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Figure A.1. GPT-2 predictabilities outperform cloze predictabilities. Result of a cross-
validated model comparsion in the full reading times model, using either GPT-2-derived sur-
prisal as the lexical predictability metric, or a cloze task derived probability (A) or log-probability
(B) value, evaluated on provo, since this includes cloze-norm-derived probability values for
each word. In both cases we used the full reading times model, similar to the model compar-
ison in Figure 6. The regression model with GPT-2 predictability values performs much better
(bootstrap: P < 0.00001), this is not surprising because the cloze probabilities are not sensi-
tive to small probability values, and hence unable to distinguish between subtle differences in
predictability (e.g. between 0.01 and 0.001 or 0.0001) which are known to be important for mod-
elling predictability effects in human langauge processing (Shain et al., 2022; Smith & Levy,
2013). Hence, this analysis confirms that for word-by-word predictability estiamtes in natural
texts, where consraint is generally low (Luke & Christianson, 2016), language model derived
predictabilities are superior to cloze-task-derived probability estimates.
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Figure A.2. Encoding and inference scheme of the ideal observer analysis. Visualisation
of the Ideal Observer, following formulation in Duan and Bicknell (2020). A word at a given
eccentricity is converted into a noisy visual percept, after which a posterior probability of the
identity of the word given the noisy percept was computed using Bayesian inference. The un-
certainty of this posterior (expressed in terms of Shannon entropy) was then used to quantify
the expected uncertainty in the parafoveal percept – or, inversely, a word’s parafoveal identifiabil-
ity. In this scheme, words are represented as a concatenation of one-hot encoded letter vectors.
Visual information (I) is sampled from a multivariate Gaussian centred on the word vector yw
with a diagonal covariance matrix Σ, the values of which (σ2) are inversely related to the integral
under the visual acuity function around each letter. The posterior is then computed by comining
the likelihood of the visual information I given a particular word, with a prior probability of
that word p(w) (e.g. derived from lexical frequency). This computation was performed using a
log-odds formulation that exploits the proportionality in Bayes’ rule to perform belief-updating
without renormalisation (see Methods).
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Figure A.3. Modulation of parafoveal identifiability by visual and linguistic features, and
their interaction. The parafoveal entropy for a given word (Fig A.2) is a complex function that
integrates linguistic and visual characteristics, and which can account for various known effects,
such as the effect of lexical frequency and orthographic neighbourhood on visual word recog-
nition. To illustrate this, we simulated some characteristic effects of eccentricity, frequency (a,b)
and orthographic distinctiveness (c,d).
For frequency (a), we randomly sampled 20 ‘rare’ and ‘frequent’ 5-letter words (based on a
quartile split), and computed the parafoveal identifiability (quantified via posterior entropy) at
increasing eccentricities. As can be seen, the percept becomes uncertain at increasing eccentric-
ities more quickly for low-frequency words, showing that lexical frequency boosts parafoveal
identifiability.
For orthography (c), we similarly sampled 20 7-letter words that were classified as orthograph-
ically common or uncommon based on the first three letters. Here, commonality was again de-
fined using a quartile split but now on the number of alternative words starting with the same
three letters. For instance, the letters ‘awk‘ in the word ‘awkward‘ are highly uncommon and
allow to identify the entire word with high confidence based on just those three letters. As can
be seen, the model predicts that orthographic uniqueness boosts parafoveal identifiability – as
observed in experiments (see Schotter et al. (2012)).
Notably, when we consider the difference between the two classes of words (b,d), an inverted
U shape is apparent: the effects are strongest at intermediate visibility. This demonstrates the
well-established fact that the effects of prior (linguistic) knowledge is strongest at intermediate
levels of perceptual uncertainty (see Norris (2006) for discussion). (Note that, while both the or-
thography and frequency effects are effects of ”prior linguistic knowledge”, only the frequency
effect is technically an effect of the prior, since the orthography effect is driven by the genera-
tive model.) In all plots, thick lines represent the mean entropy across words; shaded regions
indicate bootstrapped 95% confidence intervals.
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Figure A.4. Grid search to establish ideal observer parameters. Grid search result grand
average (top) and individual results for different corpora and analyses (bottom). To decide on
the values for σ and Λ, a grid search was performed on a random subset of 25% of the Dundee
and Geco corpus; we did not apply it to PROVO because there was not enough data per partici-
pant. In both skipping and reading times, we performed a 10-fold cross-validation with the full
model, using parafoveal entropy as computed with different visual acuity parameters σ and Λ
(Equation 6). To avoid biasing the contextual vs non-contextual model comparison (Figure 6),
we used both the contextual and non-contextual prior and averaged the results to obtain the re-
sults for each analysis in each corpus. To ensure that different analyses and corpora are weighted
equally in the grand average, the prediction scores (R2 or R2

McF) were normalised by dividing
the prediction score of each parameter combination by the highest score (i.e. score of the best
parameter combination) for each subject, for each analysis. This resulted in σ = 3 and Λ = 1,
which we have used in all analyses. Note that σ determines the perceptual span (see Figure A.2)
and that σ = 3 corresponds well to what is known about the size of the perceptual span and is
close to default parameters in other models (see Methods).
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Figure A.5. Distributions of reading times (gaze durations). Kernel density estimate of the
distribution of reading times across all datasets, both on average (left column) and in individual
participants (right column).
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Figure A.6. Average skipping rate in each dataset. Average rate of skipping in all words
included in the skipping analysis (see Methods) in all datasets. Large dots with error bar show
group mean plus bootstrapped 95% confidence interval. Small dots show indidividual partici-
pants.
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Figure A.7. Distribution of (forward) saccade lengths in each datasets Kernel density es-
timate of the distribution of saccade lengths (amplitudes) of first-pass, forward saccades in all
datasets, both on average (left column) and per individual participant (right column). Note
that for this visualisation we only included progressive, forward saccades within the same line
(excluding saccades that cross lines), up to a maximum amplitude of 24 characters (excluding
saccades during periods participants were not actually reading).
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Figure A.8. Saccade lengths are tailored to word lengths and exhibit a preferred landing
position.
Left column: Kernel density estimate of the saccade lengths, estimated separately for target
words of different lengths. Colours indicate word lengths, vertical lines indicate the mode of
the distribution. Right column: Kernel density estimate (plus mode) of the relative landing
position, averaged across words with different lengths. Saccades are longer for longer words,
such that a systematic ‘preferred landing position’ is maintained, slightly left to the center of the
word (indicated by the vertical dashed line); see McConkie et al. (1988); Rayner (1979).
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Model Explanatory variable Operationalisation

Prediction
Word predictability Lexical surprisal
Word predictability spillover (-1) prior surprisal (-1)
Word predictability spillover (-2) prior surprisal (-2)

Preview Prior parafoveal identifiability Parafoveal entropy H(p(w | preview))

Baseline
(non-
contextual
attributes of
fixated word)

Log-lexical-frequency Unigram surprisal
Word log-frequency spillover (-1) Prior unigram surprisal (-1)
Word log-frequency spillover (-2) Prior unigram surprisal (-2)
Word class (function or content) Function (1) or content (1)
Word length Word length (in characters)
Absolute distance to OVP Distance to mid-of-word in characters
Relative distance to OVP position Distance to mid-of-word in fraction

Table A.1. Explanatory variables for 3-way reading times analysis, comparing explanations
for variation in reading times based on either two contextual sources of information about a
word’s identifiability: parafoveal preview or linguistic prediction, and based on non-contextual
attributes of the fixated word.

Model Explanatory variable Operationalisation

Prediction Lexical constraint Prior lexical entropy

Preview Prior parafoveal identifiability Parafoveal entropy H(p(w | preview))

Baseline
(occulomotor)

Word length Word length (in characters)
Word eccentricity Distance to prior fixation location

Table A.2. Explanatory variables for 3-way skipping analysis, contrasting explanations for
skipping based a words prior identifiability based on parafoveal preview, a word’s prior identifi-
ability from constraint or contextual prediction, and low-level visual or oculomotor information.
Note that, when we refer to ‘full model‘ we simply mean the joint model combining all explana-
tory variables of the partial explanatory models.
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Model Explanatory variable Operationalisation

Lexical
processing
ease

Lexical constraint Prior lexical entropy H(p(w | context))
Prior parafoveal identifiability Parafoveal entropy H(p(w | preview))

Oculomotor
Word length Word length (in characters)
Word eccentricity Distance to prior fixation location

Table A.3. Explanatory variables for 2-way skipping analysis, contrasting explanations for
skipping based on factors determining a word’s lexical processing ease (i.e. how well it can
be predicted from context or discerned from a parafoveal preview) and explanations based on
low-level visual or oculomotor information.

Model Explanatory variable Operationalisation

Lexical
processing

Word predictability Lexical surprisal (+ spillovers)
Word frequency Unigram surprisal (+ spillovers)
Prior parafoveal identfiability Prior parafoveal entropy
Word class Function (0) or content (1)

Oculomotor
Absolute distance to OVP Distance to mid-of-word in characters
Relative distance to OVP position Distance to mid-of-word in fraction
Word length* Word length (in characters)

Table A.4. Explanatory variables for 2-way reading times analysis, contrasting explanations
for variation in reading times based on factors determining a word’s lexical processing ease (e.g.
frequency, or how well it can be predicted from context or discerned from a parafoveal preview)
and low-level oculomotor factors. *Because length is an edge case, and reasonable arguments
can be made either for or against inlcuding it in an oculomotor explanation for reading times,
we ran two versions, one with (Fig 4) and one without (Fig A.12,A.13) length (see text)

.
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Figure A.9. Skipping variation partitioning for all participants. Explained cross-validated
variation partition for skipping (see Fig 2) of each partition, for each participant, for the skipping
analysis. Models for the baseline, parafoveal preview and linguistic prediction are indicated
by ‘base’, ‘para’, and ‘ling’, respectively. Unions are indicated by ∪, intersections by ∩; for
the relative complement we use the asterisk-notation: e.g. ‘para*’ indicates variation explained
uniquely by parafoveal preview. Note that due to cross-validation, the amount of variation
explained can become negative in some partitions for individual participants (see Methods).
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Figure A.10. Probability that a skipped word is regressed to depends on its prior identifia-
bility.
Probability that an initially skipped word is subsequently fixated (i.e. regressed to), as a function
of the prior parafoveal entropy, before skipping. Dots with connecting lines show the average
regression probability for initially skipped words as a function of the binned prior parafoveal
entropy. Error bars show the (bootstrapped) 95% confidence interval around the mean (across
participants). In all datasets, the probability that a skipped word gets subsequently fixated de-
pends on the amount of visual information about word identity that was available before the
word was was skipped, suggesting a compensation mechanism. Note that the binning is done
for visualisation purposes only. Statistical evaluation is based on a subject-wise logistic regres-
sion on the word-by-word parafoveal entropy and regression values. Statistical significance is
established by a bootstrap test on the subjects’ coefficients, in each dataset.

Table A.5: Literature sample for effect size ranges

Effect type Publication
Effect
size

preview benefit

Inhoff, A. W. (1989). Lexical access during eye fixations
in reading: Are word access codes used to integrate
lexical information across interword fixations?. Jour-
nal of Memory and Language, 28(4), 444-461.

51

preview benefit

Veldre, A., & Andrews, S. (2018). Parafoveal preview
effects depend on both preview plausibility and target
predictability. Lexical access during eye fixations in
reading: Quarterly Journal of Experimental Psychol-
ogy, 71(1), 64-74.

49

preview benefit

Inhoff, A. W., & Rayner, K. (1986). Parafoveal word
processing during eye fixations in reading: Effects of
word frequency. Perception & psychophysics, 40(6),
431-439.

40

preview benefit
McDonald, S. A. (2006). Parafoveal preview benefit in
reading is only obtained from the saccade goal. Vision
Research, 46(26), 4416-4424.

35

Continued on next page
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Table A.5 – Continued from previous page

Effect type Publication
Effect
size

preview benefit

Williams, C. C., Perea, M., Pollatsek, A., & Rayner, K.
(2006). Previewing the neighborhood: The role of or-
thographic neighbors as parafoveal previews in read-
ing. Journal of Experimental Psychology: Human Per-
ception and Performance, 32(4), 1072.

26.7

preview benefit

Kennison, S. M., & Clifton, C. (1995). Determinants of
parafoveal preview benefit in high and low working
memory capacity readers: Implications for eye move-
ment control. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 21(1), 68.

25.25

preview benefit

Blanchard, Harry E., Alexander Pollatsek, and Keith
Rayner. ”The acquisition of parafoveal word infor-
mation in reading.” Perception & Psychophysics 46.1
(1989): 85-94.

22.6

preview benefit

Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G.
(1999). Eye movement control during reading: Foveal
load and parafoveal processing. The Quarterly Jour-
nal of Experimental Psychology Section A, 52(4), 1021-
1046.

14.6

prediction benefit

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on
word perception and eye movements during reading.
Journal of verbal learning and verbal behavior, 20(6),
641-655.

33

prediction benefit

Rayner, K., & Well, A. D. (1996). Effects of contextual
constraint on eye movements in reading: A further ex-
amination. Psychonomic Bulletin & Review, 3(4), 504-
509.

20

prediction benefit

RJ. Altarriba, J. Kroll, A. Sholl, K. Rayner. (1996) The
influence of lexical and conceptual constraints on read-
ing mixed-language sentences: Evidence from eye fix-
ations and naming times Memory & Cognition, 24
(1996), pp. 477-492.

21

prediction benefit

Ashby, J., Rayner, K., & Clifton Jr, C. (2005). Eye move-
ments of highly skilled and average readers: Differen-
tial effects of frequency and predictability. The Quar-
terly Journal of Experimental Psychology Section A,
58(6), 1065-1086.

23.5

prediction benefit

Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D.
(2004). The effects of frequency and predictability
on eye fixations in reading: implications for the EZ
Reader model. Journal of Experimental Psychology:
Human Perception and Performance, 30(4), 72

19

Continued on next page
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Table A.5 – Continued from previous page

Effect type Publication
Effect
size

prediction benefit

Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A.
(2001). Eye movement control in reading: Word pre-
dictability has little influence on initial landing posi-
tions in words. Vision Research, 41(7), 943-954.

15

prediction benefit

Rayner, K., Slattery, T. J., Drieghe, D., & Liversedge, S.
P. (2011). Eye movements and word skipping during
reading: effects of word length and predictability. Vi-
sion Research, 41(7), 943-954.

18

prediction benefit

Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S.
C. (2010). The frequency-predictability interaction in
reading: It depends where you’re coming from. Jour-
nal of Experimental Psychology: Human Perception
and Performance, 36(5), 12941313.

12
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Figure A.11. Reading times variance partitioning. Explained cross-validated variation par-
tition for skipping (see Fig 3) of each partition, for each participant, for the skipping analysis.
Models for the baseline, parafoveal preview and linguistic prediction are indicated by ‘base’,
‘para’, and ‘ling’, respectively. Unions are indicated by ∪, intersections by ∩; for the relative
complement we use the asterisk-notation: e.g. ‘para*’ indicates variation explained uniquely by
parafoveal preview (see Methods). Note that due to cross-validation, the amount of variation
explained can become negative in individual participants (see Methods).

OPEN MIND: Discoveries in Cognitive Science 13



Lexical processing strongly affects reading times but not skipping during natural reading Heilbron et al.

Figure A.12. Two-way partition of reading times and skipping on individual datasets.
Upper row: unique explained variation for the oculomotor model (Dundee: 0.19% bootstrap
95CI: 0.0 − 0.55%; bootstrap t-test: p < 10−5; Geco: 0.22%, 95CI: 0.0 − 0.59%; p = 0.051; Provo:
0.17%; 95CI: 0.12 − 0.55%, p = 0.0012). Upper row: unique explained variation for the lexical
model (Dundee: 6.41% 95CI: 4.7 − 8.1%; p=0.07; Geco: 2.53%, 95CI: 1.86 − 3.16%; p < 10−5;
Provo: 2.67%; 95CI: 2.03 − 3.37%,p < 10−5). Lower row: unique explained skipping variation
for the oculomotor model (Dundee: 16.92% bootstrap 95CI: 14.86− 18.93%, bootstrap t-test com-
pared to zero: p < 10−5; Geco: 11.21%, 95CI: 10.26 − 12.19%, p < 10−5; Provo: 13.50%; 95CI:
12.47 − 14.55%, p < 10−5). Lower row: unique explained skipping variation for the lexical
model (Dundee: 2.10% 95CI: 1.64 − 2.54%, p < 10−5; Geco: 1.77%, 95CI: 1.25 − 2.34%; p < 10−5;
Provo: 0.91%; 95CI: 0.69 − 1.13%, p < 10−5).
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Figure A.13. Two-way partition with and without length in the oculomotor model of read-
ing times. Including word length in the oculomotor model for reading times leads to an increase
in variance explained, most of which is overlapping with the lexical model, due to the correlation
with frequency. However, the overall dissociation remains (see text). (a)) Grand average across
datasets. Same as Figure 4, but including word length in the oculomotor model of reading times.
(b)) Individual datasets, with (lower row) and without (upper row) including word length as an
explanatory variable in the oculomotor model. Upper row: unique explained variation for the
oculomotor model (Dundee: 0.19% bootstrap 95CI: 0.0 − 0.55%; bootstrap t-test: p < 10−5;
Geco: 0.22%, 95CI: 0.0 − 0.59%; p = 0.051; Provo: 0.17%; 95CI: 0.12 − 0.55%, p = 0.0012). Upper
row: unique explained variation for the lexical model (Dundee: 6.41% 95CI: 4.7 − 8.1%; p=0.07;
Geco: 2.53%, 95CI: 1.86 − 3.16%; p < 10−5; Provo: 2.67%; 95CI: 2.03 − 3.37%,p < 10−5). Lower
row: unique explained variation for the oculomotor model (Dundee: 1.08% 95CI: 0.24 − 2.214%;
p < 10−5; Geco: 0.29%, 95CI: 0.009 − 0.67%; p = 0.015; Provo: 0.78%; 95CI: 0.41 − 1.20%,
p < 10−5). Lower row: unique explained variation for the lexical model (Dundee: 3.82%
95CI: 2.64 − 5.56%; p < 10−5; Geco: 1.78%, 95CI: 1.31 − 2.25%; p < 10−5; Provo: 1.57%; 95CI:
1.06 − 2.08%,p < 10−5).
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