from Table 3.2, the effect of blame was no longer significant after contempt was added. This suggests that contempt mediates the relation between blame and social distance. The correlations displayed in Table 3.1 showed that blame was related to contempt and anger, and not to pity.

In order to further test the mediating role of contempt in the relation between blame and social distance, we performed bootstrap analyses (Preacher &
Hayes, 2008). These analyses allowed us to test the significance of the indirect effect of each emotion over and above the effects of the other emotions. Based on 2000 bootstrap samples, the 95% confidence interval of contempt did not include zero [.17, .43], indicating that the indirect effect of blame through contempt is significant. The intervals of anger [-.07, .04] and pity included zero [-.02, .04], as could be expected from the regression analyses reported above.

Our next objective was to explore the role of contempt in predicting prejudice towards obese individuals. Results of a series of regression analyses are presented in Table 3.2. As the table shows, pity had some impact on prejudice, but did not reduce the impact of blame. When contempt was added in the last step, it significantly contributed to the prediction of prejudice. Contempt reduced the impact of blame as well as the effect of pity. Bootstrap analyses showed that the indirect effect of blame on prejudice through contempt was significant [.24, .78]. The 95% CI intervals of anger [-.06, .17] and pity [-.16, .09] included zero, indicating that these indirect effects are not significant.10

10 As indicated, we also measured fear and sympathy. In order to show that these two emotions could not account for the effect of contempt, we included them as covariates. Results showed that fear and sympathy did not have any effect on prejudice and social distance. Moreover, the indirect effect of blame on prejudice through contempt was still significant, 95% CI [.13, .71]. The indirect effect of blame on social distance through contempt remained significant as well, 95% CI [.15, .43].
Table 3.2

Results of multiple regression analyses with social distance and prejudice as outcome variables (Study 3.1).

| Predictor | Social distance | | Prejudice | |
|-----------|----------------|-----------------|-----------------|
| | B SE B β | B SE B β | |
| Step 1 | | | |
| Age | .02 .02 .09 | -.02 .05 -.03 | |
| Blame | .44 .11 .42** | 1.02 .23 .44** | |
| R² | .16** | | |
| Step 2 | | | |
| Age | .02 .02 .10 | -.01 .05 -.01 | |
| Blame | .43 .11 .41** | .99 .23 .42** | |
| Anger | .03 .07 .05 | .20 .19 .14 | |
| Pity | .00 .10 -.01 | -.45 .19 -.22* | |
| R² | .17* | .27** | |
| Δ R² | .002 | .07* | |
| Step 3 | | | |
| Age | .02 .02 .07 | -.01 .04 -.02 | |
| Blame | .16 .11 .16 | .54 .24 .23* | |
| Anger | -.05 .07 -.07 | .08 .14 .05 | |
| Pity | .06 .09 .06 | -.35 .18 -.17 | |
| Contempt | .38 .08 .52** | .62 .16 .40** | |
| R² | .34** | .38** | |
| Δ R² | .18** | .11** | |

Note. * p < .05. ** p < .005.

Discussion

In this study we explored the role of contempt in the context of attributions of blame and two other moral emotions, i.e., anger and pity, when predicting social distance and prejudice towards obese individuals. This study showed that contempt had a unique contribution to the prediction of social distance and prejudice. Moreover, the effects of blame on social distance and prejudice were mediated by contempt, but not by anger and pity.

These results suggest that contempt adds to our understanding of the process underlying the relation between blame and negative reactions towards obese individuals. It needs to be added that we did not expect to find such a small effect of anger. It seems that anger plays a very minor role in the context of obesity stigma. The findings by Menec and Perry (1998) support this and show
that anger was unrelated to the willingness to help obese individuals. In other research based on the attribution-emotion approach (e.g., Weiner et al., 1988) anger tended to have more impact, but in most research contempt was not measured. Our findings suggest that previously found effects of anger might in some cases be the result of a (negative) feeling that is better conceptualized as contempt.

Pity showed a modest relation to prejudice, and that effect became even less pronounced when contempt was added as a predictor. Unexpectedly, pity was not related to blame and social distance, although obese individuals did evoke some degree of pity in our participants. Apparently, people can feel pity for obese individuals and at the same time do not want to get involved with them; i.e., prefer more distant social relations with members of that group. At least in this student sample, pity did not seem to be a powerful emotion with clear consequences for how they judged this particular group.

Physical appearance is probably more important for students than for the general population. It can be expected that younger people in general care more about other people’s appearance than older people, which is supported by the more negative reactions by younger participants in our study. Not surprisingly, there was little variation in weight in this sample, which could explain why BMI did not have any effect. In our second study we used a larger and more representative sample. This increased sample size also allowed us to test several alternative models of the relations between attributions, emotions, prejudice, and action tendencies. We also assessed all emotions with more extensive measures.

Study 3.2

For this study we used an online survey tool to collect data from a more general sample (as opposed to the student sample used in the first study). We used the same procedure as in the previous study, and expected that contempt would mediate the effect of blame on both social distance and prejudice. We also expected that pity would have some impact on these outcome variables, but anger would have no effect once contempt was taken into account. In this study we used structural equation modelling to test our predictions.
Method

Participants. A total of 312 individuals (162 males, 150 females) participated in this study. This sample was representative of the Dutch population in terms of educational attainment, age and weight. About 33% of the participants were high-school graduates, 3.5% finished elementary school only. The remaining participants had some post-secondary education, of which 53% (106 persons) had a bachelor’s or master’s degree. Twenty-six participants were students. Age of participants ranged from 17 to 65, with a mean age of 42.42 years ($SD = 13.35$). Eleven participants were underweight (BMI under 19), 134 had normal weight (BMI from 19 to 25), 107 were overweight (BMI from 25 to 30), and 54 were obese (BMI of 30 or higher). The average BMI of this sample was 25.82 ($SD = 4.72$).

Materials and procedure. We used the same procedure as in the previous study, and presented participants with the information through an online survey tool. Prejudice and blame (Cronbach’s $\alpha = .82$) were measured with the same items as in the previous study. We assessed social distance with the same items, but dropped the question regarding a teacher and changed the “roommate” question into “… to live in your house”. Social distance was thus based on a total of seven items ($\alpha = .91$). We used the same (3-item) measure for contempt ($\alpha = .87$), but more elaborate measures for other emotional reactions. Anger was captured with “anger” and “irritation” ($\alpha = .70$), and pity with “pity”, “empathy”, “compassion”, and “commiseration” ($\alpha = .73$). Fear was measured with a single item and we included two positive filler items: “joy” and “relief”.11

11 A principal factor analysis resulted in a three-factor solution. The first factor comprised all negative emotions. The contempt related items loaded most strongly on this factor, while the two anger related items had the lowest loadings. Because our aim was to investigate the role of both contempt and anger, we decided to keep these two factors separate. The second factor captured the emotions related to pity, and the third “joy” and “relief”. Scores on these two emotions were unrelated to any other variables and were not included in further analyses.
Results

Descriptive statistics. The means of the variables and the correlations between them are presented in Table 3.3. As the table shows, the overall mean for participants’ prejudice score was on midpoint of the scale. The other means also indicate that participants seemed more positive towards obese individuals than participants in the previous study. In line with Study 3.1, blame was related to contempt and anger, as well as to prejudice and social distance. Blame was also related to fear, but only marginally to pity ($p = .062$). The correlations in Table 3.3 also show a positive relation between BMI and attitude towards obese persons. As was the case in Study 3.1, younger participants were more likely to report contempt and prejudice. They were also more likely to indicate more social distance to the group of obese individuals, although this effect was small. We also looked at the relations between education and the other variables. Results showed that education was positively related to prejudice ($r_s = .17, p = .004$) and social distance ($r_s = .29, p < .001$). The higher participants’ education the more contempt ($r_s = .17, p = .003$) and anger ($r_s = .15, p = .007$) they reported. Although these effects are relatively small, they suggest that the higher people’s education the more negative they were towards obese individuals.

Table 3.3 shows a high correlation between contempt and anger, which could lead to problems of multicollinearity. However, the highest variance inflation factor (VIF) statistic in our data was 2.40, indicating no problematic multicollinearity between the variables. In order to detect multivariate outliers we calculated the Mahalanobis distance statistic. Four cases exceeded the critical value (22.46, $df = 6$) and were considered multivariate outliers. These cases were dropped in further model testing. Visual inspection of the distribution of the variables indicated that all variables were normally distributed, although BMI was slightly positively skewed (skewness value = .90). There were some missing values, which in some bivariate observations exceeded 5% of the cases. There was no coherent pattern to the missing data. Given these findings, we decided to pursue direct maximum likelihood estimation as implemented in the Mplus 6 software program (Muthén & Muthén, 2010) that is robust to non-normality. All variables included in the model were manifest constructs.
Table 3.3
Mean scores, standard deviations and correlations between main variables (Study 3.2).

<table>
<thead>
<tr>
<th>Variable</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blame</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.46</td>
<td>1.18</td>
</tr>
<tr>
<td>2. Contempt</td>
<td>.25**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.31</td>
<td>1.33</td>
</tr>
<tr>
<td>3. Anger</td>
<td>.24**</td>
<td>.75**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.39</td>
<td>1.20</td>
</tr>
<tr>
<td>4. Pity</td>
<td>-.11</td>
<td>.06</td>
<td>.07</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>4.07</td>
<td>.87</td>
</tr>
<tr>
<td>5. Distance</td>
<td>.43**</td>
<td>.46**</td>
<td>.40**</td>
<td>-.25**</td>
<td>-</td>
<td></td>
<td></td>
<td>3.49</td>
<td>1.19</td>
</tr>
<tr>
<td>6. Prejudice</td>
<td>.56**</td>
<td>.37**</td>
<td>.34**</td>
<td>-.29**</td>
<td>.58**</td>
<td>-</td>
<td></td>
<td>6.00</td>
<td>2.29</td>
</tr>
<tr>
<td>7. BMI</td>
<td>-.17*</td>
<td>-.18**</td>
<td>-.12*</td>
<td>.17**</td>
<td>-.32*</td>
<td>-.32**</td>
<td>-</td>
<td>25.82</td>
<td>4.72</td>
</tr>
<tr>
<td>8. Age</td>
<td>-.01</td>
<td>-.13*</td>
<td>-.09</td>
<td>.09</td>
<td>-.16*</td>
<td>-.14*</td>
<td>.33*</td>
<td>42.42</td>
<td>13.35</td>
</tr>
</tbody>
</table>

Note. Prejudice was measured on 11-point scale. BMI ranged from 17 to 45, age ranged 17-65. All other variables were measured on 7-point scales. * p < .05. ** p < .005.

Main analyses. Our main objective was to test whether blame affected social distance and prejudice and whether these relations were mediated by contempt, pity, and anger. We expected contempt to mediate the effect of blame on prejudice and social distance, and pity to also have some effect on prejudice and social distance. Finally, we expected a more modest role of anger; i.e., no indirect effects on prejudice and social distance through anger.

In a first model we tested, blame had an indirect effect on social distance and prejudice through contempt, anger, and pity. The emotions were allowed to correlate. Because a relation between prejudice and social distance is theoretically justified (both variables are related to negative evaluation of obese individuals), we allowed the residuals of these variables to correlate. This model showed a poor fit of the data, \(\chi^2(2) = 73.62, p < .001; \) CFI = .87; TLI = .08; RMSEA = .34 with 90% CI [.28, .41]; SRMR = .09. A fully saturated model showed that the direct paths from blame to social distance and prejudice were significant. Anger was unrelated to prejudice in this model. Incorporating these changes to the model improved the fit, \(\Delta \chi^2(1) = 73.31, p < .001. \) This model had the following fit indices: \(\chi^2(1) = .31, p = .57; \) CFI = 1.00; TLI = 1.00; RMSEA = .001 with 90% CI [.00, .12]; SRMR = .004. This model, presented in Figure 3.1, was thus appropriate for
explaining the relationships between the variables. As shown in Figure 3.1, the paths from contempt and pity to social distance and prejudice were significant, while the paths from anger to these outcome variables were not. Thus, more contempt and less pity were associated with more social distance and more prejudice, whereas angry feelings had no effect. As expected, blame was associated with more contempt and anger. However, blame was unrelated to pity. Blame had a direct effect on both social distance and prejudice. The proportion of variance of the outcome variables explained by the various predictors (R^2) is also depicted in Figure 3.1.\footnote{The figure also shows small positive relations between pity and both contempt and anger. This is surprising, but given the fact that there were no zero-order correlations between pity and the other two variables, it might be due to a suppression effect (Maassen & Bakker, 2001).}

Figure 3.1. Path model showing relations between blame, contempt, anger, pity, social distance and prejudice towards obese people (Study 3.2). Standardized regression coefficients are displayed. Path with solid lines are significant. $^*p < .01$. $^{**}p < .001$.

$R^2 = .28^{**}$

$R^2 = .25^{**}$
These findings suggested that contempt partially mediated the effect of blame. In order to test the significance of the indirect effects we performed additional analyses in Mplus. These analyses tested the total indirect effects through all possible mediating variables, as well as the unique indirect effects through each mediating variable. Results showed that the total indirect effect of blame on social distance was significant ($Z = .14, p = < .001$). More specifically, the indirect effect through contempt was significant ($Z = .11, p < .001$), but the indirect effects through anger ($Z = .03, p = .19$) and pity ($Z = .01, p = .69$) were not. The total indirect effect of blame on prejudice was significant ($Z = .10, p < .001$). The specific indirect effect through contempt was also significant ($Z = .10, p < .001$), and the indirect effect through pity was not ($Z = .01, p = .69$). Together, these results showed that the effect of blame on social distance and prejudice was partially mediated by contempt.

As indicated above, participants’ BMI affected most of the other variables. In order to explore whether BMI affected the model tested above, we included this variable as covariate in the structural analysis. The fit indices showed only minor changes, $\chi^2(1) = .40, p = .53$; CFI = 1.00; TLI = 1.00; RMSEA = .001 with 90% CI [.00, .13]; SRMR = .003, suggesting that the relations between the variables that we proposed still fitted our data well. Indeed, none of the paths in Figure 3.1 became non-significant, so the model remained unaffected by participants’ BMI. This suggests that regardless participants’ own weight, their scores on social distance and prejudice were affected by blame, contempt, and pity.

Discussion

In this study we tested several models in which emotions mediated the effect of blame on social distance and prejudice. Results showed that contempt played an important role; it had a strong impact on social distance and prejudice, and partially mediated the effects of blame on these outcome variables. In line with the previous study, anger did not mediate the effects of blame. This supports our hypothesis that contempt is more important in the context of obese individuals than anger.
Pity was also associated with social distance and prejudice, but was unrelated to blame. This latter finding is in accordance with Study 3.1, but is incongruent with earlier studies on stigmatization (e.g., Rudolph et al., 2004). Our findings may suggest that lower levels of blame do not automatically result in the view that obese people should be helped. In the literature on stigmatization, the negative relation between attributions of responsibility and pity might have been the result of the perceived suffering of some groups but not of others. For example, believing that an illness such as cancer is caused by something outside of a person’s responsibility may increase feelings of pity, whereas external attributions for drug abuse may have a smaller effect on pity. The latter type of stigma - mental-behavioural stigma - is generally seen as controllable (e.g., Weiner et al., 1988) and that perception may persist even if the initial cause can be attributed to external factors. For instance, if people would attribute the onset of obesity to specific factors not under control of an individual, they might still be under the impression that this particular person could do something about his or her weight without the help of others. Responsibility attributions may thus in some cases have a modest effect on pity.

In this representative sample, we found more variation in BMI than in the previous study that relied on a student sample. Interestingly, although BMI was related to other variables, it did not change the proposed relations between the variables when we controlled for its impact. This indicates that regardless people’s own weight, their preferred distance and their prejudice towards obese individuals is best predicted by our proposed model. Thus, more blame is associated with more social distance and prejudice and this effect is partially the result of increased levels of contempt.

So far we have shown that contempt mediates the impact of blame on social distance, while anger and pity do not. In order to show that these effects are not limited to this outcome variable, we conducted a third study in which we used a different dependent variable that was related to actions that could be harmful for obese individuals.
Study 3.3

In this study we tested whether our model also applies to a different outcome variable, i.e., support for weight related discrimination policies. Although some might argue that contempt is primarily related to tendencies to avoid the object of contempt (e.g., Fischer & Roseman, 2007; Mackie et al., 2000), other work has shown that contempt can also result in harmful action tendencies (Cuddy, Fiske, & Glick, 2007; Maoz & McCauley, 2008). We expect that contempt will be related to prejudice and also to harmful policy measures. Support for such measures is less direct than harmful action associated with anger, e.g., retaliation, attack, or punishment (Mackie et al., 2000). We expect contempt to mediate the effects of blame on both prejudice and support for harmful policy measures. We also expect pity to have an effect on support for harmful measures and prejudice. As in the previous two studies, we expect anger to play a minor role.

Method

Participants. In this study participants were approached in a variety of locations (e.g., markets, shopping areas). A total of 297 people (54.4% female) participated in this study. Their mean age was 36.41 (SD = 16.22) and ranged from 16 to 86. Just over half of our participants were employed (52.6%), the other half was either unemployed (11.6%), retired (6.9%) or a registered student (28.9%). More than half of the participants (had) attended college or university. Nineteen participants were underweight, 199 had normal weight, 57 were overweight, and 17 were obese. Mean BMI of this sample was 23.21 (SD = 3.59). Four participants did not report their weight or height.

Materials and procedure. The study was introduced in the same way as the previous two studies. After this introduction, we presented participants with a slightly abbreviated questionnaire, because we approached people in the street and asked them to participate without any further compensation. Prejudice was measured with the same item, but answers were given on a 5-point scale ranging from 1 (negative) to 5 (positive), and then reverse scored. Blame was also measured with the same items as in the previous two studies (α = .65), but answers were
given on scales ranging from 1 (strongly disagree) to 5 (strongly agree). Participants indicated to what extent they felt the following emotions when they thought about an obese individual: “contempt”, “anger”, and “pity”. They could answer these items on 5-point scales ranging from 1 (not at all) to 5 (to a large extent). After these questions, we measured support for policy measures that would harm obese people by assessing participants’ agreement with the following two statements: “obese people should pay more tax because they cost society a lot of money” and “obese people should pay higher health insurance premiums” (α = .79). Finally, we asked demographical questions, and participants’ height, weight, and age.

Results

Descriptive statistics. The means of the main variables and the correlations between them are presented in Table 3.4. Participants’ mean scores on prejudice and blame were above midpoint of the 5-point scale. As shown in Table 3.4, all correlations between the main variables were in the expected direction: blame was related to support for harmful policies, prejudice, anger, and contempt. Contempt and anger (to a lesser extent) were related to support for harmful policies and prejudice. Pity was also related to prejudice.

Table 3.4
Means, standard deviations, and correlations between main variables (Study 3.3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.22</td>
<td>.71</td>
</tr>
<tr>
<td>2. Contempt</td>
<td>.25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Anger</td>
<td>.31*</td>
<td>.56*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.11</td>
<td>1.04</td>
</tr>
<tr>
<td>4. Pity</td>
<td>.08</td>
<td>.08</td>
<td>.11</td>
<td></td>
<td></td>
<td></td>
<td>2.67</td>
<td>1.02</td>
</tr>
<tr>
<td>5. Harmful policies</td>
<td>.28*</td>
<td>.33*</td>
<td>.22*</td>
<td>-.10</td>
<td></td>
<td></td>
<td>2.22</td>
<td>1.14</td>
</tr>
<tr>
<td>6. Prejudice</td>
<td>.24*</td>
<td>.25*</td>
<td>.18*</td>
<td>-.16*</td>
<td>.26*</td>
<td></td>
<td>3.34</td>
<td>.83</td>
</tr>
</tbody>
</table>

*Note. All variables are measured on 5-point scales. *p < .01. **p < .001.
Correlational analyses showed that age was negatively related to contempt ($r = -0.17, p = 0.004$) and support for harmful policies ($r = -0.14, p = 0.019$). Thus, younger participants tended to feel more contempt and to support harmful policies more than older participants. Participants with lower BMI tended to be more prejudiced towards obese individuals ($r = -0.18, p = 0.002$) and to support harmful policies more ($r = -0.17, p = 0.003$). Gender, work and education were unrelated to the other variables.

In order to detect multivariate outliers we calculated the Mahalanobis distance statistic. Four cases exceeded the critical value ($22.46, df = 6$) and were considered multivariate outliers. These cases were excluded from further model testing. There were some missing values, which in some bivariate observations exceeded 2.5% of the cases. This amount is not very problematic. Three of the variables (contempt, anger, and support for harmful policies) showed floor effects, although their skewness was not extreme ($0.41-0.68$). BMI was also positively skewed (1.21). Given these findings, we decided to pursue direct maximum likelihood estimation that is robust to non-normality. We included all variables as manifest constructs in the model.

Main analyses. Our main goal was to test a structural model, comparable with Study 3.2, but with support for harmful policies and prejudice as outcome variables. In the initial model we tested, blame had an indirect effect on harmful policies and prejudice via contempt, anger, and pity. These emotions were allowed to correlate, and the two outcome variables were also allowed to correlate. Results indicated a poor fit, $\chi^2(2) = 24.17, p < .001$; CFI = .90; TLI = .23; RMSEA = .20 with 90% CI [.13, .27]; SRMR = .051.

Inspection of a fully saturated model showed that the paths from blame to harmful policies and prejudice were significant, in line with the previous study. Again, the path from anger to prejudice was not significant. First, we incorporated these changes so that the model was the same as the one presented in the previous study. Results indicated that this model showed an improved fit, $\Delta\chi^2(1) = 24.16, p < .001$. The fit indices of the model were: $\chi^2(1) = .01, p = .93$; CFI = 1.00; TLI = 1.00; RMSEA = .00 with 90% CI [.00, .05]; SRMR = .001. The fully
saturated model also indicated that the paths between pity and the other two emotions were non-significant. Deleting these paths would result in a more parsimonious model. The fit of this model did not differ from the fuller model, Δχ²(2) = 3.20, p > .20. The more restricted model had the following fit indices: χ²(3) = 3.21, p = .36; CFI = 1.00; TLI = 1.00; RMSEA = .02 with 90% CI [.00, .10]; SRMR = .03. This model is preferred over the fuller model and is depicted in Figure 3.2.

Figure 3.2. Path model showing relations between blame, contempt, anger, pity, support for harmful policy measures and prejudice towards obese people (Study 3.3). Standardized regression coefficients are displayed. Path with solid lines are significant. *p < .01. **p < .001.

Thus, in line with Study 3.2, blame was related to contempt and anger, but did not have an effect on pity. Contempt and pity both affected support for harmful policies and prejudice. Furthermore, blame was directly related to harmful policies and prejudice. The model suggests that blame also has indirect effects on the outcome variables through contempt. Analyses of total indirect
effects confirmed the indirect effects of blame on harmful policies ($Z = .07, p = .011$) and prejudice ($Z = .04, p = .057$). Analyses of specific indirect effects showed that the indirect effect through contempt on support for harmful policies was significant ($Z = .07, p = .006$). Moreover, the indirect effect of blame through contempt on prejudice was also significant ($Z = .05, p = .002$). Obviously, the indirect effects through pity ($Z = -.01$ and $Z = -.01$) were not significant, neither was the indirect effect on harmful policies through anger ($Z = .01$). These results indicate that contempt partially mediates the effect of blame on both support for harmful policies and prejudice.

Discussion

This study provides support for our model, and shows that blame, contempt, and pity also have a clear impact on support for harmful policies. The results showed that contempt partially mediated the impact of blame on both harmful policies and prejudice. Contempt thus had more impact on these variables than anger; moreover the effect of anger on support for harmful policies reduced once contempt was taken into account. Thus, contempt not only affects social distance from obese individuals but also more active harm doing, i.e., supporting weight discrimination policies.

The role of pity confirmed the findings of Study 3.2. Pity was unrelated to blame, but was related to prejudice and support for harmful policies. Again, these findings suggest that lower levels of blame attributed to obese people are not automatically associated with the perception that obese people need help of others and should therefore be pitied. The stigma of obesity differs from stigmas with a physical origin in perceived controllability; weight tends to be seen as something that people can change rather easily.

General Discussion

In three studies, we provided support for the important role of contempt in predicting prejudice, support for harmful weight policies, and social distance from obese people. Contempt partially mediated the impact of blame in all studies; pity and anger did not show this mediating role. In line with earlier work
on stigmatization (e.g., Dijker & Koomen, 2003), we found that pity had some impact on social distance and support for harmful policies. All three studies also showed a modest association between pity and prejudice. Unexpectedly, we did not find a relation between attributions of blame and pity. As we suggested earlier, this might be due to the general belief that weight can be controlled personally, even if the onset of an individual’s obesity is partly caused by external factors. This belief could result in the appraisal that obese persons do not need the help of others and do not deserve pity.

The modest role of anger in the present context is not surprising. Anger tends to be evoked when people are confronted with injustice and violation of freedom and rights (Cottrell & Neuberg, 2005; Kuppens et al., 2003). Anger is also more likely to be expressed when people feel they can change the anger provoking situation (Fischer & Roseman, 2007). None of these antecedents seem to be present when people evaluate obese individuals and decide how they would behave towards them. It might thus well be that participants in previous studies reported angry feelings towards stigmatized persons, such as obese individuals (e.g., Weiner et al., 1988), partly because that was the only negative emotion assessed.

Contempt is often related to the intention to avoid, expel or exclude the source of the moral violation (Haidt, 2003). Results obtained in the present studies support this. Contempt was related to both social distance and support for policy measures that would harm obese individuals, and, if anything, would further isolate this group from society. Social isolation is often seen as one of the negative consequences of stigma. Our findings show that contempt plays a crucial role in shaping behavioural reactions that tend to result in isolation.

In our second and third study, we found that blame had a direct and an indirect effect on prejudice (both studies), social distance (Study 3.2), and support for harmful policies (Study 3.3). These findings support Weiner’s attribution-emotion approach, according to which emotions mediate the impact of attributions on behaviour. According to Weiner (1996), the impact of responsibility attributions on behavioural responses can be both direct and indirect through emotions. He states that “affects are the primary determinants of
responding; attributions may or may not have an independent contribution to doing” (Weiner, 1996, p. 209). Whether blame attributions have a direct or indirect effect on behaviour may depend on the type of behavioural response. A meta-analysis by Rudolph et al. (2004) suggests that attributions of blame have an indirect effect on helping behaviour, but both a direct and an indirect effect on harmful actions. Rudolph et al. argue that harmful actions have more possible negative consequences or costs for the actor than pro-social behaviour. Therefore, it may be functional in terms of personal survival to have both thoughts and feelings as proximal determinants of behaviour in a hostile context (see also Greitemeyer & Rudolph, 2003). Interestingly, in our studies, attributions of blame did not only have a direct and indirect effect on harmful policies, but also on social distance. Social distance towards obese individuals is not likely to have negative consequences for those seeking distance. However, we do agree with Rudolph et al. that the type of behavioural response could determine whether blame can be considered a proximal or distal determinant of behaviour. In our view this is likely to depend on the valence of the response. Negative behaviour towards an out-group might need more justification for the actor than positive behaviour. Attributions of responsibility or blame can serve such a justification (Crandall & Eshleman, 2003), in line with the belief that ‘people get what they deserve’ (cf., Lerner, 1980). Although this is speculative, it may explain why people seem to follow their feelings when acting pro-socially, and why they seem to listen to both their thoughts and their feelings when acting negatively towards others.

The three studies described in this chapter showed consistent relations between attributions of blame, emotions, and biases against obese people. We found effects of blame and emotions on both more general evaluations (prejudice) as well as more specific tendencies (social distance and support for harmful policies). As indicated in our introduction, no other research based on the attribution-emotion approach included prejudice in their models, although some studies on stigmatization have shown a link between blame attributions and prejudice (e.g., Crandall et al., 2001). Our findings indicate that emotions may help to explain that link.
It is important to note that our studies were correlational and that we should be careful to draw any conclusions about the causal relations between the variables. However, the models that we tested in our second and third study suggests that attributions of blame result in emotions that in turn have an impact on action tendencies and prejudice. Nonetheless, experimental research manipulating contempt could tell us more about the role of contempt and how that compares to the impact of other negative emotions such as anger, disgust, and fear.

Contempt and derogation are also likely to affect self-esteem; and this mechanism could help to explain the often-found negative relation between obesity and self-esteem (e.g., Annis et al., 2004). Lowered self-esteem is likely to affect self-efficacy and people’s ability to change their behaviour and lose weight. This underlines the importance of changing the emotions that people associate with obese individuals. One possibility is to contrast contempt and derogation with opposing, and more positive reactions based on equality and fairness. There is a considerable literature showing how difficult it is to combat stigma, but some evidence suggests that social consensus can help to change the negative beliefs about stigmatized groups (e.g., Puhl & Brownell, 2003). More attention to the role of contempt and how this violates social norms such as equality might provide a new opportunity to reduce stigma and discrimination.

In this chapter we looked at the role of contempt in how people react to stigmatized others; in the present case obese individuals. Findings confirm the important role of contempt in the context of other emotions (anger and pity). In the next chapter we again investigate the role of contempt and related emotions. In this case we focus on immigrants and the role of perceived threat and its impact on both contempt and intergroup behaviour.