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Abstract

A simple nonlinear structural model of endogenous belief heterogeneity is pro-
posed. News about fundamentals is an ITD random process, but nevertheless volatil-
ity clustering occurs as an endogenous phenomenon caused by the interaction be-
tween different types of traders, fundamentalists and technical analysts. The belief
types are driven by an adaptive, evolutionary dynamics according to the success
of the prediction strategies in the recent past conditioned upon price deviations
from the rational expectations fundamental price. Asset prices switch irregularly
between two different regimes — close to the fundamental price fluctuations with
low volatility, and periods of persistent deviations from fundamentals triggered by
technical trading — thus, creating time varying volatility similar to that observed in
real financial data.
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1 Introduction

Volatility clustering is one of the most important ‘stylized facts’ in financial time series
data. Whereas price changes themselves appear to be unpredictable, the magnitude of
those changes, as measured e.g. by the absolute or squared returns, appears to be pre-
dictable in the sense that large changes tend to be followed by large changes — of either
sign — and small changes tend to be followed by small changes. Asset price fluctuations
are thus characterized by episodes of low volatility, with small price changes, irregularly
interchanged by episodes of high volatility, with large price changes. This phenomenon
was first observed by Mandelbrot (1963) in commodity prices.! Since the pioneering pa-
pers by Engle (1982) and Bollerslev (1986) on autoregressive conditional heteroskedastic
(ARCH) models and their generalization to GARCH models, volatility clustering has been
shown to be present in a wide variety of financial assets including stocks, market indices,
exchange rates, and interest rate securities.?

In empirical finance, volatility clustering is usually modeled by a statistical model, for
example by a (G)ARCH model or one of its extensions, where the conditional variance of
returns follows a low order autoregressive process. Other approaches to modelling volatil-
ity clustering and long memory by statistical models are fractionally integrated time series
models (Granger (1980), Granger and Joyeux (1980)) and multi-fractal models (Mandel-
brot (1997, 1999)). Whereas all these models are extremely useful as a statistical descrip-
tion of the data, they do not offer a structural explanation of why volatility clustering is
present in so many financial time series. Rather the statistical models postulate that the
phenomenon has an exogenous source and is for example caused by the clustered arrival
of random ‘news’ about economic fundamentals.

The volatility of financial assets is a key feature for measuring risk underlying many
investment decisions in financial practice. It is therefore important to gain theoretical
insight into economic forces that may contribute to or amplify volatility and cause, at
least in part, its clustering. In this paper we present a simple nonlinear structural model
where price changes are driven by a combination of exogenous random news about funda-
mentals and evolutionary forces underlying the trading process itself. Volatility clustering
becomes an endogenous phenomenon caused by the interaction between heterogeneous
traders, fundamentalists and technical analysts, having different trading strategies and
expectations about future prices and dividends of a risky asset. Fundamentalists believe
that prices will move towards its fundamental RE value, as given by the expected dis-
counted sum of future dividends. In contrast, the technical analysts observe past prices
and try to extrapolate historical patterns. The chartists are not completely unaware of
the fundamental price however, and condition their technical trading rule upon the de-
viation of the actual price from its fundamental value. The fractions of the two different

!Mandelbrot (1963, pp. 418-419) notes that Houthakker stressed this fact for daily cotton prices, at
several conferences and private conversation.

2See, for example, Pagan (1996) or Brock (1997) for further discussion of ‘stylized facts’ that are
observed in financial data.



trader types change over time according to evolutionary fitness, as measured by utility
from past realized profits (or equivalently forecasting accuracy in the recent past), condi-
tioned upon price deviations from the rational expectations (RE) fundamental price. The
heterogeneous market is characterized by an irregular switching between phases of low
volatility, where price changes are small, and phases of high volatility, where small price
changes due to random news are reinforced and can become large due to trend following
trading rules. Volatility clustering is thus driven by heterogeneity and conditional evolu-
tionary learning. Although our model is very simple, it is able to generate autocorrelation

patterns of returns, and absolute and squared returns very similar to those observed in
40 years of daily S&P500 data.

Due to heterogeneity in expectations, our evolutionary model is a nonlinear dynamical
system exhibiting periodic and even chaotic fluctuations in asset prices and returns. Non-
linear dynamic models can generate a wide variety of irregular patterns. In particular,
nonlinear dynamic models can generate any given autocorrelation pattern.® A nonlinear,
chaotic model, buffeted with dynamic noise, with almost no autocorrelations in returns
but at the same time persistence in absolute and squared returns, with slowly decay-
ing autocorrelations, may thus provide a structural explanation of the unpredictability
of the first moment of asset returns and at the same time the remaining structure of
the second moment. In fact, there are two well-known, fundamentally important concepts
in nonlinear dynamics which appear to be extremely well suited as a description of the
phenomenon of volatility clustering. The first is the phenomenon of intermittency, as in-
troduced by Pomeau and Manneville (1980). Intermittency means chaotic asset price fluc-
tuations characterized by phases of almost periodic fluctuations irregularly interrupted by
sudden bursts of erratic fluctuations. In our conditional evolutionary model intermittency
occurs characterized by close to the RE fundamental steady state fluctuations suddenly
interrupted by price deviations from the fundamental triggered by technical trading. The
second phenomenon naturally suited to describe volatility clustering is coezistence of at-
tractors. In particular, our evolutionary model exhibits coexistence of a stable steady state
and a stable limit cycle. When buffeted with dynamic noise, irregular switching occurs
between close to the fundamental steady state fluctuations, with small price changes,
and periodic fluctuations, triggered by technical trading, with large price changes. It is
important to note that both, intermittency and coexistence of attractors, are persistent
phenomena, which are by no means special for our conditionally evolutionary systems,
but occur naturally in nonlinear dynamic models, and moreover are robust with respect
to and sometimes even reinforced by dynamic noise.*

3Sakai and Tokumaru (1980) already showed that the class of chaotic one-dimensional asymmetric tent
maps can generate any AR(1) autocorrelation structure. To see that a higher dimensional chaotic map
can generate any desired autocorrelation structure, consider the nonlinear difference equation (z;,y;) =
(a1®4—1 + -+ arwi—r +yi—1,1 — 2y?_;). As is well known, the second coordinate y; follows a chaotic
process with zero mean and zero autocorrelations at all lags. Since y; is generated independently of
past values of x;, the series z; and y; are uncorrelated. The first coordinate z; thus follows a linear
AR(L) process driven by a chaotic series with zero autocorrelations at all lags, and thus has the desired
autocorrelation structure.

4Coexistence of attractors is a generic, structurally stable phenomenon, occurring for an open set of



Whereas the fundamentalists have some ‘rational valuation’ of the risky asset, the techni-
cal analysts use a simple extrapolation rule to forecast asset prices. An important critique
from ‘rational expectations finance’ upon heterogeneous agent models using simple ha-
bitual rule of thumb forecasting rules is that ‘irrational’ traders will not survive in the
market. For example, Friedman (1953) argues that irrational speculative traders would
be driven out of the market by rational traders, who would trade against them by taking
infinitely long opposite positions, thus driving prices back to fundamentals. In an efficient
market, ‘irrational’ speculators would simply loose money and disappear from the market.
However, for example, De Long et al. (1990) have shown that a constant fraction of noise
traders may on average earn higher expected returns than rational or smart money traders,
and may survive in the market with positive probability. Brock and Hommes (1997a,b,
1998, 1999) have also discussed this point extensively in a series of papers, and stress the
fact that in an evolutionary framework technical analysts are not ‘irrational’, but they are
in fact boundedly rational, since in periods when prices deviate from the RE fundamental
price, chartists make better forecasts and earn higher profits than fundamentalists. See
also the survey in Hommes (2000) or the interview with Buz Brock in Woodford (2000).
In another related recent paper LeBaron (2000) argues that ‘... in a dynamically evolving
market long horizon investors will have to compete with a heterogeneous group of short
horizon types who may end up dominating, or at least doing well enough to survive’. The
short horizon traders could be identified with noise traders or technical analysts, whereas
the long run horizon traders could be identified with fundamentalists. In a heterogenous
world, on average, technical analysts and fundamentalists may earn approximately equal
profits, so that in general fundamentalists cannot drive chartists out of the market.

We would like to relate our work to some other recent literature. Agent based evolutionary
modeling of financial markets is becoming quite popular and recent contributions include
the computational oriented work on the Santa Fe artificial stock market by Arthur et al.
(1997) and LeBaron et al. (1999), the stochastic multi-agent models of Lux and Marchesi
(1999a,b) and the evolutionary markets based on out-of-equilibrium price formation rules
by Farmer (2000).> Malliaris and Stein (1999) discuss price volatility as the outcome of
a heterogeneous agents dynamic system with an underlying stochastic foundation. Brock
et al. (1992) contains empirical work showing that simple technical trading rules applied
to the Dow Jones Index may yield positive returns, suggesting extra structure above and
beyond the EMH fundamental. Another recent branch of work concerns adaptive learning
in asset markets. For example, Timmerman (1993, 1996) shows that excess volatility in
stock returns can arise under learning processes that converge (slowly) to RE. Routledge
(1999) investigates adaptive learning in the Grossman-Stiglitz model where traders can
choose to acquire a costly signal about dividends, and derives conditions under which

parameter values. Intermittency occurs when e.g. a stable cycle disappears and the system has a strange
(chaotic) attractor. Recent mathematical results on homoclinic bifurcations have shown that strange
attractors are persistent in the sense that they typically occur for a positive Lebesgue measure set of
parameter values, see e.g. Palis and Takens (1993) for a mathematical treatment.

5An early example of a heterogeneous agent model is Zeeman (1974); other examples include Frankel
and Froot (1988), Kirman (1991), Chiarella (1992), Brock (1993), and Lux (1995).



the learning process converges to RE.® An important characteristic that distinguishes our
approach is the heterogeneity in expectation rules, with time varying fractions of trader
types driven by evolutionary competition. These adaptive, evolutionary forces can lead
to endogenous asset price fluctuations around the (stable or unstable) benchmark RE
fundamental steady state, thus creating excess volatility and volatility clustering.

In our model, volatility clustering is driven by conditional evolutionary learning of dif-
ferent trader types. Haugen (1999), for example, provides a motivation of this approach
by arguing that the most important part of stock volatility is created by the trading
process itself. He calls this part ‘price-driven volatility’, in contrast to the ‘event-driven
volatility’ (which is consistent with the EMH) and the ‘error-driven volatility’ (due to
over- and under reactions of the market to informations coming from the real world).”
The price driven volatility is created because “investors focus their attention on changes
in the value of the market index. They respond to signals from the market index, and then
stmultaneously take action by trading in individual assets.” This causes a “complex pro-
cess by which the market reacts to its own price history, (therefore) a particular sequence,
or configuration, of price changes may trigger successive price reactions that eventually
build into a volatility increase or decrease.” (Haugen, 1999, p. 127, 128). Investors watch
and learn from the pricing process, which they, as traders, cocreate. Thus, the nature of
price-driven volatility are “price reactions that feed on themselves.” The theory presented
here is in line with these observations, since in our setup an increase in volatility may be
triggered by ‘news’ about economic fundamentals and reinforced by evolutionary forces
between competing, boundedly rational trading strategies.

The paper is organized as follows. Section 2 presents the conditional evolutionary asset
pricing model with fundamentalists and technical analysts. In section 3 we compare the
time series properties of the model, in particular the autocorrelation patterns of returns,
squared returns, and absolute return with those of 40 years of daily S&P 500 data. Finally,
section 4 presents some concluding remarks.

6In Routledge (1999), the fraction of informed traders is fixed over time. De Fontnouvelle (2000)
investigates a Grossman-Stiglitz model where traders can choose to buy a costly signal about dividends,
with fractions of informed and uninformed traders changing over time according to evolutionary fitness.
De Fontnouvelle is in fact an application of the Brock and Hommes (1997a) Adaptive Rational Equilibrium
Dynamics (ARED) framework, which is also underlying our heterogeneous agent asset pricing model, to
the Grossman-Stiglitz model and leads to unpredictable (chaotic) fluctuations in asset prices.

"The role of quasi-rational overreaction and biased traders in financial markets is emphasized in Thaler
(1993, part I) and in Thaler (1994, part V). Recent papers addressing the issue of market under- and
overreaction are Daniel et al. (1998) and Veronesi (1999).
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2 A Heterogeneous Agents Model

Our nonlinear model for volatility clustering will be a standard discounted value asset pric-
ing model with two types of traders, fundamentalists and technical analysts. The model
is closely related to the present discounted value asset pricing model with heterogeneous
beliefs introduced by Brock and Hommes (1997b, 1998). One important extension is that
our technical analysts condition their price forecast upon the deviation of the actual price
from the rational expectations fundamental price, similar to the approach taken in the
Santa Fe artificial stock market in Arthur et al. (1997) and LeBaron et al. (1999).

Agents can either invest their money in a risk free asset, say a T-bill, that pays a fixed
rate of return r, or they can invest their money in a risky asset, for example a large
stock or a market index traded at price p; (ex-dividend) at time ¢, that pays uncertain
dividends ¥; in future periods ¢, and therefore has an uncertain return. Let Ej; and
Vit denote the ‘beliefs’ (forecasts) of trader type h about conditional expectation and
conditional variance. The demand zp; of type h for the risky asset is derived from myopic
mean-variance maximization, and given by

_ Epi[prs1 + Yer1 — (L +7)py] _ Enpes1 + yey1 — (1 +7)pe] (1)
aVieprsr + Y1 — (1 4+ 7)py ao? ’

Zht

where a is the risk aversion parameter and the conditional variance Vi [pii1 + yep1 — (1 +
r)ps] = 0? is assumed to be constant and equal for all types.® Let 2° denote the supply of
outside risky shares per investor, assumed to be constant, and let n,; denote the fraction
of type h at date t. Equilibrium of demand and supply yields

H
E — (1
- nt[Dr+1 + yt+12 (1+7)p =2, (2)
thl ao

where H is the number of different trader types.

In the case of zero supply of outside risky assets,’ i.e. 2° = 0, the market equilibrium
equation may be rewritten as

H

(L+7)pe = Z Nht Bt (De1 + o). (3)
h=1

In a world where all traders are identical and expectations are homogeneous the arbitrage
market equilibrium equation (3) for the price p; of the risky asset reduces to

(14 r)pe = Ee(per1 + Yer1), (4)

8Gaunersdorfer (2000) analyzes the case with time varying beliefs about variances and shows that the
results are quite similar to those with constant ones. Therefore we concentrate on this simple case.

9This assumption is without loss of generality, since one can introduce a risk adjusted dividend yzﬁl =
Ys4+1 — ao’z® to obtain the market equilibrium equation (3), as in Brock (1997).




where E; denotes the common conditional expectation of all traders at the beginning of
period ¢, based on a publically available information set such as past prices and dividends.
The arbitrage equation (4) states that today’s price of the risky asset must be equal to
the sum of tomorrow’s expected price and expected dividend, discounted by the risk free
interest rate. It is well known that in a world where expectations are homogeneous, where
all traders are rational, and where it is common knowledge that all traders are rational,
the fundamental rational expectations equilibrium price, or the fundamental price is

o0

pr = Z Ey(Yrvk) (5)

k’
=~ (1+7)

given by the discounted sum of expected future dividends. We will focus on the sim-
plest case of a dividend process y; with a constant mean, i.e. E;(y;11) = ¥, so that the
fundamental price is constant and given by!°

o _

* __ Y _
V=2 (e

k=1

= |

(6)

It is important to note that so-called speculative bubble solutions, growing at a constant
rate 147, also satisfy the arbitrage equation (4) at each date. In a homogeneous, perfectly
rational world the existence of these speculative bubbles is excluded by the transversality
condition

lim 2P _ g

t—oo (14 7)t
and the constant fundamental solution (6) is the only solution of (4) satisfying this condi-
tion. Along a speculative bubble solution traders would have perfect foresight, but prices
would diverge to infinity. In a homogeneous, perfectly rational world traders realize that
speculative bubbles cannot last forever and therefore, they will never get started.

In the asset pricing model with heterogeneous beliefs, market equilibrium in (3) states
that the price p; of the risky asset equals the discounted value of tomorrow’s expected
price plus tomorrow’s expected dividend, averaged over all different trader types. In such a
heterogeneous world, temporary bubbles with prices deviating from the fundamental, may
arise, when the fractions of traders believing in those bubbles is large enough. Notice that,
within our heterogeneous agents equilibrium model (3) the standard present discounted
value model is nested as a special case. In the nested RE benchmark, asset prices are only
driven by economic fundamentals. In contrast, the heterogeneous agent model generates
excess volatility driven by evolutionary competition between different trading strategies,
leading to unpredictability and volatility clustering in asset returns.

In order to complete the model, we have to be more precise about traders’ expectations
(forecasts) about future prices and dividends. For simplicity we focus on the case where

10Notice that in our setup, the constant benchmark fundamental p* = §/r could easily be replaced by
another, more realistic time varying fundamental price pj, as stressed in Brock and Hommes (1997b).
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expectations about future dividends are the same for all traders and given by

En(Y14+1) = Et(Y1+1) = 7, (7)

for each type h. All traders are thus able to derive the fundamental price p* = /r in
(6) that would prevail in a perfectly rational world. Traders nevertheless believe that in a
heterogeneous world prices will in general deviate from their fundamental value. We focus
on a simple case with two types of traders, with expected prices given respectively by!!

Eulpipl =05, = p"+o(pe—1 — "), 0<v <1, (8)
Ezt[pt+1] =Potr1 = Pe—1t 9(1%—1 - pt—2)7 g > 0. (9)

Trader type 1 are fundamentalists, believing that tomorrow’s price will move in the di-

rection of the fundamental price p* by a factor v. Of special interest is the case v = 1, for
which

Eii[pes] = pf,tﬂ = Dt-1- (10)

We call this type of traders EMH-believers, since the naive forecast of the last observed
price as prediction for tomorrow’s price, is consistent with an efficient market where prices
follow a random walk. Trader type 2 are simple trend followers, extrapolating the latest
observed price change. The market equilibrium equation (3) in a heterogeneous world
with fundamentalists and chartists as in (8)—(9), with common expectations on dividends
as in (7), becomes

(1 +7)pe = ni(p* + v(pe—1 — ")) + not(Pe—1 + 9(Pt—1 — Pt—2)) + 7, (11)

where ny; and ng; represent the fraction of fundamentalists and chartists respectively, at
date t. At this point we also would like to introduce (additive) dynamic noise into the
system, to obtain

(1 +7)pt = nu(p* + v(pe—1 — p*)) + nat(Pr—1 + g(Pt—1 — Pt—2)) + Y + €4, (12)

where ¢; are IID random variables representing the model approximation error in that our
model can at best be only an approximation of the real world. One can interprete this
noise term also as coming from noise traders, i.e., traders, whose behavior is not explained
by the model but considered as exogenously given (c.f. for example, Kyle, 1985).

The market equilibrium equation (12) represents the first part of the model. The second,
conditionally evolutionary part of the model describes how the fractions of fundamental-
ists and technical analysts change over time. The basic idea is that fractions are updated
according to past performance, conditioned upon the deviation of actual prices from the
fundamental price. The evolutionary competitive part of the updating scheme follows
Brock and Hommes (1997a,b, 1998a) and Gaunersdorfer (2000); the additional condition-
ing upon deviations from the fundamental is similar to the approach taken in the Santa

U For example, Frankel and Froot (1986) and Kirman (1998) have been using exactly the same funda-
mental and chartist trader types.



Fe artificial stock market by Arthur et al. (1997) and LeBaron et al. (1999). We emphasize
that agents are not irrational, but in fact boundedly rational in the sense that most of
them will choose the forecasting rule that performed best in the recent past, conditioned
upon deviations from the fundamental. Performance will be measured by risk adjusted
past profits, that is, utilities derived from realized profits.

The first, evolutionary part of the updating of fractions of fundamentalists and technical
analysts is described by the discrete choice probabilities

e = exp|BUn-1]/Z, h=1,2 (13)

where Z, = "2 exp[BUps,_1] is just a normalization factor such that the fractions add
up to one. Uy ;1 measures the evolutionary fitness of predictor A in period ¢t — 1, given by
utilities of realized past profits as discussed below. The parameter 3 is called the intensity
of choice, measuring how fast the mass of traders will switch to the optimal prediction
strategy. In the special case § = 0, both fractions will be constant and equal to 1/2.
In the other extreme case 8 = oo, in each period all traders will use the same, optimal
strategy.!?

In order to define the performance measure Uy;, consider realized excess returns per share
over period ¢ to period ¢ + 1, which can be computed as

Riyi =pe1 + Y1 — (L +7)pe =D — 9" — (L +7)(pe — p*) + 6141, (14)

where 6;11 = Y311 — ¥ is a martingale difference sequence. The term d; represents intrinsic
uncertainty about economic fundamentals in a financial market, in our case unexpected
random news about future dividends. Thus, realized excess returns (14) can be decom-
posed in an EMH-term ¢; and an endogenous dynamic term explained by the theory
represented here, as stressed in BH (1998). Utilities of realized profits in period ¢ of in-
vestortype h are given by

a
Tht = T(Roy1, Bpi[Rey1]) = Rey12(Epe[Reg1]) — 502z2(Eht[Rt+1]), (15)

where!?
En[Ria]
— 5 — Rht

2(Ep[Ryy1]) = argmax mp, = .

ao
Since the fractions (13) are independent of the utility level, that is, the fractions do not
change if the same term is subtracted off the exponents, without loss of generality we can
subtract the same term 7; from all utilities 7; to obtain

Tht — T = W(Rtﬂ, Eht[Rt+1]) - W(Rtﬂ, Rt+1)

1
= T 2402 (Ent[Ri1] — Rt+1)2

1 e 2
= 5002 (Pe+1 — Phgyr +0611)7,

12Brock and Hommes (1997a, 1998) show that for a high intensity of choice, the evolutionary adaptive
system is close to having a homoclinic orbit, Poincaré’s classical notion and key feature of chaotic systems.

3Note that in our mean-variance framework maximizing expected utilities of profits is equivalent to
maximizing expected utilities of wealth, hence z(Ep[Ry+1]) coincides with zp; in equation (1).

8



where m; = m(Ryy1, Riq1) is the utility of profits of perfect foresight investors. Note that
in the absence of random shocks, §; = 0, these differences simply reduce to a negative
constant times the squared prediction errors. Taking also previous periods into account,
we define the fitness measure as

1
—— (Pt — Py + 6t11)° + NUnst-1, (16)

Unt = Tht1— 1 +NUpp 1= —
2a0

where the parameter n, 0 < n < 1, represents ‘memory strength’. In the special case
n = 0, fitness is given by utilities of realized profits in the most recently observed period,
whereas for positive 7 it is an exponentially moving average of past utilities of profits.!*
The timing of the coupling between the market equilibrium equation (12) and the evolu-
tionary selection of strategies (13) is important. The market equilibrium price p; in (12)
depends upon the fractions np;. The notation in (13) stresses the fact that these fractions
np: depend upon past fitnesses Up 1, which in turn depend upon past prices p; ; and
dividends 7;_; in periods ¢ — 1 and further in the past. After the equilibrium price p;
has been revealed by the market, it will be used in evolutionary updating of beliefs and
determining the new fractions np 1. These new fractions np 1 will then determine a
new equilibrium price p;,1, etc. In the adaptive belief system, market equilibrium prices
and fractions of different trading strategies thus co-evolve over time.

In the second step of updating of fractions, the conditioning on deviations from the fun-
damental by the technical traders is modeled as

ny = figexp[—(pi—1 — p*)?/al, a>0 (17)
niey = 1— Not. (]‘8)

According to (17) the fraction of technical traders decreases more, the further prices
deviate from their fundamental value p*. As long as prices are close to the fundamental,
updating of fractions will almost completely be determined by evolutionary fitness, that
is, by (13), but when prices move far away from the fundamental, the correction term
exp|—(p;_1 — p*)?/a] in (17) becomes small, representing the fact that more and more
chartists start believing that a price correction towards the fundamental price is about
to occur. Our conditional evolutionary framework thus models the fact that technical
traders are conditioning their charts upon information about fundamentals, as is common
practice in real markets.

The noisy conditional evolutionary asset pricing model with fundamentalists versus
chartists is given by (12), (13), (16), and (17-18). A detailed mathematical analysis of
the (deterministic) skeleton,'® where the noise terms ; and §; are set equal to zero, is

1Brock and Hommes (1997b, 1998, 1999) use past realized profits as performance measure with mp; =
Ry y12(Epi[Ri41])- For n = 1 this fitness function coincides with accumulated wealth. In this non-risk
adjusted case the fitness function is however inconsistent with the traders being myopic mean-variance
maximizers of wealth.

15 This terminology is used, for example, by Tong (1990).



given in Gaunersdorfer, Hommes, and Wagener (2000). This analysis is important to un-
derstand time series properties of the noisy model. The fundamental value p* is a unique
steady state, which is locally stable for g < 2(1 + r). As g is increased, the steady state
is destabilized by a Hopf bifurcation'® at g = 2(1 + r) and a stable invariant circle with
periodic or quasi-periodic dynamics emerges. This invariant circle may undergo bifurca-
tions as well, turning into a strange (chaotic) attractor. Thus, our nonlinear evolutionary
system exhibits (quasi)periodic as well as chaotic fluctuations of asset prices and returns.
We also find parameter regions, for which two attractors, a stable steady state and a
stable (quasi)periodic cycle, coexist. When buffeted with dynamic noise, in such a case
irregular switching occurs between close to the fundamental steady state fluctuations and
(quasi)periodic fluctuations triggered by technical trading.'?

In the next section we analyze time series properties of the noisy model and present
an example where the endogenous fluctuations in returns is characterized by volatility
clustering.

3 Time Series Properties

We are interested in the statistical properties of time series generated by our model

and how they compare with those of real data. In particular, we are interested in the

autocorrelation structure of the returns, and absolute and squared returns generated from

the heteregeneous agents market equilibrium model (12-13), (16-18). Returns are defined

as relative price changes,

_ P41 — De
Dt '

Tt (19)
We focus on a typical example in which strong volatility clustering occurs, with ‘EMH-
believers’ (v = 1 in (8)) and technical traders. In the absence of random shocks (¢, =
d; = 0), there are two coexisting attractors in the example, a locally stable fundamental
steady state and an attracting quasiperiodic cycle, as illustrated in figure 1.'® Depending
upon the initial state, the system will settle down either to the stable fundamental steady
state or to the stable cycle.

The corresponding time series of the deterministic skeleton of prices, returns and fractions
of EMH believers along the cycle, as shown in the bottom pannel of figure 1, yield impor-
tant insight into the economic mechanism driving the price movements. Prices start just

16 A bifurcation is a qualitative change in the dynamics when parameters change. See, for example,
Kuznetsov (1998), for an extensive mathematical treatment of bifurcation theory.

17As a technical remark, Gaunersdorfer, Hommes and Wagener (2000) show that the mathematical
generating mechanism for these coexisting attractors is a so-called Chenciner or degenerate Hopf bifur-
cation (see Kuznetsov (1998, pp. 404-408)). Any (noisy) model with two coexisting attractors produces
some form of volatility clustering. We emphasize that the Chenciner bifurcation is not special, but it is
a generic phenomenon in nonlinear dynamic models with at least two parameters.

18In this example we have set 5 = 0. We also have run simulations with non-zero 7, however this did
not alter the results much.
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Figure 1: Top panel: Left figure: phase space projection of prices p; for deterministic
skeleton without noise, where p; is plotted against p;_1: coexisting limit cycle and stable
fundamental steady state p* = 1000 (marked as a square). Right figure: corresponding
time series along the limit cycle. Bottom panel: Time series of prices, returns, and fractions
of EMH-believers. Parameter values: 3 =2, r =0.001,v =1, ¢ = 1.89, § = 1, a = 2000,
n=0,a02=1ande =5, = 0.

below the fundamental price p* = 1000 and slowly increase with small postive return. The
fraction of EMH-believers slowly decreases, or equivalently, the fraction of trend followers
slowly increases. This is due to the fact that when prices slowly increase trend followers
perform slightly better than EMH-believers, and evolutionary forces thus increase the
fraction of trend followers. As the fraction of trend followers increases, the increase in
prices is reinforced, which in turn causes the fraction of trend followers to increase even
more, etc. At some critical phase from periods 15 — 22 prices rapidly move to a higher
level. During this phase returns increase and volatility jumps to a high value, with a peak
around period 19. As the price level moves to a high level of 1060 in period 22, the fraction
of EMH believers also increases to a value close to 1 in period 22, since the fraction of
trend followers decreases when prices move too far away from the fundamental. When the
market is dominated by EMH-believers prices decrease and move slowly in the direction
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of the fundamental price again'® with small negative returns close to zero and with low
volatility. Thereafter, the fraction of trend followers slowly increases again, finally causing
a rapid decrease in prices to a value of 940, far below the fundamental, in period 740.
Prices slowly move into the direction of the fundamental again to complete a full price
(quasi-)cycle of about 1400 periods. The price cycle is thus characterized by a period of
small changes and low volatility when EMH-believers dominate the market, and periods
of rapid increase or decrease of prices with high volatility. The periods of rapid change and
high volatility are triggered by technical trading; the conditioning of their charts upon
the fundamental prevents the price to move too far away from the fundamental and leads
to a new period of low volatility.

Adding dynamic noise to the system destroys the regularity of prices and returns along the
cycle and leads to an irregular switching between phases of low volatility, with returns close
to zero, and phases of high volatility, initiated by technical trading. Figure 2 compares
10000 time series observations of the same example buffeted with dynamic noise?® with
daily S&P 500 data from the last 40 years. In the S&P 500 returns series the October 1987
crash and the two days thereafter have been excluded.?! It should come as no surprise that
the price series in the top panels are quite different, since S&P 500 is non-stationary and
strongly increasing, whereas our model is stationary.?? Prices in our evolutionary model
are highly persistent and close to having a unit root.?> The model price series clearly
exhibits sudden large movements, which are triggered by random shocks and amplified
by technical trading. When prices move too far away from the fundamental p* = 1000
technical traders condition their rule upon the fundamental and switch to the EMH-belief.
With many EMH believers in the market, prices have a (weak) tendency to return to the
fundamental value. As prices get closer to the fundamental, trend following behavior may
become dominating again and trigger another fast price movement.

Table 1 shows some descriptive statistics for both return series. The means and medians of

19Tn the case where all agents are EMH believers, the market equilibrium equation without noise (11)
reduces to p; = (pt—1 + rp*)/(1 + r), which is a linear difference equation with fixed point p* and stable
eigenvalue 1/(1 4 r), so that prices always move slowly into the direction of the fundamental. Notice
also that when all agents are EMH believers, the market equilibrium equation with noise (12) becomes
Pt = (Pe—1 +rp* +¢€¢)/(1 +r), which is a stationary AR(1) process with mean p* and root 1/(1 +r) close
to 1, for r» small. In case all traders believe in a random walk, the implied actual law of motion is thus
very close to a random walk and EMH-believers only make small forecasting errors which may be hard
to detect in the presence of noise.

20Tn the simulation the noise term §; = 0, whereas &; ~ N(0,10). We also have run simulations with
non-zero d;, however this did not alter the results much.

21The returns for these days were about —0.20, +0.05, and +0.09. In particular, the crash affects the
autocorrelations of squared S&P 500 returns, which drop to small values of 0.03 or less for all lags k£ > 10
when the crash is included.

22By replacing our IID dividend process by a non-stationary dividend process, e.g. by a geometric
random walk, prices in our heterogeneous agent model will also rapidly increase, similar to the S&P 500
series. We intend to study such non-stationary evolutionary systems in future work.

ZFor v = 1 and r = 0 the characteristic polynomial of the Jacobian at the steady state has an
eigenvalue equal to 1. Note that the Jacobian of a linear difference equation y; = ag + 2115:1 aryi—r has

an eigenvalue 1 if and only if the time series y; = ag + Ele apYi—r + € has a unit root equal to 1.
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Figure 2: Daily S&P 500 data, 08/17/1961-05/10/2000 (left panel) compared with data
generated by our model (right panel), with dynamic noise €; ~ N(0,10) and other pa-
rameters as in Figure 1: price series (top panel), returns series (middle panel), and auto-
correlation functions of returns, absolute returns, and squared returns (bottom panel).
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both returns series are close to 0 and the range and standard deviations are comparable
in size, although slightly larger for our example. The S&P 500 returns have negative
skewness, which is not the case in our example.?* This should not come as a surprise,
because our simple stylized model is in fact symmetric around the fundamental steady
state equilibrium, since both type of traders behave symmetric with respect to high or
low prices and with respect to positive or negative changes in prices. Finally, both returns
series show excess kurtosis, though the kurtosis coefficient of our example is smaller than
the coefficients for the S&P 500 returns. This may be due to the fact that in our simple
evolutionary system chartists’ price expectations are always conditioned upon the same
distance function of price deviations from the fundamental price, i.e. upon the weighted
distance (p?_, —p*)?/a as described by (17). Nevertheless, our simple stylized evolutionary
model clearly exhibits excess kurtosis.

| | S&P500 | Example |

Mean 0.000348 0.00015
Median 0.000214 —1.02E-05
Maximum 0.051152 0.077428
Minimum | —0.082789 —0.064346

Std. Dev. 0.008658 0.012514
Skewness | —0.187095 (**) 0.046455
Kurtosis 8.512094 (**) 5.389321 (**)

Table 1: Descriptive statistics for returns shown in figure 2.
(**) null hypothesis of normality rejected at the 1% level

We next turn to the time series patterns of returns fluctuations and the phenomenon
of volatility clustering. In real financial data autocorrelation functions (ACF) of returns
are roughly zero at all lags. For high frequencies they are slightly negative for individual
securities and slightly positive for stock indices. Autocorrelations functions of volatility
measures such as absolute or squared returns are positive for all lags with slow decay for
stock indices and a faster decay for individual stocks. This is the well-known stylized fact
known as volatility clustering.

Figure 2 (bottom panel) shows autocorrelation plots of the first 20 lags of the returns
series and the series of absolute and squared returns. Both returns series have significant,
but small, autocorrelations at the first lag (p; = 0.092 for the S&P 500 and p; = 0.054
for our example). For the S&P 500 the autocorrelation coefficient at the second lag is
insignificant and at the third lag slightly negative significant (ps = 0.005, p3 = —0.025),
whereas in our model example autocorrelation coefficients are only slightly significant

24GQkewness statistics are not significant nor of the same sign for all markets. Nevertheless, some authors
examine the skewness in addition to excess kurtosis. In a recent paper Harvey and Siddique (2000) argue
that skewness may be important in investment decisions because of induced asymmetries in realized
returns.

14



for the three following lags (po = 0.025, p3 = 0.022, p; = 0.025). For all higher order
lags autocorrelations coefficients are close to zero and almost always insignificant. Our
noisy conditional evolutionary model thus has almost no linear dependence in the returns
series, and may therefore be seen as a reasonable first order approximation of real financial
returns series.?

The bottom panel in figure 2 also shows that for the absolute and squared returns the
autocorrelations coefficients of the first 20 lags are strongly significant and positive. Table 2
reports the numerical values of the autocorrelation coefficients at the first 5 lags. They are
comparable in size for both series, though the autocorrelations coefficients of the squared
returns of the S&P 500 decay faster than those of our example.

S&P 500 Example
lagn | [r] | r} v | r}
1 0.179 | 0.190 | 0.186 | 0.190
0.158 | 0.144 | 0.180 | 0.187
0.153 | 0.133 | 0.144 | 0.122
0.164 | 0.126 | 0.186 | 0.211
0.186 | 0.122 | 0.147 | 0.154

O | W N

Table 2: Autocorrelations of the absolute and squared returns shown in figure 2.

Finally, we estimate a simple GARCH(1,1) model on the returns series. The GARCH(1,1)
model is specified as

Ty = €1t ey, e ~ N(0,04) (20)
op = c+mnOiy + 707 (21)
Using the variance equation (21) and the error in squared returns v, = e? — o7, it follows
that the squared error e? of the mean equation (20) satisfies

e? =c+(m+ ’72)‘3?71 + v — Yolp1- (22)

As is well known, for many financial returns series the sum v, + 7, of the ARCH(1) and
GARCH(1) coefficients is smaller than but close to unity, representing the fact that the
squared error term e? in (22) follows a stationary, but highly persistent process. The
estimated parameters are y; = 0.068529 and v, = 0.929095 with v, + v = 0.997624 for
the S&P 500 returns and vy; = 0.026086 and v, = 0.971687 with v; + v = 0.997773

%Brock and Hommes (1997b) calibrate their evolutionary asset pricing model to ten years of monthly
IBM prices and returns. They present (noisy) chaotic time series with autocorrelations of prices and
returns similar to the autocorrelation structure in IBM prices and returns. In particular, the noisy chaotic
returns series have (almost) no significant autocorrelations. However, these series do not exhibit volatility
clustering, since there are no significant autocorrelations in squared returns.
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for the returns series of our example.?6 Our conditional evolutionary model thus exhibits
long memory with long range autocorrelations and captures the phenomenon of volatility
clustering. It may thus be seen as a reasonable second order approximation of asset returns.

Let us finally briefly discuss the generality of the presented example. In order to get
strong volatility clustering, the parameter v = 1 (or v very close to 1) is important, but
the results are fairly robust with respect to the choices of the other parameter values;
see Gaunersdorfer, Hommes and Wagener (2000) for a detailed analysis of the underlying
dynamics. In general, when 0 < v < 1 volatility clustering becomes weaker, and sometimes
also significant autocorrelations in returns may arise. The fact that v = 1, in which case
type 1 are EMH-believers (or v very close to 1, in which case the fundamentalists adapt
only slowly into the direction of the fundamental), yields the strongest volatility clustering
results may be understood as follows. When EMH-believers dominate the market asset
prices are highly persistent and mean reversion is weak, since the evolutionary system is
close to having a unit root (see footnote 19). Apparantly, the interaction between unit
root behavior far from the fundamental steady state with relatively small price changes
driven only by exogenous news, and larger price changes due to amplification by trend
following rules in some neighborhood around the fundamental price yields the strongest
form of volatility clustering. We emphasize that all these results have been obtained for an
ITID dividend process and a corresponding constant fundamental price p*. Including a non-
stationary dividend process and accordingly a non-stationary time varying fundamental
process p; may lead to stronger volatility clustering also in the case 0 < v < 1. We leave
this conjecture for future work.

4 Concluding Remarks

We have presented a nonlinear structural model for volatility clustering. Fluctuations in
asset prices and returns are caused by a combination of random news about economic
fundamentals and evolutionary forces. Two typical trader types have been distinguished.
The first type are fundamentalists (‘smart money’ traders), believing that the price of an
asset returns to its fundamental value given by the discounted sum of future dividends
or ‘EMH-believers’, believing that prices follow a random walk. The second trader type
are chartists or technical analysts, believing that asset prices are not solely determined by
fundamentals, but that they may be predicted in the short run by simple technical trading
rules based upon patterns in past prices, such as trends or cycles. The fraction of each of
the two types is determined by past success of the two strategies, conditioned upon how far
prices deviate from their fundamental value. This leads to a highly nonlinear, conditionally
evolutionary model buffeted with noise. The time series properties of our model are similar
to those observed in real financial series. In particular, the autocorrelation structure of the
returns and absolute and squared returns series of our noisy nonlinear evolutionary system

26We checked that the squared residuals from the estimated GARCH(1,1) model has almost no signif-
icant autocorrelations.
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are similar to those observed in real financial data, with little or no linear dependence
in returns and high persistence in absolute and squared returns. Although the model is
simple, it may be viewed as a second order approximation to real data in the sense that it
captures the first two moments of the distribution of asset returns. Our model thus might
serve as a good starting point for a structural explanation — by a tractable model — of
further stylized facts in finance, such as cross correlation between volatility and volume.

The persistent phenomenon of coexistence of a stable fundamental steady state and a
stable (quasi)periodic cycle plays an important role in generating volatility clustering.
But there is also a strikingly simple economic intuition of why the phenomenon of volatil-
ity clustering should in fact be expected in our conditionally evolutionary system. When
EMH-believers dominate the market prices are highly persistent, changes in asset prices
are small and only driven by news, returns are close to zero and volatility is low. As
prices move towards the fundamental, trend followers perform better than EMH-believers
and due to evolutionary forces, their influence in the market gradually increases. When
trend followers start dominating the market, a rapid change in asset prices occurs with
large (positive or negative) returns and high volatility. The price trend cannot persist
forever, since prices cannot move away too far from the fundamental because technical
traders condition their charts upon the fundamental. In the noisy conditionally evolution-
ary system both, the low and the high volatility phases, are persistent and the interaction
between the two phases is highly irregular. The nonlinear interaction between heteroge-
neous trading rules in a noisy environment thus causes unpredictable asset returns and
at the same time volatility clustering and the associated predictability in absolute and
squared returns.

Our model is also able to explain empirical facts like ‘fat tails’, i.e. it generates excess kur-
tosis in the returns. This is due to the fact that it implies a decomposition of returns into
two terms, one martingale difference sequence part according to the conventional EMH
theory, and an extra speculative term added by the evolutionary theory. The heterogeneity
in the model thus creates ezcess volatility. However, because of the simplicity of the model
there are also some shortcomings compared to real financial data, which we would like to
discuss briefly. Our model does not generate returns series which exhibit strong skewness.
This is due to the fact that our agents use trading rules which are exactly symmetric
with respect to the constant fundamental value of the risky asset. As a consequence, the
evolutionary model is also symmetric with respect to the fundamental price. Our model
is therefore also not able to explain leverage effects, i.e. the effect that volatility increases
as the market goes down and decreases as the market goes up. To capture such asym-
metric properties one could introduce a more realistic time depending fundamental price,
extend the number of trader types, for example by introducing groups of ‘optimistic’ and
‘pessimistic’ technical trader types or introduce heterogeneity in the expectations about
the fundamental to capture the effect that traders do not have perfect information and/or
have asymmetric information about economic fundamentals. Another shortcoming is that
our model is a stationary model and generates unrealistic price series. By replacing our
IID dividend process by a non-stationary dividend process, e.g. by a geometric random
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walk, prices will also rapidly increase, smilar to the S&P 500 series. We intend to study
such non-stationary models within the presented framework in future work.

In our model excess volatility and volatility clustering are created or reinforced by the
trading process itself, which seems to be in line with common financial practice. If the
evolutionary interaction of boundedly rational, speculative trading strategies amplifies
volatility, this has important consequences for risk management and regulatory policy
issues in real financial markets. Our model predicts that ‘good’ or ‘bad’ news about
economic fundamentals are amplified by evolutionary forces. Small fundamental causes
may thus occasionally have big consequences and trigger large changes in asset prices. In
the time of globalization of international financial markets, small shocks in fundamentals
in one part of the world may thus cause large changes of asset prices in another part of the
world. Our simple structural model shows that a stylized version of this theory already
fits real financial data surprisingly well. Our results thus call for more financial research
in this area to build more realistic models to asses investors’ risk to speculative trading
and evolutionary amplification of changes in underlying fundamentals.
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