Large scale semantic 3D modeling of the urban landscape
Esteban Lopez, I.

Citation for published version (APA):
Esteban Lopez, I. (2012). Large scale semantic 3D modeling of the urban landscape

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

List of Figures xiii

List of Tables xix

1 Introduction 1
 1.1 From 3D to 2D, the Camera Paradigm 3
 1.2 From 2D to 3D, the Reconstruction Process 4
 1.3 The Challenges Ahead and Our Contribution 6
 1.4 Overview of this Thesis . 7

2 Essential Concepts in Visual Geometry 9
 2.1 Formalizing the Geometry of the Imaging Process 10
 2.1.1 The Pinhole Camera Model . 10
 2.1.2 Real Life Imaging Devices and the Lens Problem 13
 2.1.2.1 Barrel and Pincushion Distortion 14
 2.1.2.2 Radial distortion . 15
 2.1.3 Geometry of Projection and the Camera Motion 15
 2.2 About Referencing Cameras, Images and Objects 18
 2.2.1 Camera Reference Frame . 18
 2.2.2 Image Reference Frame . 19
 2.2.3 World Reference Frame . 19
 2.3 Some Computer Vision Concepts . 20
 2.3.1 Image Features . 20
 2.3.2 Image Feature Matching . 21
 2.4 Summary . 22
5 Optimal Local Scale in Camera Motion

5.1 Related Work .. 63
5.2 Definitions and Notation ... 64
 5.2.1 Disturbed Image Features 64
 5.2.2 Disturbed Point in Space 64
 5.2.3 Disturbed Translation ... 65
 5.2.4 Disturbed Rotation ... 65
5.3 Robust and Scale Consistent Motion Estimation 66
 5.3.1 Robust Frame-to-Frame Motion 66
 5.3.2 Computation of the Local Scale - Least Squares 67
 5.3.3 Solving for the Scale s ... 68
 5.3.3.1 Solving with Method 1 69
 5.3.3.2 Experimental Motivation 69
5.4 Error Propagation in Scale Computation 72
 5.4.1 Error Propagation in the Computation of A^+ 72
 5.4.2 Error Propagation in computation of A 74
 5.4.3 Error Propagation in Computation of b 74
 5.4.4 Summary and Conclusions on Error Propagation 74
5.5 Computing the Local Scale Optimally 75
 5.5.1 Considerations ... 75
 5.5.2 Maximum Likelihood Estimation 75
5.6 Experiments and Results .. 76
 5.6.1 Comparison with State of the Art Methods 76
 5.6.1.1 EPnP: .. 76
 5.6.1.2 P1.5P: .. 77
 5.6.2 Outdoors Visual Odometry 79
5.7 Conclusions .. 84

6 Semantic Modeling of Tightly Packed Cities

6.1 Related Work .. 86
 6.1.1 Discussion and Approach .. 88
6.2 Sources of Information ... 91
 6.2.1 GIS and the Outline Polygons 91