Some metrical results on the approximation by continued fractions

Jager, H.

Published in:
Uniform Distribution Theory

Citation for published version (APA):
SOME METRICAL RESULTS ON THE APPROXIMATION BY CONTINUED FRACTIONS

HENDRIK JAGER

ABSTRACT. Let x be a real irrational number and p_n/q_n, $n = 1, 2, \ldots$ its sequence of continued fraction convergents. Define $d_n = q_{n+1}|q_n x - p_n|$. For almost all x the distribution functions of the sequences $|d_n - d_{n+1}|$ and $d_n + d_{n+1}$ are determined.

Communicated by Cor Kraaikamp

1. Introduction

Let x be a real irrational number with continued fraction expansion

$$x = [a_0; a_1, a_2, \ldots] \quad \text{and} \quad p_n/q_n, \quad n = 1, 2, \ldots$$

its sequence of convergents.

The sequence θ_n, $n = 1, 2, \ldots$ of approximation coefficients of x is defined by

$$\theta_n = q_n^2 \left| x - \frac{p_n}{q_n} \right|, \quad n = 1, 2, \ldots$$

One of the most important aspects of the approximation by continued fractions is the fact that this is always a sequence in the unit interval.

At the basis of many results on the distribution of these coefficients θ_n lies the following fundamental metrical result.

THEOREM 1. Denote by Δ the unit triangle in the (α, β)-plane, that is the triangle with vertices $(0, 0)$, $(1, 0)$ and $(0, 1)$.

2010 Mathematics Subject Classification: 11K50, 11K31.
Keywords: Continued fraction, convergent, distribution function.
For every \(x \) the sequence \((\theta_n, \theta_{n+1}) \) is a sequence in \(\Delta \) and for almost all \(x \) it is distributed over \(\Delta \) according to the density function \(\mu \), where

\[
\mu(\alpha, \beta) = \frac{1}{\log 2} \frac{1}{\sqrt{1 - 4\alpha\beta}}.
\]

For a proof see [2, section 5.3] or [3].

From Theorem 1 a proof of the Doeblin-Lenstra conjecture on the distribution of the sequences \(\theta_n, \ n = 1, 2, \ldots \), see [1], follows easily. Also the distribution functions, for almost all \(x \), of the sequences

\[
\theta_n + \theta_{n+1}, \quad \theta_n - \theta_{n+1}, \quad \theta_n, \theta_{n+1}, \ n = 1, 2, \ldots
\]
can be derived from it, see [3].

Less is known about another type of approximation coefficients, the sequences \(d_n, \ n = 1, 2, \ldots \), defined by

\[
d_n = q_n q_{n+1} \left| x - \frac{p_n}{q_n} \right|, \ n = 1, 2, \ldots
\]

(2)

For every irrational \(x \) this is a sequence in the interval \([\frac{1}{2}, 1]\) with, for almost all \(x \), a distribution function \(F \) where

\[
F(z) = \frac{1}{\log 2} \left(z \log z + (1 - z) \log(1 - z) + \log 2 \right),
\]

(3)

see [1, Theorem 4].

The sequences from (1) and (2) are related by the fact that the two-dimensional sequence

\[
(\theta_n, d_n), \ n = 1, 2, \ldots,
\]
is for all irrational \(x \) a sequence in the interior of the triangle in the \((\alpha, \beta)\)-plane with vertices \((0, 1), \left(\frac{1}{2}, 1\right)\) and \((1, 1)\) and that for almost all \(x \) this sequence is distributed over this triangle according to the density function

\[
\frac{1}{\log 2} \frac{1}{\alpha},
\]

(4)

see [3, Theorem 7].

The distribution (4) also yields an easy proof of the Doeblin-Lenstra conjecture. Other consequences of (1) are the distribution (3) of the \(d_n \)'s and the uniform distribution in the unit interval of the sequence \(d_n - \theta_n, \ n = 1, 2, \ldots \), see [3, Theorem 9]. Hence the mean of the \(d_n \)'s, \(\mathcal{M}(d_n) \), differs \(\frac{1}{2} \) from \(\mathcal{M}(\theta_n) \). As \(\mathcal{M}(\theta_n) = \frac{1}{4\log 2} \), see [1, Corollary 2], we thus have

\[
\mathcal{M}(d_n) = \frac{1}{2} + \frac{1}{4\log 2} = 0.86067\ldots, \quad a.e.
\]
SOME METRICAL RESULTS ON THE APPROXIMATION BY CONTINUED FRACTIONS

By a simple transformation of the Doeblin-Lenstra conjecture one obtains the distribution function of the sequences $\log \theta_n$, $n = 1, 2, \ldots$, over the interval $(-\infty, 0)$ and with this one easily shows that

$$M(\log \theta_n) = -1 - \frac{1}{2} \log 2 = -1.34657 \ldots, \text{ a.e.} \quad (5)$$

The step to $M(\log d_n) = -1 - \frac{1}{2} \log 2 + \frac{\pi^2}{12 \log 2} = -0.16000 \ldots, \text{ a.e.}$, then follows from Lévy’s celebrated result

$$\lim_{n \to \infty} \frac{1}{n} \log q_n = \frac{\pi^2}{12 \log 2}, \text{ a.e.},$$

because

$$\log d_n - \log \theta_n = \log q_{n+1} - \log q_n.$$

To obtain more information about the distribution properties of the sequences from (2) one would like a result similar to Theorem 1. This was given in [4] and reads as follows.

Theorem 2. Let a be a positive integer and denote by R_a the quadrangle in the (α, β)-plane with vertices

$$(1, 1), \ (a/(a+1), 1), \ ((a+1)/(a+2), (a+1)/(a+2)) \quad \text{and} \quad (1, a/(a+1)).$$

Consider the set Ω as the union of the R_a, $a = 1, 2, \ldots$, piled one upon another, where the edge from

$$((a+1)/(a+2), (a+1)/(a+2)) \text{ to } (1, a/(a+1)) \text{ of } R_a$$

is identified, by vertical projection, with the edge from

$$((a+1)/(a+2), 1) \text{ to } (1, 1) \text{ of } R_{a+1}.$$

Then, for every x, the sequence (d_n, d_{n+1}) $n = 1, 2, \ldots$ lies in Ω; more precisely

$$(d_n, d_{n+1}) \in R_a \text{ if and only if } a_{n+2} = a.$$

For almost all x the sequence is distributed over Ω according to the density function ν, where

$$\nu(\alpha, \beta) = \frac{1}{\log 2} \frac{1}{\alpha + \beta - 1}.$$

A consequence of the first part of this theorem is that when a d_n is small, i.e., close to the left end point of the interval $[\frac{1}{2}, 1]$, its successor d_{n+1} is close to the other end point of the interval. In the case of the coefficients θ_n the situation is
just the opposite. When a θ_n is close to 1, its successor, and also its predecessor, are close to 0. Therefore it is of interest to study the distribution of the sequences

$$|\theta_n - \theta_{n+1}| \quad \text{and} \quad |d_n - d_{n+1}|, \ n = 1, 2, \ldots$$

(6)

For the first sequence of (6) this was done in [3]. One has for instance for almost all x:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |\theta_n - \theta_{n+1}| = \frac{4 - \pi}{4 \log 2} = 0.30960 \ldots$$

(7)

The only application of Theorem 2 in [4] was an alternative proof of (3). The object of this paper is to use Theorem 2 to obtain the distribution function for the second sequence of (6) and a result similar to (7) for the d_n. Further we determine the distribution of the sequences $d_n + d_{n+1}, \ n = 1, 2, \ldots$, for almost all x.

2. The distribution of the sequence $|d_n - d_{n+1}|$

Theorem 3. Put

$$m = m(z) = \left\lfloor \frac{1}{z} \right\rfloor, \quad z > 0,$$

and define the function F on the interval $[0, \frac{1}{2}]$ by

$$F(z) = \frac{1}{\log 2} \left(z \log \frac{m(m+1)}{2} - (m-1)((1+z) \log(1+z) + (1-z) \log(1-z)) + \log \left(1 + \frac{1}{m}\right) \right), \quad 0 < z \leq \frac{1}{2},$$

$$F(0) = 0.$$

This function F is monotonically increasing from 0 in $z = 0$ to 1 in $z = \frac{1}{2}$ and has a continuous derivative.

It is for almost all x the distribution function of the sequence

$$|d_n - d_{n+1}|, \ n = 1, 2, \ldots$$

The form of F looks perhaps unpleasant but when one plots the graph, one gets a nice, smooth curve, see Figure 1.
SOME METRICAL RESULTS ON THE APPROXIMATION BY CONTINUED FRACTIONS

Figure 1. Distribution function of $|d_n - d_{n+1}|$.

Examples.

$$F\left(\frac{1}{4}\right) = \frac{41}{4} - \frac{1}{\log 2} \left(\frac{9}{4} \log 3 + \frac{5}{2} \log 5 \right) = 0.87901 \ldots ,$$

$$F'\left(\frac{1}{4}\right) = 1 + \frac{1}{\log 2} \log \frac{27}{25} = 1.11103 \ldots ,$$

$$F\left(\frac{1}{8}\right) = \frac{157}{4} - \frac{1}{\log 2} \left(\frac{27}{2} \log 3 + \frac{49}{8} \log 7 \right) = 0.65795 \ldots$$

Proof. Let a be a positive integer. Denote by $R_a(z)$, with $0 < z < 1/(a + 1)$, that part of R_a for which $|\alpha - \beta| < z$. Then, in view of Theorem 2, one has, for almost all x, that

$$\lim_{N \to \infty} \frac{1}{N} \# \{ n; n \leq N, |d_n - d_{n+1}| < z, a_{n+2} = a \} = \nu(R_a(z)).$$
Denote this expression by \(F_a(z) \). After a tedious, but otherwise completely elementary calculation, one finds that for \(0 < z < \frac{1}{a+1} \)
\[
F_a(z) = \frac{1}{\log 2} \left(z \log \frac{a+2}{a} - (1 + z) \log(1 + z) - (1 - z) \log(1 - z) \right).
\]

Define \(F_a(z) \) on the interval \([1/(a + 1), 1/2]\) by
\[
F_a(z) = F_a \left(\frac{1}{a + 1} \right) = \frac{1}{\log 2} \log \left(\frac{(a + 1)^2}{a(a + 2)} \right).
\]

One easily verifies that \(F_a \) has a continuous derivative on \([0, 1/2]\). The function \(F \), defined by
\[
F(z) = \sum_{a=1}^{\infty} F_a(z), \quad 0 \leq z \leq \frac{1}{2},
\]
is the distribution function of the sequence \(|d_n - d_{n+1}|\). It can be written in the closed form given in the statement of the theorem. \(\square \)

Theorem 4. For almost all \(x \) one has
\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |d_n - d_{n+1}| = \frac{1 - \gamma}{\log 2} - \frac{1}{2} = 0.10994 \ldots,
\]
where \(\gamma \) is Euler’s constant.

Proof. Denote the first moment of \(F_a \) by \(M_a \). Then
\[
M_a = \int_0^{\frac{1}{a + 1}} zF'_a(z)dz = \frac{1}{\log 2} \left(\frac{1}{2} \log \frac{a+2}{a} - \frac{1}{a + 1} \right).
\]
Summing over \(a \) yields
\[
\lim_{A \to \infty} \sum_{a=1}^{A} M_a = \frac{1}{\log 2} \lim_{A \to \infty} \left(\frac{1}{2} \log \frac{1}{2}(A + 1)(A + 2) - \sum_{a=2}^{A+1} \frac{1}{a} \right).
\]
In this we substitute the classical
\[
\sum_{a=2}^{A+1} \frac{1}{a} = \log(A + 1) + \gamma - 1 + o(1), \quad A \to \infty,
\]
and obtain, for almost all \(x \), the expectation of \(|d_n - d_{n+1}|\) as given by the theorem. \(\square \)
3. The distribution of the sequence \(d_n + d_{n+1}\)

We introduce the following intervals:

\[
\Delta_m^{(0)} = \left[\frac{2m + 1}{m + 1}, \frac{4m + 4}{2m + 3} \right], \quad m = 1, 2, \ldots \tag{8}
\]

and

\[
\Delta_m^{(1)} = \left[\frac{4m + 4}{2m + 3}, \frac{2m + 3}{m + 2} \right], \quad m = 0, 1, 2, \ldots . \tag{9}
\]

These intervals are pairwise disjoint. Their natural order is

\[
\Delta_0^{(1)}, \Delta_1^{(0)}, \Delta_1^{(1)}, \Delta_2^{(0)}, \Delta_2^{(1)}, \Delta_3^{(0)}, \Delta_3^{(1)}, \ldots
\]

and together they fill up the interval \([\frac{4}{3}, 2]\).

Put

\[
\Delta^{(0)} = \bigcup_{m=1}^{\infty} \Delta_m^{(0)} \quad \text{and} \quad \Delta^{(1)} = \bigcup_{m=0}^{\infty} \Delta_m^{(1)}.
\]

The sets \(\Delta^{(0)}\) and \(\Delta^{(1)}\) have Lebesgue measure

\[
\frac{5}{3} - 2 \log 2 = 0.28037 \ldots \quad \text{and} \quad 2 \log 2 - 1 = 0.38629 \ldots ,
\]

respectively.

Next we define for every \(z \in \left[\frac{4}{3}, 2 \right)\) two integers \(m\) and \(n\) by

\[
m = m(z) = \left\lfloor \frac{z - 1}{2 - z} \right\rfloor \quad \text{and} \quad n = n(z) = \left\lfloor \frac{2z - 2}{2 - z} \right\rfloor.
\]

Clearly, \(n = 2m\) or \(n = 2m + 1\). Write \(\lambda(z) = n - 2m\). The intervals from (8) and (9) are constructed in such a way that \(\lambda\) is the characteristic function of \(\Delta^{(1)}\).

Finally, we use the abbreviation

\[
h(z) = h(m, n) = \sum_{k=m+1}^{n} \frac{1}{k}.
\]

Theorem 5. Let \(F\) be the function defined on \([\frac{4}{3}, 2]\) by

\[
F(z) = \frac{1}{\log 2} \left(2h(z)(z - 1) + \lambda(z)(z - \log(z - 1) - 2) + \log(m + 1) - \log(n + 1 + \lambda(z)) \right), \quad \frac{4}{3} \leq z < 2;
\]

\[
F(2) = 1.
\]

This function \(F\) is monotonically increasing from 0 in \(z = \frac{4}{3}\) to 1 in \(z = 2\) and has a continuous derivative.
It is for almost all \(x \) the distribution function of the sequence
\[d_n + d_{n+1}, \quad n = 1, 2, \ldots \]

Remark. On each interval \(\Delta_m^{(0)} \) from (8), \(F \) is the simple linear function
\[\frac{1}{\log 2} \left(2h(m, 2m)(z - 1) + \log \frac{m + 1}{2m + 1} \right). \]

For example,
\[F(z) = \frac{1}{\log 2} \left(\log 2 (z - 1 + \log 2 - \log 3) \right), \quad z \in \Delta_1^{(0)} = \left[\frac{3}{2}, \frac{8}{5} \right], \]
\[F(z) = \frac{1}{\log 2} \left(\frac{7}{6} (z - 1) + \log 3 - \log 5 \right), \quad z \in \Delta_2^{(0)} = \left[\frac{5}{3}, \frac{12}{7} \right]. \]

On an interval from (9) there are only minor changes from this. The coefficient \(h(m, 2m) \) is replaced by \(h(m, 2m + 1) \) which means that a term \(1/(2m + 1) \) is added to it; the term \(\log((m + 1)/(2m + 1)) \) changes into \(\log((m + 1)/(2m + 3)) \) and finally the term
\[\frac{1}{\log 2} (z - \log(z - 1) - 2), \]
which is asymptotically \(\frac{1}{2 \log 2} (z - 2)^2 \) for \(z \to 2 \), is added.

For example,
\[F(z) = \frac{1}{\log 2} \left(3z - \log(z - 1) - 4 - \log 3 \right), \quad z \in \Delta_0^{(1)} = \left[\frac{4}{3}, \frac{3}{2} \right], \]
\[F(z) = \frac{1}{\log 2} \left(\frac{8}{3} z - \log(z - 1) - \frac{11}{3} + \log 2 - \log 5 \right), \quad z \in \Delta_1^{(1)} = \left[\frac{8}{5}, \frac{5}{3} \right]. \]

On an interval \(\Delta_m^{(0)} \) from (8) one has
\[F'(z) = \frac{1}{\log 2} 2h(z) \]
and on an interval \(\Delta_m^{(1)} \) from (9)
\[F'(z) = \frac{1}{\log 2} \left(2h(z) + 1 - \frac{1}{z - 1} \right). \]
From this and from
\[\lim_{z \uparrow 2} h(z) = \log 2 \]
it follows that
\[\lim_{z \uparrow 2} F'(z) = 2. \]

Further,
\[\lim_{z \downarrow \frac{5}{3}} F'(z) = 0. \]

Between 5/3 and 2, the graph of \(F \) is on the scale of Figure 2 not distinguishable from a line segment.

Proof. Denote by \(R_a(z) \) that part of \(R_a \) which lies under the line \(\alpha + \beta = z \). Then
\[\lim_{N \to \infty} \frac{1}{N} \# \{ n; n \leq N, d_n + d_{n+1} < z, a_{n+2} = a \} = \nu(R_a(z)). \]

Call this expression \(F_a(z) \) and consider it as a function on the interval \(\left[\frac{4}{3}, 2 \right] \). Divide this interval into three subintervals, \(I_a^{(0)}, I_a^{(1)} \) and \(I_a^{(2)} \) by the two points
(2a + 2)/(a + 2) and (2a + 1)/(a + 1). Some elementary integration leads to

\[
F_a(z) = \begin{cases}
0, & z \in I_a^{(0)}, \\
\frac{1}{\log 2} \left(\frac{a + 2}{a} (z - 1) - \log (z - 1) + \log \frac{a}{a + 2} - 1 \right), & z \in I_a^{(1)}, \\
\frac{1}{\log 2} \left(-z + \log (z - 1) + 2 + \log \frac{(a + 1)^2}{a(a + 2)} \right), & z \in I_a^{(2)}.
\end{cases}
\]

To get the expression for \(F_a \) on \(I_a^{(1)} \) one has to integrate over two separate regions, one to the left and one to the right of the line \(\alpha = (a + 1)/(a + 2) \).

The easiest way to calculate the form of \(F_a \) on \(I_a^{(2)} \) is to integrate over the complement of \(R_a(z) \) and to subtract this from \(\nu(R_a) \), which equals, as is well-known,

\[
\frac{1}{\log 2} \log \frac{(a + 1)^2}{a(a + 2)}.
\]

To obtain the required distribution function we must sum over \(a \). We take a \(z \) and observe that

\[
z \in I_{m+1}^{(1)}, I_{m+2}^{(1)}, I_{m+3}^{(1)}, \ldots, I_n^{(1)}
\]

and that \(z \) is not contained in any other interval \(I_a^{(1)} \).

Hence

\[
F(z) = \frac{1}{\log 2} \sum_{a=1}^m \left(-z + \log (z - 1) + 2 + \log \frac{(a + 1)^2}{a(a + 2)} \right) + \frac{1}{\log 2} \sum_{a=m+1}^n \left(\frac{a + 2}{a} (z - 1) - \log (z - 1) + \log \frac{a}{a + 2} - 1 \right),
\]

and after some rearrangements one obtains the form as given in the statement of the theorem. \(\square \)

REFERENCES

140
SOME METRICAL RESULTS ON THE APPROXIMATION BY CONTINUED FRACTIONS

Received September 10, 2010
Accepted October 19, 2010

Hendrik Jager
Oude Larenseweg 26
7214 PC Epse
the NETHERLANDS
E-mail: epserbos@xs4all.nl