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1 Introduction

The discovery of a new particle consistent with the Standard Model (SM) Higgs boson by
the ATLAS [1] and CMS [2] experiments at the Large Hadron Collider (LHC) represents
a milestone in high-energy physics. A comprehensive programme of measurements of the
Higgs boson’s properties to unravel its nature is underway at the LHC, so far yielding results
compatible with the SM predictions. However, a pressing question remains as to why the
electroweak mass scale (and the Higgs boson mass along with it) is so small compared to
the Planck scale, a situation known as the hierarchy problem. Naturalness arguments [3]
require that quadratic divergences that arise from radiative corrections to the Higgs boson
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mass are cancelled out by some new mechanism in order to avoid fine-tuning. To that
effect, several explanations have been proposed in theories beyond the SM (BSM theories).

One such solution involves the existence of a new strongly interacting sector, in which
the Higgs boson would be a pseudo Nambu-Goldstone boson (pNGB) [4] of a spontaneously
broken global symmetry. The Composite Higgs [5–7] model is a particular realisation of this
scenario, which also addresses additional open questions in the SM, including the hierarchy
in the mass spectrum of the SM particles. A key prediction is the existence of new fermionic
resonances referred to as vector-like quarks (VLQs), which are also common in many other
BSM scenarios [8–11]. Vector-like quarks are defined as colour-triplet spin-1/2 fermions
whose left- and right-handed chiral components have the same transformation properties
under the weak-isospin SU(2) gauge group [12, 13]. Assuming an unchanged scalar sector
with respect to the Standard Model, theoretical constraints on renormalisability and gauge
completeness restrict the SU(2) representation of the vector-like quarks to seven possible
multiplets: singlets (T 2/3) or (B−1/3), doublets (X5/3 T 2/3) or (T 2/3 B−1/3), or triplets
(X5/3 T 2/3 B−1/3) or (T 2/3 B−1/3 Y −4/3).1 The vector-like quarks in these models are
expected to couple preferentially to third-generation quarks and can have flavour-changing
neutral-current decays in addition to the charged-current decays characteristic of chiral
quarks [12, 14]. Thus, the up-type T quark can decay into a W boson and a b-quark, and
also into a top quark and a Z or Higgs boson. The relative couplings to the massive bosons
of the Standard Model are determined by the gauge representation of the vector-like quarks.
The relative couplings to the W , Z and Higgs bosons can be expressed in terms of the ξW ,
ξZ and ξH parameters, respectively [15]. In the asymptotic limit of large VLQ mass, these
ξ parameters correspond to the branching ratios of the T quark into their respective decay
modes. The asymptotic limit holds to a very good approximation for VLQ masses above
1 TeV. For a T singlet, ξW = 0.5 and ξZ = ξH = 0.25. For T quarks that are in an (X T )
doublet, or in a (T B) doublet with mixing only to up-type SM singlets [14, 15], ξW = 0,
and ξZ = ξH = 0.5.

At the LHC, vector-like quarks with masses below ∼1 TeV would be produced mostly
in pairs via the strong interaction. For higher masses, however, single production, mediated
by the electroweak interaction, may dominate depending on the coupling strength of the
interaction between the vector-like quark and the SM quarks [13]. The single-production
channel for vector-like quarks provides a unique opportunity to probe the universal coupling
strength (κ) in addition to the relative couplings and branching ratios that can be probed
in pair production searches. The universal coupling strength controls both the production
cross section and the resonance width of the VLQ. For a VLQ with mass mT , the resonance
width ΓT scales as ΓT ∝ κ2m3

T [15]. Thus, the relative width (ΓT /mT ) of the VLQ
resonance scales quadratically with both κ and mT , and is independent of the multiplet
representation.

The dominant channel for resonant production of a single T quark is t-channel produc-
tion mediated by a gauge boson (figure 1a). The final state is characterised by the presence

1The indices in superscript indicate the electric charges of the vector-like quarks. These indices are
omitted in the notation for the rest of the paper.
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Figure 1. Example of leading-order Feynman diagrams of single vector-like T production in
association with a b-quark or t-quark and subsequent decay into either Ht or Zt in the (a) resonant
and (b) non-resonant modes.

of multiple (b-tagged) jets from the decay of the produced heavy quarks and bosons, along
with the recoiling initial-state quark, which typically manifests as a forward jet. In the
four-flavour scheme, and assuming that the T quark couples only to SM quarks of the third
generation, this process requires an initial-state gluon to split into a bb̄ or tt̄ pair. Given the
difference in masses between the top and bottom quarks, b-associated (or W -mediated) T -
quark production is kinematically favoured over t-associated (or Z-mediated) production.
However, in certain gauge representations, such as for a (T B) doublet with mixing only to
up-type SM singlets [14, 15], or for an (X T ) doublet, the coupling to W bosons vanishes,
and the t-associated mode is the only allowed production channel. Therefore, both produc-
tion modes are theoretically interesting, even though the parameter space in the limit of
ξW → 0 is difficult to probe due to small production cross sections. Non-resonant T -quark
production (figure 1b) is subdominant compared to resonant production in the b-associated
mode. By contrast, in the t-associated mode, both the resonant and non-resonant T -quark
production processes have comparable cross sections, as both require the splitting of an
initial-state gluon into a tt̄ pair. The relative contribution of non-resonant production
grows with resonance width, and is therefore larger at higher coupling strengths.

Physical realisations of Composite Higgs models require the presence of additional
scalar [16] and vector bosons [17–19] for UV-completeness, thus opening up production
and decay channels for the VLQs in addition to the ones discussed above. However, pro-
cesses involving additional BSM particles are not considered in this paper, and results are
interpreted in the context of a minimal extension of the Standard Model including only
one VLQ multiplet [15].

The ATLAS and CMS collaborations have a broad programme of searches that has
largely focused on pair production of vector-like quarks, targeting different decay modes
and final states separately. A combination of all ATLAS pair production analyses using
the data collected by the ATLAS detector in 2015 and 2016 delivered the most stringent
limits to date on pair-produced vector-like quarks [20], with masses observed to be excluded
below 1.31 TeV for T and 1.03 TeV for B for any combination of decay modes. The T (B)
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singlet configuration was excluded for masses up to 1.31 (1.21) TeV, and T (B) quarks in
the (T B) doublet configuration were excluded up to masses of 1.37 (1.35) TeV. Searches by
both ATLAS [21–24] and CMS [25–30] targeting single vector-like quark production have
set limits on the allowed vector-like quark parameter space in terms of model-dependent
parameters such as coupling strengths and mixing angles. These searches have mostly fo-
cused on the b-associated single production modes for VLQs. A search by ATLAS for single
VLQ production in the T →Wb channel has excluded σ × B(T →Wb) above ∼100 fb for
b-associated T production in the mass range of 1.0–1.9 TeV [23]. An ATLAS search [24]
in the T → Z(``)t channel has excluded σ × B(T → Zt) for b-associated T production
above ∼90 fb (∼40 fb) at a mass of 1.0 TeV (2.0 TeV) in the singlet hypothesis. A CMS
search for t-associated T production, also in T → Z(``)t final states [27], has excluded
σ × B(T → Zt) above ∼100 fb (∼40 fb) at a mass of 0.8 TeV (1.7 TeV) under the doublet
hypothesis. Conversely, the CMS search for T production in the T → Z(νν)t channel [31]
excluded σ × B(T → Zt) down to ∼200 fb (∼20 fb) at a mass of 0.6 TeV (1.8 TeV) under
the singlet hypothesis, for a decay width of 30%. A recently published search by ATLAS
in the all-hadronic final state [21] excludes σ × B(T → Ht) for b-associated T production
above ∼30–100 fb in the 1.0–2.3 TeV mass range for a wide range of coupling strengths.

These exclusion limits were all derived at 95% CL, assuming that the VLQs couple
exclusively to SM quarks in the third generation, and production modes involving other
BSM particles were not considered.

This paper presents a search for the single production of the up-type vector-like quark
T , with subsequent decays into Ht with H → bb̄, or into Zt with Z → qq̄ (figure 1).
Both the b- and t-associated production modes are considered in this search. The search
uses 139 fb−1 of pp collision data at

√
s = 13 TeV recorded by the ATLAS Collaboration

during Run 2 of the Large Hadron Collider (LHC). Data are analysed in the lepton+jets
final state, characterised by an isolated electron or muon with high transverse momentum
and multiple jets and b-jets. The presence of heavy hadronic boosted objects in the events
is used as an important distinguishing characteristic of the signal. In the absence of a
significant excess above the SM expectation, the results are used to set upper limits on
the single production of T quarks for several scenarios of the mass, the universal coupling
strength κ, and the relative couplings to W , Z, and Higgs bosons.

2 ATLAS detector

The ATLAS detector [32] at the LHC covers nearly the entire solid angle around the colli-
sion point.2 It consists of an inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadron calorimeters, and a muon spectrometer incorporating
three large superconducting air-core toroidal magnets.

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse
plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = � ln tan(θ/2). Angular distance is measured in units of ∆R �

p
(∆η)2 + (∆φ)2.
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The inner-detector system is immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four measurements per track, the first hit
normally being in the insertable B-layer installed before Run 2 [33, 34]. It is followed by
the silicon microstrip tracker, which usually provides eight measurements per track. These
silicon detectors are complemented by the transition radiation tracker (TRT), which enables
radially extended track reconstruction up to |η| = 2.0. The TRT also provides electron
identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadron
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three bar-
rel structures within |η| < 1.7, and two copper/LAr hadron endcap calorimeters. The
solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the supercon-
ducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and
6.0 T m across most of the detector. Three layers of precision chambers, each consisting of
layers of monitored drift tubes, cover the region |η| < 2.7, complemented by cathode-strip
chambers in the forward region, where the background is highest. The muon trigger sys-
tem covers the range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

Interesting events are selected by the first-level trigger system implemented in custom
hardware, followed by selections made by algorithms implemented in software in the high-
level trigger [35]. The first-level trigger accepts events from the 40 MHz bunch crossings at
a rate below 100 kHz, which the high-level trigger further reduces in order to record events
to disk at about 1 kHz.

An extensive software suite [36] is used in data simulation, in the reconstruction and
analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

3 Object reconstruction

Interaction vertices from proton-proton collisions are reconstructed from at least two tracks
with transverse momentum (pT) larger than 500 MeV that are consistent with originating
from the beam collision region in the x-y plane. If more than one primary vertex candidate
is found, the candidate whose associated tracks form the largest sum of squared pT [37] is
selected as the hard-scatter primary vertex.

Electron candidates [38] are reconstructed from energy clusters in the electromagnetic
calorimeter associated with reconstructed tracks in the inner detector. They are required
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to have pT > 30 GeV and |ηcluster| < 2.47. Candidates in the transition region between
the electromagnetic barrel and endcap calorimeters (1.37 < |ηcluster| < 1.52) are excluded.
They are required to satisfy the “tight” likelihood-based identification criteria [38] based
on calorimeter, tracking and combined variables that provide separation between electrons
and jets. Muon candidates [39] are reconstructed by matching tracks in the MS to those
found in the inner detector. The resulting muon candidates are re-fitted using the complete
track information from both detector systems. Muon candidates are required to satisfy the
“medium” identification criteria [39], and to have pT > 30 GeV and |η| < 2.5. Electron
(muon) candidates are matched to the primary vertex by requiring that the significance
of their transverse impact parameter, d0, satisfies |d0/σ(d0)| < 5(3), where σ(d0) is the
measured uncertainty in d0, and by requiring that their longitudinal impact parameter, z0,
satisfies |z0 sin θ| < 0.5 mm. To further reduce the background from non-prompt leptons,
photon conversions and hadrons, the lepton candidates are also required to be isolated in
the tracking system and the calorimeter.

Candidate jets are reconstructed with the anti-kt algorithm [40, 41] with a radius
parameter R = 0.4 (referred to as “small-R jets”). The input constituents for jet recon-
struction are built by combining topological clusters of energy in the calorimeter [42] with
measured tracks in the inner detector using the particle-flow algorithm [43]. The recon-
structed jets are then calibrated to the particle level by the application of a jet energy scale
derived from simulation and in situ corrections based on

√
s = 13 TeV data [44]. Calibrated

jets are required to have pT > 25 GeV and |η| < 4.5. Quality criteria are imposed to reject
events that contain any jets arising from non-collision sources or detector noise [45]. Jets
with |η| < 2.5 are labelled “central” jets for the purposes of event selection and categori-
sation, while jets with 2.5 < |η| < 4.5 are called “forward” jets. Requirements based on
the jet-vertex tagger (JVT) [46] algorithm are imposed on central jets with pT < 60 GeV
and |η| < 2.4 to suppress contamination from jets that originate from pile-up interactions.
Pile-up contamination for jets with |η| > 2.4 is reduced by requirements on the closely
related forward JVT (fJVT) algorithm for jets with pT < 120 GeV [47].

In order to identify b-hadrons in the event, variable-R [48] jets built from reconstructed
tracks in the inner detector are used. Track-jets containing b-hadrons are identified (b-
tagged) via the multivariate “DL1” algorithm [49], which uses information about the kine-
matic and topological properties of displaced tracks associated with the jet, and of sec-
ondary and tertiary decay vertices reconstructed from these tracks. For each jet, a value
of the multivariate b-tagging discriminant is calculated. In this analysis, a jet is considered
b-tagged if this value is above the threshold corresponding to an average 77% efficiency to
tag a b-quark jet, with a light-jet3 rejection factor of ∼112 and a charm-jet rejection factor
of ∼5, as determined for jets with pT > 20 GeV and |η| < 2.5 in simulated tt̄ events.

Overlaps between candidate objects are removed sequentially. Firstly, electron can-
didates that lie within ∆R = 0.01 of a muon candidate are removed to suppress con-
tributions from muon bremsstrahlung. Overlaps between electron and jet candidates are
resolved next, and finally, overlaps between remaining jet candidates and muon candidates

3Light-jet refers to a jet originating from the hadronisation of a light quark (u, d, s) or a gluon.
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are removed. Clusters associated with identified electrons are not excluded during jet re-
construction. In order to avoid double-counting of electrons as jets, the closest jet whose
axis is within ∆R = 0.2 of an electron is discarded. If the electron is within ∆R = 0.4 of the
axis of any jet after this initial removal, the jet is retained and the electron is removed. The
overlap removal procedure applied to the remaining jet candidates and muon candidates is
designed to remove those muons that are likely to have arisen in the decay chain of hadrons
and to retain the overlapping jet instead. Jets and muons may also appear in close proxim-
ity when the jet results from high-pT muon bremsstrahlung, and in such cases the jet should
be removed and the muon retained. Such jets are characterised by having very few match-
ing inner-detector tracks. Selected muons that satisfy ∆R(µ, jet) < 0.04 + 10 GeV/pµT are
rejected if the jet has at least three tracks originating from the primary vertex; otherwise
the jet is removed and the muon is kept.

The candidate small-R jets surviving the overlap removal procedure discussed above
are used as inputs for further jet reclustering [50] using the variable-R jet reconstruction
algorithm with ρ = 550 GeV. The parameter ρ controls the evolution of the effective size of
the reclustered jet as R = ρ/pT. Since the input constituents of these reclustered jets are
already calibrated, no further calibration of them is required. Uncertainties in the energy
and mass scales and resolutions of the constituent small-R jets are propagated to the kine-
matics of the reclustered (RC) jets. In order to suppress contributions from pile-up and
soft radiation, the RC jets are trimmed [51] by removing all small-R (sub)jets within a RC
jet that have pT below 5% of the pT of the reclustered jet. Due to the pile-up suppression
and pT > 25 GeV requirements imposed on the small-R jets, the average fraction of small-
R jets removed by the trimming requirement is less than 1%. The resulting RC jets are
required to have |η| < 2.0 and are used to identify high-pT hadronically decaying top quark,
Higgs boson or W/Z boson candidates by placing requirements on their transverse mo-
mentum, mass, and number of constituents. Hadronically decaying top-quark candidates
are reconstructed as RC jets with pT > 400 GeV and mass larger than 140 GeV. Top-quark
candidates with pT < 700 GeV are required to contain at least two constituent subjets.
Higgs boson candidates are reconstructed as RC jets with pT > 350 GeV, a mass between
105 and 140 GeV, and a pT-dependent requirement on the number of subjets (exactly two
for pT < 600 GeV, and one or two for pT > 600 GeV). RC jets are tagged as arising from a
W or Z boson if they have pT > 350 GeV, and a mass between 70 and 105 GeV. Further-
more, candidate W/Z (V boson) RC jets are required to have exactly two subjets if they
have pT < 450 GeV, while candidates with one or two subjets are allowed at higher pT. In
the following, these are referred to as “t-tagged”, “H-tagged” and “V -tagged” jets, respec-
tively, while the term “jet” without further qualifiers is used to refer to central small-R jets.

The missing transverse momentum ~p miss
T (with magnitude Emiss

T ) is defined as the
negative vector sum of the ~pT of all selected and calibrated objects in the event, including
a term to account for energy from soft particles in the event which are not associated
with any of the selected objects. This soft term is calculated from inner-detector tracks
matched to the selected primary vertex to make it more resilient to contamination from
pile-up interactions [52].
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To reconstruct boosted leptonic top-quark candidates in the event, the lepton and ~p miss
T

in the event are first used to construct a leptonic W -boson candidate. The azimuthal direc-
tion and pT of the neutrino daughter of the W boson are then chosen to be the same as the
azimuthal direction and magnitude of the missing transverse momentum, and the neutrino
pz is determined by imposing a W mass constraint on the lepton-neutrino system. This
amounts to solving a quadratic equation. If two solutions exist to the quadratic equation,
the one with the lowest neutrino pz is chosen. If no solution exists, the Emiss

T value is shifted
until the equation has a unique solution. The leptonicW -boson candidate thus constructed
is combined with a candidate b-jet in a two-step process. First, the b-tagged track-jet that
is closest to the leptonic W -boson candidate in η-φ space is identified. Then, the closest
small-R jet to this b-tagged jet with ∆R < 0.4 is found and combined with the leptonic
W -boson candidate. The b-jet is required to be within ∆R = 1.5 of the leptonic W -boson
candidate. Furthermore, in order to avoid double-counting, any b-jet within ∆R = 1.0 of a
t-tagged, H-tagged or V -tagged jet is not considered for leptonic top-quark reconstruction.
The reconstructed leptonic top-quark candidate is required to have pT > 300 GeV. The
average reconstruction efficiency with these requirements in signal events is around 50%.

4 Data sample and event preselection

As described in section 1, this search is based on a dataset of pp collisions at
√
s = 13 TeV

with 25 ns bunch spacing collected by the ATLAS experiment during the 2015–2018 data-
taking period, corresponding to an integrated luminosity of 139 fb−1. Only events recorded
with a single-electron trigger, a single-muon trigger, or a Emiss

T trigger under stable beam
conditions and for which all detector subsystems were operational are considered [53].

Single-lepton triggers [54, 55] with low pT threshold and lepton isolation requirements
are combined in a logical OR with higher-threshold triggers without isolation requirements
to give maximum efficiency. For muons, triggers with a pT threshold of 20 (26) GeV in
2015 (2016–2018) and isolation requirements, are combined with triggers with a 50 GeV
threshold with no isolation requirement. A trigger with a 60 GeV threshold was added
for the 2017–2018 data-taking period. The lowest pT threshold for electron triggers was
24 (26) GeV in 2015 (2016–2018), while the highest pT threshold varied from 120 GeV to
300 GeV during the data-taking period. The Emiss

T trigger [56] used an Emiss
T threshold of

70 GeV in the HLT in 2015 and a run-period-dependent Emiss
T threshold varying between

90 GeV and 110 GeV in other years.
Events satisfying the trigger selection are required to have at least one primary vertex

candidate, and exactly one selected electron or muon. For events that only pass a single-
lepton trigger, the selected lepton is required to match the lepton reconstructed by the
trigger within ∆R < 0.15. Events that do not satisfy the single-lepton trigger acceptance
or matching conditions are selected only if they pass the Emiss

T trigger requirements and
the offline reconstructed Emiss

T is above 200 GeV. The combination of single-lepton and
Emiss

T triggers maximises the efficiency of the trigger selection.
In addition to the above, events are required to have at least three small-R jets and

at least one b-tagged variable-radius jet. All selected small-R jets are considered for the
purpose of event selection and categorisation, including those used to build RC jets.
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Preselection requirements
Single-lepton or Emiss

T trigger
=1 isolated e OR µ

≥3 jets
≥1 b-tagged jets
Emiss

T > 20 GeV
Emiss

T +mW
T > 60 GeV

meff > 600 GeV

Table 1. Summary of preselection requirements.

The background from multijet production is suppressed by placing requirements on
Emiss

T as well as on the transverse mass of the lepton and Emiss
T system (mW

T ):4 Emiss
T >

20 GeV and Emiss
T +mW

T > 60 GeV.
In order to select events that are kinematically close to those expected from signal, an

additional selection is placed on the “effective mass” (meff) observable, which is defined as
the scalar sum of the pT of all central small-R jets and leptons in the event and the Emiss

T .
All events considered in the analysis are required to have meff > 600 GeV.

The above requirements are referred to as the “preselection” and are summarised in
table 1.

5 Signal and background modelling

Signal and background processes were modelled using Monte Carlo (MC) simulations. In
the simulation, the masses of the top quark and Higgs boson were set to 172.5 GeV and
125 GeV, respectively. All simulated samples, except those produced with the Sherpa [57]
event generator, utilised the EvtGen program [58] to model the decays of heavy-flavour
hadrons. While EvtGen 1.2.0 was used for ttW and ttZ samples, EvtGen 1.6.0 was
used for all the other samples. In samples where the parton showering and hadronisation
were modelled with Pythia 8 [59], a set of tuned parameters called the A14 tune [60] was
used for underlying-event modelling, and the NNPDF2.3lo parton distribution function
(PDF) set [61] was used for the showering and hadronisation processes. The H7UE param-
eter tune [62] was used instead for samples that employ Herwig 7 for hadronisation and
showering, with the MMHT2014lo PDF set [63].

To model the effects of pile-up, events from minimum-bias interactions were gener-
ated using the Pythia 8.186 event generator and overlaid on the simulated hard-scatter
events according to the luminosity profile of the recorded data. The generated events were
processed through a simulation [64] of the ATLAS detector geometry and response using

4mW
T =

p
2p`

TEmiss
T (1 � cos ∆φ), where p`

T is the transverse momentum (energy) of the muon (electron)
and ∆φ is the azimuthal angle separation between the lepton and the direction of the missing transverse
momentum.
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Geant4 [65]. A faster simulation, where the full Geant4 simulation of the calorimeter
response is replaced by a detailed parameterisation of the shower shapes [66], was adopted
for some of the samples used to estimate systematic uncertainties. In these cases, the sys-
tematic uncertainties were estimated by comparing these alternative samples with versions
of the nominal samples that were also processed through the same fast detector simula-
tion. Simulated events are processed through the same reconstruction software as the data,
and corrections are applied so that the object identification efficiencies, energy scales and
energy resolutions match those determined from data control samples.

5.1 Signal modelling

Single production of T quarks was simulated with samples produced at leading order in the
four-flavour scheme with MadGraph5_aMC@NLO 2.3.3 [67], using NNPDF3.0lo [68]
PDF sets. The generator was interfaced to Pythia 8.212 [69] for the modelling of parton
showering and hadronisation. The matrix elements were calculated according to the phe-
nomenological model given in ref. [15] and all tree-level processes are included. The VLQs
are assumed to couple exclusively to SM quarks of the third generation. Separate samples
are generated for T (→ Ht)qb, T (→ Zt)qb, T (→ Ht)qt, and T (→ Zt)qt processes in the 1.0–
2.3 TeV mass range at fixed values of mass and κ. Matrix-element-based event weights [70]
calculated during the generation are used to reweight the events in each sample to other
values of mass and κ, to fill out a grid in the mass-κ plane. Samples at specific values of the
relative couplings ξW , ξZ and ξH are obtained by reweighting the samples for the individ-
ual production and decay modes according to their corresponding branching fractions and
combining them. All signal samples are normalised to cross sections calculated at next-to-
leading order (NLO) [71] in quantum chromodynamics (QCD). Since the NLO cross sections
were computed in a narrow-width approximation, a correction factor is applied to them to
account for finite-width effects [72] and an additional correction is applied to account for
non-resonant T -quark production [73]. A change in the dynamic scale in MadGraph at
the threshold ΓT /mT = 0.1 leads to a discontinuity in the computed cross section [73]. As
a result, two different parameterisations of the cross section are available: σlow(ΓT /mT ) for
the ΓT /mT < 0.1 regime, and σhigh(ΓT /mT ) for ΓT /mT > 0.1. An averaging procedure is
used in order to obtain a smooth cross section σ(ΓT /mT ) across the mass and coupling grid:

σ(ΓT /mT ) =

8
<

:
σlow(ΓT /mT ) + 1

2(σhigh(0.1)− σlow(0.1)), if ΓT /mT < 0.1
σhigh(ΓT /mT )− 1

2(σhigh(0.1)− σlow(0.1)), if ΓT /mT ≥ 0.1

An additional uncertainty of 1
2(σhigh(0.1) − σlow(0.1)) is assigned to the cross section

at every point to account for this choice.

5.2 Background modelling

After preselection, the main source of background is the production of tt̄. The production
of a top quark in association with a W boson (Wt) makes significant contributions in
regimes of high transverse momentum. The remaining background contributions originate
mostly from W+jets processes.
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The production of tt̄ and single-top-quark events was modelled using the
Powheg Box v2 [74–77] generator at NLO with the NNPDF3.0nlo [68] PDF set. The
hdamp parameter5 for tt̄ samples was set to 1.5mtop [78]. The events were interfaced to
Pythia 8.230 [69] to model the parton shower, hadronisation, and underlying event.

Samples to model Wt production were generated using the diagram removal
scheme [79], which is designed to remove interference and overlap with tt̄ production.
The related uncertainty is estimated by comparison with an alternative sample generated
using the diagram subtraction scheme [78, 79] and the same generator set-up as the nom-
inal sample. Separate samples were generated to model s-channel and t-channel single
top-quark production.

The uncertainty associated with using the chosen parton shower and hadronisa-
tion model is evaluated by comparing the sample from the nominal generator set-up
with a sample also produced with the Powheg Box v2 [74–77] generator using the
NNPDF3.0nlo [68] PDF set, but with the events interfaced with Herwig 7.04 [62, 80] to
model the parton shower and hadronisation.

To assess the uncertainty in the matching of NLO matrix elements and parton showers
for tt̄ samples, the Powheg Box sample is compared with a sample of events generated
with MadGraph5_aMC@NLO 2.6.0 interfaced with Pythia 8.230 [69]. The samples
used to estimate this uncertainty for single top-quark production were generated with
MadGraph5_aMC@NLO 2.6.2, also interfaced with Pythia 8.230 [69]. For both sam-
ples, the NNPDF3.0nlo set of PDFs [68] was used in the matrix-element calculations.

The tt̄ samples were generated inclusively, but events are categorised depending on the
flavour content of additional particle jets not originating from the decay of the tt̄ system
(see ref. [81] for details). Events labelled as either tt̄+≥1b or tt̄+≥1c are generically referred
to in the rest of the paper as tt̄+HF events, where HF stands for “heavy flavour”. The
remaining events are labelled as tt̄+light-jets events, including those with no additional jets.

The inclusive cross section for tt̄ production was corrected to the theory prediction
at next-to-next-to-leading order (NNLO) in QCD including the resummation of next-to-
next-to-leading logarithmic (NNLL) soft-gluon terms calculated using Top++ 2.0 [82–
88]. For proton-proton collisions at a centre-of-mass energy of

√
s = 13 TeV, this cross

section corresponds to σ(tt̄)NNLO+NNLL = 832± 51 pb using a top-quark mass of mtop =
172.5GeV. The cross-section uncertainties due to the PDF and αs were calculated using the
PDF4LHC15 prescription [89] with the MSTW2008nnlo [90, 91], CT10nnlo [92, 93]
and NNPDF2.3lo [61] PDF sets in the five-flavour scheme, and were added in quadrature
to the effect of the factorisation and renormalisation scale uncertainties.

The production of W/Z(V )+jets was simulated with the Sherpa 2.2.1 [94] generator
using NLO matrix elements for up to two partons, and leading-order (LO) matrix elements
for up to four partons, calculated with the Comix [95] and OpenLoops 1 [96–98] libraries.
They were matched with the Sherpa parton shower [99] using the MEPS@NLO prescrip-
tion [100–103] and the set of tuned parameters developed by the Sherpa authors. The

5The hdamp parameter is a resummation damping factor and one of the parameters that controls the
matching of Powheg Box matrix elements to the parton shower and thus effectively regulates the high-pT

radiation against which the tt̄ system recoils.
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NNPDF3.0nnlo set of PDFs [68] was used and the samples are normalised to a NNLO
prediction [104].

Samples of diboson final states (V V ) were simulated with the Sherpa 2.2.1 or 2.2.2 [94]
generator depending on the process, including off-shell effects and Higgs boson contribu-
tions, where appropriate. Only processes with at least one lepton in the final state are
considered in this search. Fully leptonic final states and semileptonic final states, where one
boson decays leptonically and the other hadronically, were generated using matrix elements
at NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to three
additional parton emissions. Samples for the loop-induced processes gg → V V were gener-
ated using LO-accurate matrix elements for up to one additional parton emission for both
the cases of fully leptonic and semileptonic final states. The matrix-element calculations
were matched and merged with the Sherpa parton shower based on Catani-Seymour dipole
factorisation [95, 99] using the MEPS@NLO prescription [100–103]. The virtual QCD cor-
rections were provided by the OpenLoops 1 library [96–98]. The NNPDF3.0nnlo set
of PDFs was used [68], along with the dedicated set of tuned parton-shower parameters
developed by the Sherpa authors.

The production of ttW and ttZ events was modelled using the Mad-
Graph5_aMC@NLO 2.3.3 [67] generator at NLO with the NNPDF3.0nlo [68] PDF
set. The events were interfaced to Pythia 8.210 [69]. The production of ttH events
was modelled using the Powheg Box v2 [74–77, 105] generator at NLO with the
NNPDF3.0nlo [68] PDF set. The production of tH events was modelled using the Mad-
Graph5_aMC@NLO 2.3.3 [67] generator at NLO with the NNPDF3.0nlo [68] PDF
set. Events in both of these samples were interfaced with Pythia 8.230 [69] for showering
and hadronisation. The production of four-top-quark events in the SM was simulated at
LO using MadGraph5_aMC@NLO 2.2.2 and the NNPDF2.3lo PDF set, interfaced to
Pythia 8.186 in combination with the A14 underlying-event tune, and normalised to the
NLO theoretical cross section.

Multijet events were generated using Pythia 8.230 [69] with leading-order matrix ele-
ments for dijet production and interfaced to a pT-ordered parton shower. Events from this
simulation are normalised to data in a multijet-enriched region obtained by inverting the
requirements on the Emiss

T and mW
T observables in the preselection, and also requiring the

lepton pT to be below 100 GeV.

6 Analysis strategy

The search described in this paper targets the production of a single T quark that decays
to a leptonically decaying top quark and a hadronically decaying Higgs or Z boson. Both
b-associated and t-associated single-T production are considered in the search. The four
resulting production and decay modes are:

1. T (→ Zt)qb: b-associated T production with T → Zt decay

2. T (→ Ht)qb: b-associated T production with T → Ht decay
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(a) (b)

Figure 2. Comparison of the shape of the distribution of (a) the central jet multiplicity, and (b)
the b-tagged jet multiplicity in the preselection region, between the total background (filled area)
and the signal scenarios considered in this search for T quarks with a mass of 1.6 TeV and κ = 0.5.
The last bin in each distribution contains the overflow.

3. T (→ Zt)qt: t-associated T production with T → Zt decay

4. T (→ Ht)qt: t-associated T production with T → Ht decay

To test for the presence of signal, a likelihood fit is performed on the distribution of the
meff variable (defined in section 4) across a set of 24 “fit regions” constructed from events
in the preselection sample. These regions are summarised in table 2. The fit regions are de-
signed to be pure in one or more of the four targeted signal modes, or in specific background
processes. The combined use of these regions in the fit allows the search to retain sensi-
tivity to all of the processes that can occur simultaneously in a benchmark model, and the
signal-depleted regions serve to improve the description of the expected background. In the
following, the strategy and motivation behind the event categorisation model is described.

Different T -quark production modes can be distinguished by the number of jets in the
final state, as illustrated in figure 2a. For b-associated signal production with a leptonically
decaying top quark and hadronically decaying Higgs or Z boson, four central jets are
expected in the final state at leading order in the four-flavour scheme. However, some of
these jets can merge due to the collimation of the decay daughters from boosted Higgs or Z
bosons. Furthermore, the initial b-quark from gluon splitting can sometimes be produced
at high pseudorapidity and therefore not be reconstructed in the central region. Conversely,
since exactly one lepton is required to be present in the final state, one of the top quarks
in events with t-associated production can be expected to decay hadronically, producing
extra jets. Based on these arguments, the basic category of regions targeting b-associated
production modes (henceforth labelled as LJ, standing for “Low Jet multiplicity”) are
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Fit regions

Jet mult. b-tag mult. Region Targeted signal / bkg

3–5

1
LJ, 1b, ≥1fj, 0(th+tl), 0H, ≥1V

T (→ Zt)qb
LJ, 1b, ≥1fj, 0th, ≥1tl, 0H, ≥1V

2
LJ, 2b, ≥1fj, 0(th+tl), 0H, ≥1V

LJ, 2b, ≥1fj, 0th, ≥1tl, 0H, ≥1V

3

LJ, 3b, ≥1fj, 0(th+tl), ≥1H, 0V

T (→ Ht)qb

LJ, 3b, ≥1fj, 0th, ≥1tl, ≥1H, 0V

LJ, 3b, ≥1fj, ≥1th, 0tl, ≥1H, 0V

≥4

LJ, ≥4b, ≥1fj, 0(th+tl), ≥1H, 0V

LJ, ≥4b, ≥1fj, 0th, ≥1tl, ≥1H, 0V

LJ, ≥4b, ≥1fj, ≥1th, 0tl, ≥1H, 0V

LJ, ≥4b, 0fj, ≥1tl, 0H, 0(V+th) tt̄+≥1b, tt̄+≥1c

≥6

1

HJ, 1b, ≥1fj, 0th, 1tl, 0H, ≥1V

T (→ Zt)qt

HJ, 1b, ≥1fj, 1th, 0tl, 0H, ≥1V

HJ, 1b, ≥1fj, ≥2(th+tl), 0H, ≥1V

2

HJ, 2b, ≥1fj, 0th, 1tl, 0H, ≥1V

HJ, 2b, ≥1fj, 1th, 0tl, 0H, ≥1V

HJ, 2b, ≥1fj, ≥2(th+tl), 0H, ≥1V

3

HJ, 3b, ≥1fj, 1tl, ≥1H, 0(V+th)

T (→ Ht)qt

HJ, 3b, ≥1fj, 0tl, ≥1H, 1(V+th)

HJ, 3b, ≥1fj, ≥1H, ≥2(V+tl+th)

≥4

HJ, ≥4b, ≥1fj, 1tl, ≥1H, 0(V+th)

HJ, ≥4b, ≥1fj, 0tl, ≥1H, 1(V+th)

HJ, ≥4b, ≥1fj, ≥1H, ≥2(V+tl+th)

HJ, ≥4b, 0fj, ≥1tl, 0H, 0(V+th) tt̄+≥1b, tt̄+≥1c

Table 2. Definition of the 24 regions (referred to as “fit regions”) that enter the likelihood fit.
Events are categorised in terms of jet (j), b-tagged jet (b), forward jet (fj), V -tagged jet (V), Higgs-
tagged jet (H), hadronic top-tagged jet (th ), and leptonic top-quark candidate (tl ) multiplicities.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of the shape of the distribution of (a) Higgs-tagged jet multiplicity, (b) lep-
tonic top-quark candidate multiplicity, (c) hadronic top-tagged jet multiplicity, (d) W/Z-tagged jet
multiplicity, (e) the forward jet multiplicity, and (f) the effective mass me� , between the total back-
ground (filled area) and the signal scenarios considered in this search for a T with a mass of 1.6TeV
and κ = 0.5, in the preselection region. The last bin in each distribution contains the overflow.
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required to have 3–5 jets, while regions targeting t-associated production modes (henceforth
labelled as HJ, standing for “High Jet multiplicity”) are required to have ≥6 jets.

The different T -quark decay modes are characterised by differences in the multiplicity
of b-tagged jets (figure 2b). Events with T → Zt decays typically contain fewer b-jets than
events with T → Ht decays, due to the dominant Higgs boson decay to bottom-quark pairs.
Accordingly, regions targeting T → Zt decays are required to have exactly 1 or 2 b-tagged
jets, while events with exactly 3 or ≥4 b-tagged jets are used to target T → Ht decays.

Since the top quark, Z boson or Higgs boson daughters of the heavy T quark are often
produced at high-pT in boosted states, signal events are characterised by high multiplicities
of tagged boosted objects. The distribution of the multiplicities of H-tagged (H) jets, lep-
tonic top-quark (tl) candidates, t-tagged (th) jets, and V -tagged (V ) jets in the preselection
region are shown in figures 3a–3d. The specific requirements on the multiplicities of these
boosted objects that are applied in each fit region are tailored to the signal or background
process targeted by that particular region. For example, regions in the ≥3b categories are
designed to be sensitive to T → Ht signals, and therefore at least one H-tagged jet is re-
quired in these regions. Conversely, at least one V -tagged jet is required in all regions of the
1–2b category, since these regions target T → Zt decays. Signal events with t-associated
T -quark production contain an additional top quark that can decay hadronically. There-
fore, the presence of a hadronic top-tagged jet is required in some signal regions. Events
can also have V -tagged jets arising from semi-boosted hadronic top quarks, in cases where
the decay products of the top quark are not collimated enough to produce a t-tagged jet.
Finally, an LJ region and HJ region are used in the fit to constrain the normalisation of
tt̄+≥1b and tt̄+≥1c backgrounds, requiring ≥4b and no boosted hadronic objects.

As discussed in section 1, the initial quark recoiling from the gauge boson in single-T
production often emerges at high pseudorapidity, resulting in the presence of jets in the
forward region (figure 3e). Thus, at least one forward jet (fj) is required in the signal-
enriched fit regions to increase the signal purity. On the other hand, a 0fj requirement is
applied in the regions used to control the tt̄+≥1b and tt̄+≥1c background normalisations,
in order to deplete the signal fraction in those regions.

Background predictions in the fit regions are validated in a set of 20 validation regions,
designed to be statistically independent of the fit regions and yet kinematically similar to
them (table 3). These regions are created by adopting a combination of inverted tagged
boosted-object multiplicity requirements, or specifically vetoing forward jets. The maxi-
mum allowed signal contamination in the overall yield in each validation region is required
to be <10%, assuming a signal cross section of 100 fb. This value was chosen as an upper
bound on the allowed cross section in the considered mass range, corresponding to the
observed exclusion limits from previous searches.

The choice of meff as the final fitted observable is driven by the strong signal discrim-
ination power of this observable, as can be seen in figure 3f. Due to the presence of highly
energetic jets and leptons from the decay of the T quark, the average meff in signal events is
much larger than in background events. The shape of the meff distribution depends on the
assumed mass mT of the T quark, as well as on the T -quark production and decay modes.
In particular, an extra factor of m2

T /s leads to an enhancement of the partonic cross sec-
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Validation regions

Jet mult. b-tag mult. Region

3–5

1

LJ, 1b, 0fj, 0th, 0tl, 0H, ≥1V

LJ, 1b, 0fj, 0th, ≥1tl, 0H, ≥1V

LJ, 1b, ≥1fj, ≥1(th+tl), 0H, 0V

LJ, 1b, ≥1fj, ≥1th, 0tl, 0H, ≥1V

2

LJ, 2b, 0fj, 0th, 0tl, 0H, ≥1V

LJ, 2b, 0fj, 0th, ≥1tl, 0H, ≥1V

LJ, 2b, ≥1fj, ≥1(th+tl), 0H, 0V

LJ, 2b, ≥1fj, ≥1th, 0tl, 0H, ≥1V

≥3
LJ, ≥3b, 0fj, 0(th+tl), ≥1H, 0V

LJ, ≥3b, ≥1fj, 0H, ≥1(V+tl+th)

≥6

1

HJ, 1b, 0fj, 1(th+tl), 0H, ≥1V

HJ, 1b, 0fj, ≥2(th+tl), 0H, ≥1V

HJ, 1b, ≥1fj, 0th, 0tl, ≥1H, ≥1V

HJ, 1b, ≥1fj, ≥2(th+tl), ≥1H, 0V

2

HJ, 2b, 0fj, 1(th+tl), 0H, ≥1V

HJ, 2b, 0fj, ≥2(th+tl), 0H, ≥1V

HJ, 2b, ≥1fj, 0th, 0tl, ≥1H, ≥1V

HJ, 2b, ≥1fj, ≥2(th+tl), ≥1H, 0V

≥3
HJ, ≥3b, 0fj, ≥1H, ≥1(V+tl+th)

HJ, ≥3b, ≥1fj, 0H, ≥1(V+tl+th)

Table 3. Event categorisation into validation regions in terms of jet (j), b-tagged jet (b), forward
jet (fj), V -tagged jet (V), Higgs-tagged jet (H), hadronic top-tagged jet (th ), and leptonic top-quark
candidate (tl ) multiplicities. The selection follows the same principle as the fit region categorisation
defined in table 2, but maintains orthogonality by inverting either the forward jet cut or the cuts
on tagged boosted objects.

– 17 –



JH
E
P
08(2023)153

tion at low centre-of-mass energies for the T (→ Ht)qb and T (→ Ht)qt processes [106], and
consequently the meff distribution shifts to lower values.6 Nevertheless, the discrimination
power of this observable is relatively independent of the signal model parameters, and the
search is therefore sensitive across a wide range of parameter space.

7 Kinematic reweighting of background

Recent measurements of differential cross sections have demonstrated that the current sim-
ulations of tt̄ processes overestimate the upper tail of the top-quark pT spectrum [107, 108].
Conversely, the cross section for this process is underestimated at high jet multiplici-
ties [107]. There are similar issues of accuracy in the modelling of W+jets processes [109]
in the regime of high jet multiplicities and/or high-HT (where HT is defined as the scalar
sum of the pT of central jets in the event). This leads to discrepancies in the shapes of the
meff and Njets spectra between the data and expected background in the kinematic regimes
relevant for this search. Data-driven reweighting factors are therefore used to correct the
observed discrepancies in these processes. These corrections are derived using the following
iterative procedure.

For a given group of background processes, a “reweighting source region” (RSR) is
first identified, which is enriched in events from that process group, and depleted in signal
events. Then, the reweighting factor Ra(x) for any observable x, for the process group a,
can be calculated as

Ra(x) = Data(x)−MCnon-a(x)
MCa(x) .

For each group of processes, reweighting factors are first derived from the jet multi-
plicity distribution. After correcting the Njets distribution of the process with this initial
reweighting, a second set of reweighting factors is derived as a function of a reduced meff
variable, which is defined as mred

eff = meff − (Njets − 3) × 50 GeV. The constant value of
50 GeV approximately corresponds to the average pT of each additional jet expected in tt̄
events. Thus, this definition makes the shape of the reweighting functions in the mred

eff vari-
able more consistent across Njets. The residual dependence on Njets is addressed by deriving
the reweighting in exclusive Njets bins. The mred

eff reweighting factors are parameterised by
sigmoid functions to mitigate statistical fluctuations.

The subdominant W (`ν)+jets background process is corrected first. However, since it
is difficult to isolate W (`ν)+jets events in the preselection sample with ≥1b selection, the
correction factors for this process are extrapolated from a sample enriched in Z(``)+jets
instead. This sample is obtained by selecting events containing exactly two leptons with
the same flavour and opposite electric charges, and requiring the invariant mass of the
lepton pair (m``) to be consistent with the Z boson mass (mZ). To match the kinematic
regime of the preselection more closely, events in this sample must also contain at least
three small-R jets, at least one of which is b-tagged. Contamination from tt̄ processes is
suppressed by requiring Emiss

T < 100 GeV. The corrections derived from this sample are

6Again, mT refers to the mass of the T quark, and s is the usual Mandelstam variable.
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Reweighting source regions
Lepton Jet b-tag

Other requirements
Targeted

multiplicity multiplicity multiplicity background
1 ≥3 2 — tt̄ + tW

2 ≥3 1
|m``−mZ | ≤ 10 GeV,

Z+jets
Emiss

T < 100 GeV

Table 4. Reweighting source regions from which the reweighting functions for tt̄ and tW production
and W/Z+jets production are derived.

applied to both theW+jets and Z+jets events in the preselection sample, before correction
factors for the tt̄ background are derived.

Since tt̄ events share the same final state as tW production, these two processes are
grouped together for the purposes of deriving the reweighting factors. A sample enriched
in tt̄+light-jets and tW production, selected by requiring exactly one lepton, at least three
small-R jets and exactly two b-jets, is used to derive combined correction factors for both
processes. The same correction factors are also applied to the tt̄+≥1b and tt̄+≥1c processes
in the analysis.

The selection requirements for the RSRs are summarised in table 4.
The meff distribution in the preselection region, before and after the application of the

full reweighting, is shown in figure 4. Since the preselection region is kinematically very
close to the RSRs, almost perfect agreement can be seen between the data and the expected
background after reweighting. As explained later in section 8, dedicated reweighting factors
are derived for the alternative simulations that are used to estimate the modelling uncer-
tainties for tt̄, Wt and W/Z+jets backgrounds. As a result, the modelling uncertainties
of these background processes vanish in the RSRs, and are small in regions that are kine-
matically close to them. This is reflected in the small uncertainty bands seen in figure 4.
The reweighted modelling uncertainties in the fit and validation regions are substantially
larger, since they are kinematically further away from the RSRs.

8 Systematic uncertainties

The impact of several sources of systematic uncertainty on the normalisation of signal
and background and/or the shape of the meff distributions is considered. Each systematic
uncertainty is considered to be correlated across processes, channels, and bins of the signal
discriminant, unless explicitly stated otherwise. Uncertainties from different sources are
considered to be uncorrelated with each other.

The leading sources of uncertainty in this search arise from the modelling of the tt̄
and single-top Wt backgrounds, the flavour-tagging efficiencies (b, c and light), and the jet
mass resolution. The relative contributions of these uncertainties vary depending on the
analysis region, and therefore their relative impact on the search sensitivity depends on
the signal process being considered. The following sections describe each of the systematic
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Figure 4. Comparison of the me� distribution between the data and unreweighted (blue dashed
line) and reweighted (stacked histograms) background predictions in the preselection region before
the likelihood fit. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and multijet
backgrounds. The last bin in the distribution contains the overflow. The bottom panel displays the
ratios of data to the total background predictions.

uncertainties considered in this analysis. An overview of the combined impact of the
different groups of systematic uncertainties is furthermore given in table 7.

8.1 Experimental uncertainties

Uncertainties associated with leptons arise from the efficiencies of the trigger selection,
reconstruction, identification, and isolation criteria, as well as the lepton momentum scale
and resolution. These are measured in data using Z → `+`−, W → `ν and J/ψ →
`+`− events [39, 110]. The combined effect of all these uncertainties results in an overall
normalisation uncertainty in signal and background of approximately 1%.

Uncertainties associated with jets arise from the jet energy scale (JES) and resolu-
tion (JER), the jet mass scale (JMS) and resolution (JMR), and the efficiency of the
JVT requirements imposed to reject jets from pile-up. The JES and JER uncertainties
are estimated by combining information from collision data, test-beam data and simula-
tion [44, 111]. The JES (JER) uncertainties are split into 30 (8) uncorrelated components,
corresponding to different physical sources. The uncertainty in the JMS is estimated by
comparing each nominal sample with two corresponding alternative event samples, in which
the mass of each jet is either raised or lowered by 10%, respectively. The uncertainty in
the JMR is estimated by comparing each nominal sample with an alternative event sample
in which the mass of each jet is smeared by a Gaussian function whose width is shifted
by 20% relative to the nominal JMR. As previously mentioned, the above uncertainties
associated with jets are propagated to the RC jets from which the hadronic tagged boosted
objects are constructed.
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The flavour-tagging efficiencies for b-, c-, and light-jets in simulation are corrected
to match efficiencies measured in data control samples. Uncertainties in these efficiencies
are also estimated in these auxiliary measurements, following the methods described in
refs. [112–114]. A set of nine independent uncertainty sources are considered for b-jets,
while five sources are considered for c-jets, and six components are considered for light-
flavour jets. These components are taken to be uncorrelated among b-jets, c-jets, and
light-jets. An additional extrapolation uncertainty component is considered for high-pT

jets that are outside the kinematic reach of the calibration data sample; it is taken to be
correlated amongst the jet flavours. Finally, an uncertainty related to the application of
the c-jet scale factors to τ -jets is considered, but has a negligible impact in this analysis.

8.2 Background modelling uncertainties

An uncertainty of +5.5/−6.1% is assigned to the inclusive tt̄ production cross section [88],
including contributions from varying the factorisation and renormalisation scales, and from
uncertainties in the PDF, αs, and the top-quark mass, all added in quadrature. Normali-
sation uncertainties of 50% each are assigned to the normalisation of tt̄+≥1b and tt̄+≥1c
processes. These uncertainties are motivated by the observed level of agreement between
data and simulation in dedicated measurements of the cross section of the tt̄+≥1b pro-
cess [115]. For single-top processes, a ±5% uncertainty in the total cross section, estimated
as a weighted average of the theoretical uncertainties in t-, Wt- and s-channel produc-
tion [116–118], is included.

A number of sources of systematic uncertainty affecting the modelling of tt̄+jets and
single-top production are considered. Uncertainties due to the choice of the NLO genera-
tor are estimated by comparing the nominal Powheg+Pythia 8 samples with alternative
samples generated by MadGraph5_aMC@NLO and showered by Pythia 8. The nomi-
nal samples are compared with Powheg+Herwig 7 samples to estimate the uncertainties
in the modelling of the parton showering and hadronisation processes. The alternative
samples used to evaluate modelling uncertainties are described in detail in section 5.2. The
uncertainty due to initial-state radiation (ISR) is estimated by simultaneously varying the
hdamp parameter and the renormalisation and factorisation scales, and choosing the Var3c
up/down variants of the A14 tune as described in ref. [119]. The impact of final-state
radiation (FSR) is evaluated by doubling or halving the renormalisation scale for emis-
sions from the parton shower. The NNPDF3.0lo replicas are used to evaluate the PDF
uncertainties for the nominal PDF. These uncertainties are all considered to be uncorre-
lated among tt̄+light-jets, tt̄+≥1c, tt̄+≥1b and single-top samples, but correlated across
the subcategories of the single-top background (s-channel, t-channel or tW ). Furthermore,
these uncertainties are treated as uncorrelated amongst LJ and HJ analysis regions and
regions with 0, 1 or ≥2 tagged boosted objects. The impact of this correlation scheme
on the search sensitivity was studied and compared with a scheme where the modelling
uncertainties are correlated across all fit regions. The expected cross-section limits are
around 10% higher with the current correlation scheme for low VLQ masses, whereas the
impact is negligible for high mass signals.
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An additional systematic uncertainty in Wt-channel production, concerning the sep-
aration between tt̄ and Wt at NLO [79], is assessed by comparing the nominal sample,
which uses the so-called “diagram removal” scheme, with an alternative sample using the
“diagram subtraction” scheme.

The uncertainties in the modelling of the W/Z+jets backgrounds are estimated by
varying the values of the internal renormalisation and factorisation scale parameters in
Sherpa. An additional ±30% normalisation uncertainty for the W/Z+jets background
is considered for events in analysis regions with different b-tag multiplicity (1, 2, 3, ≥4),
uncorrelated among b-tag multiplicities. This uncertainty is based on variations of the
factorisation and renormalisation scales and Sherpa matching parameters [120]. Since a
dedicated reweighting of the jet multiplicity spectrum is applied to V+jets events, these
uncertainties are considered to be correlated between LJ and HJ regions. Each of these
uncertainties is also considered to be correlated between W+jets and Z+jets processes.

The kinematic reweighting of the main background processes (described in section 7)
is also derived for each of the modelling uncertainties described above, so that each al-
ternative background model matches the data (and the nominal background prediction)
in the reweighting source regions. Thus, the role of the modelling uncertainties after this
reweighting is to account for extrapolations in kinematics and background composition
between the reweighting source region and the fit and validation regions.

Uncertainties in the reweighting procedure itself arise mainly from the statistical un-
certainties in the reweighting source regions and the choice of the functional form for
parameterisation. These uncertainties are evaluated by shifting the fitted function to ±2σ
from its nominal value using the uncertainties of the fitted parameters and taking their
internal correlations into account. These shifts represent possible variations in both the
scale and the shape of the reweighting function, although the functional form of the pa-
rameterisation is not altered.

Since the diboson, tt̄W/Z and tt̄H processes contribute a small fraction of the events
in the fit regions, their shape uncertainties have a negligible impact on the results, and
only cross-section uncertainties are considered. The assigned uncertainties, due to the
PDF and scale uncertainties in the NLO calculation, are ±15% for tt̄W/Z (treated as
uncorrelated between LJ and HJ regions), and +9/−12% for tt̄H. Uncertainties in the
diboson background include a 5% uncertainty in the inclusive cross section calculated at
NLO [121]. An additional uncorrelated 24% uncertainty in the production cross section
is considered for each additional jet in the event, based on a comparison among different
algorithms for merging LO matrix elements and parton showers [122]. The uncertainty
estimate is based on the average jet multiplicity in each fit region, which is approximately
three in the LJ regions (i.e. one additional jet from radiation) and six in the HJ regions
(i.e. four additional jets from radiation). A ±30% normalisation uncertainty is considered
for the production of additional heavy-flavour jets. Since the leading two b-tagged jets in
diboson events are expected to arise from W → cs or Z → bb decays, this uncertainty is
only applied to fit regions with ≥3 b-jets. All of these uncertainties are added in quadrature
in each region, and the resulting uncertainty is treated as uncorrelated between LJ and HJ
regions, as well as between low-b (1–2b) and high-b (≥3b) regions. The total normalisation
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uncertainty for diboson processes in LJ regions is 24% and 38% in low- and high-b regions,
respectively; in HJ regions it is 48% and 56% in low- and high-b regions, respectively.

9 Statistical analysis

For each benchmark scenario considered in this search, the meff distributions across all
search regions are jointly analysed to test for the presence of the predicted signal. A
binned likelihood function L(µ, θ) is constructed as a product of Poisson probability terms
over all meff bins considered in the search.

The likelihood function depends on the signal-strength parameter µ, which multiplies
the predicted production cross section for signal, and θ, a set of nuisance parameters that
encode the effect of systematic uncertainties in the signal and background expectations.
Therefore, the expected total number of events in a given bin depends on µ and θ.

Nuisance parameters corresponding to all systematic uncertainties are implemented in
the likelihood function with Gaussian constraints. In each bin of the meff distributions,
uncertainties due to the limited size of the simulated samples are also taken into account
by dedicated parameters in the fit that are independent across bins. These parameters are
implemented with Poisson constraints.

For a given value of µ, variations in the nuisance parameters θ allow the expectations for
signal and background to change according to the corresponding systematic uncertainties.
The fitted values of θ correspond to deviations from the nominal expectations that globally
provide the best fit to the data. This procedure reduces the impact of systematic uncertain-
ties on the search sensitivity and improves the background prediction by taking advantage
of the highly populated background-dominated regions included in the likelihood fit.

The improvement in the background prediction is verified by performing fits under
the background-only hypothesis and checking how well the data agrees with the post-fit
background in validation regions that are disjoint from the regions used in the fit.

The test statistic qµ, as implemented in a framework based on RooStats [123, 124] and
HistFitter [125], is defined as the profile likelihood ratio: qµ = −2 ln(L(µ, ˆ̂

θµ)/L(µ̂, θ̂)).
Here, µ̂ and θ̂ are the values of the parameters µ and θ that simultaneously maximise the
likelihood function L(µ, θ) (subject to the constraint 0 ≤ µ̂ ≤ µ), whereas ˆ̂

θµ are the values
of the nuisance parameters that maximise the likelihood function for a given value of µ.
The statistic used for the discovery test, to test the compatibility of the observed data with
the background-only hypothesis, is obtained by setting µ = 0 in the profile likelihood ratio
and leaving µ̂ unconstrained: q0 = −2 ln(L(0, ˆ̂

θ0)/L(µ̂, θ̂)). The p-value of the discovery
test is given by the integral of the probability distribution of q0 above the observed q0 value
when assuming the background-only hypothesis, and it is computed using the asymptotic
approximation detailed in ref. [126]. For each signal scenario considered, the upper limit
on the signal production cross section is computed using qµ in the CLs method [127, 128],
also in the asymptotic approximation. For a given signal scenario, values of the production
cross section (parameterised by µ) yielding CLs < 0.05 are excluded at ≥ 95% CL. The
exclusion limits obtained using the asymptotic approximation are then compared with
limits calculated using pseudoexperiments for 2 TeV benchmark signal points close to the

– 23 –



JH
E
P
08(2023)153

obtained constraints. The central values of the limits computed using the two methods
agree within 5%, while the uncertainty bands agree within 10%–15%.

10 Results

10.1 Likelihood fits to data

A likelihood fit, as described in section 9, is performed under the background-only hypoth-
esis. A comparison between the overall observed and expected yields in each fit region is
shown, before and after the fit to data, in figure 5. As can be seen, the combined impact
of the systematic uncertainties has been constrained as a result of the fit, using informa-
tion from the large number of events in signal-depleted regions with different background
contributions. Consequently, an improved background prediction is obtained with reduced
uncertainty across regions, including those with significant fractions of expected signal
events. The data and pre- and post-fit background yields in four of the most sensitive
search regions are given in table 5 and table 6, respectively.

The pre- and post-fit meff distributions in these four regions are furthermore shown in
figure 6 and figure 7. The post-fit agreement between the data and prediction in the fit
regions is good overall. A comparison of the observed and expected yields in all validation
regions, pre- and post-fit, is shown in figure 8. The pre- and post-fitmeff distributions in the
validation regions closest to the four selected fit regions are shown in figure 9 and figure 10.
The expected background in these regions agrees with the data within uncertainties, both
before and after the fit. The general post-fit improvement in the estimated background in
the validation regions, which are not included in the fit, gives confidence in the background
estimation procedure.

The impact of the different sources of uncertainty on the signal-strength parameter µ
is reported in table 7 for a T singlet and T doublet signal near the expected sensitivity of
the search. As can be seen, the results are dominated by systematic uncertainties. The
largest overall impact is related to the modelling of background processes, in particular
tt̄+≥1b production. The systematic uncertainty associated with jets also has a significant
impact. The relative size of impacts from different sources of uncertainty differs between
T singlet and T doublet signals due to their kinematic differences. Uncertainties related to
tt̄+≥1b modelling and b-tagging contribute significantly more in the T doublet scenario,
whereas single-top modelling has a larger impact in the T singlet scenario.

The data-driven kinematic reweighting procedure described in section 7 provides better
agreement between the data and the nominal pre-fit background, and, as described in
section 8, modelling uncertainties affecting the dominant background processes are also
reweighted. This procedure improves the stability of the likelihood fit. However, the fit
is robust against these changes to the pre-fit background model, and the post-fit values of
the modelling uncertainties are not significantly impacted by the reweighting procedure.
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Figure 5. Comparison between the data and background prediction for the yields in each of the
fit regions considered (top) pre-fit and (bottom) post-fit, performed under the background-only
hypothesis. The two rightmost regions shown in the plot are the 3–5j (LJ) and ≥6j (HJ) control
regions, respectively. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and
multijet backgrounds. The expected T singlet signal (solid red) for mT = 1.6 TeV and κ = 0.5 is
included in the pre-fit figure. The bottom panels display the ratios of data to the total background
prediction. The hashed area represents the total uncertainty in the background.
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LJ, 2b, ≥1fj,
0th , ≥1tl , 0H,

≥1V

LJ, ≥4b, ≥1fj,
0th , ≥1tl , ≥1H,

0V

HJ, 2b, ≥1fj,
≥2(th+tl ), 0H,

≥1V

HJ, ≥4b, ≥1fj,
≥1H,

≥2(V+tl+th )
T singlet

31.8 ± 4.9 7.2 ± 3.5 1.3 ± 0.4 1.0 ± 0.5
(mT = 1.6 TeV, κ= 0.5)
T doublet

21.8 ± 2.4 8.5 ± 5.6 7.3 ± 2.1 7.1 ± 4.5
(mT = 1.6 TeV, κ= 0.5)
tt̄+light-jets 1170 ± 210 1.6 ± 2 39.1 ± 9.5 0.49 ± 0.29
tt̄+≥1c 143 ± 80 1.5 ± 1.3 15.3 ± 9.9 0.86 ± 0.58
tt̄+≥1b 57 ± 32 4.8 ± 3.9 6.1 ± 4.3 2.6 ± 2
Single-top 250 ± 50 0.66 ± 0.87 7.3 ± 7.5 <0.001
tt̄W/Z 13.2 ± 3.1 0.33 ± 0.19 2.5 ± 1.1 0.22 ± 0.82
ttH 1.5 ± 0.2 0.51 ± 0.15 0.34 ± 0.14 0.42 ± 0.12
W+jets 25.7 ± 9.4 0.70 ± 1.3 1.2 ± 1.1 0.24 ± 0.15
Z+jets 4.4 ± 1.7 <0.001 0.25 ± 0.10 0.007 ± 0.007
Dibosons 3.8 ± 1.4 0.02 ± 0.03 0.21 ± 0.15 <0.001
Multijet 12.9 ± 7.3 0.025 ± 0.017 0.61 ± 0.46 0.16 ± 0.14
Rare backgrounds 2.0 ± 0.3 0.03 ± 0.04 0.25 ± 0.14 0.33 ± 0.06
Total background 1690 ± 280 10.2 ± 4.8 73 ± 20 5.4 ± 2.5
Data 1519 10 64 7

Table 5. Predicted and observed yields in four of the most sensitive search regions (depending on
the signal scenario) considered. The background prediction is shown before the fit to data. The
“rare backgrounds” category includes the VH, tZ and tt̄tt̄ backgrounds. Also shown are the signal
predictions for different benchmark scenarios considered. The individual systematic uncertainties
for the different background processes can be correlated, and do not necessarily add in quadrature
to equal the systematic uncertainty in the total background yield. The quoted uncertainties are the
sum in quadrature of statistical and systematic uncertainties in the yields.
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LJ, 2b, ≥1fj, 0th ,
≥1tl , 0H, ≥1V

LJ,≥4b,≥1fj, 0th ,
≥1tl , ≥1H, 0V

HJ, 2b, ≥1fj,
≥2(th+tl ), 0H,≥1V

HJ,≥4b,≥1fj,≥1H,
≥2(V+tl+th )

tt̄+light-jets 1033 ± 72 0.6 ± 0.8 33.6 ± 4.5 0.57 ± 0.24
tt̄+≥1c 144 ± 54 1.5 ± 1.0 15.6 ± 5.5 0.82 ± 0.32
tt̄+≥1b 75 ± 22 8 ± 3 8.2 ± 2.3 3.8 ± 1.1
Single-top 223 ± 55 0.09 ± 0.55 2.3 ± 4.5 <0.001
tt̄W/Z 12.1 ± 2.3 0.36 ± 0.18 2.3 ± 0.8 0.62 ± 0.76
ttH 1.46 ± 0.21 0.51 ± 0.11 0.29 ± 0.08 0.40 ± 0.09
W+jets 26.6 ± 7.1 0.6 ± 1.0 0.8 ± 0.5 0.22 ± 0.13
Z+jets 4.5 ± 1.2 <0.001 0.27 ± 0.08 0.005 ± 0.006
Dibosons 3.4 ± 1.2 0.017 ± 0.029 0.17 ± 0.13 <0.001
Multijet 9.5 ± 5.7 0.018 ± 0.015 0.45 ± 0.41 0.12 ± 0.12
Rare backgrounds 2.0 ± 0.2 0.03 ± 0.03 0.22 ± 0.08 0.31 ± 0.05
Total background 1534 ± 56 12.1 ± 3.5 64 ± 8 6.8 ± 1.5
Data 1519 10 64 7

Table 6. Predicted and observed yields in four of the most sensitive search regions (depending
on the signal scenario) considered. The background prediction is shown after the fit to data under
the background-only hypothesis. The “rare backgrounds” category includes the VH, tZ and tt̄tt̄

backgrounds. The individual systematic uncertainties for the different background processes can be
correlated, and do not necessarily add in quadrature to equal the systematic uncertainty in the total
background yield. The quoted uncertainties are computed after taking into account correlations
among nuisance parameters and among processes. The statistical uncertainty is added in quadrature
to the systematic uncertainties.
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(a) (b)

(c) (d)

Figure 6. Comparison between the data and prediction for the me� distribution under the
background-only hypothesis, in the (LJ, 2b, ≥1fj, 0th , ≥1tl , 0H, ≥1V) region (a) pre-fit and (b)
post-fit, and the (LJ, ≥4b, ≥1fj, 0th , ≥1tl , ≥1H, 0V) region (c) pre-fit and (d) post-fit. The expected
T singlet signal (solid red) for mT = 1.6 TeV and κ = 0.5 is included in the pre-fit figures. The “oth-
ers” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and multijet backgrounds. The bottom
panels display the ratios of data to the total background prediction. The hashed area represents
the total uncertainty in the background. The last bin in each distribution contains the overflow.
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(a) (b)

(c) (d)

Figure 7. Comparison between the data and prediction for the me� distribution under the
background-only hypothesis, in the (HJ, 2b, ≥1fj, ≥2(th+tl ), 0H, ≥1V) region (a) pre-fit and
(b) post-fit, and the (HJ, ≥4b, ≥1fj, ≥1H, ≥2(V+th+tl )) region (c) pre-fit and (d) post-fit. The
expected T doublet signal (solid purple) for mT = 1.6 TeV and κ = 0.5 is included in the pre-fit
figures. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and multijet back-
grounds. The bottom panels display the ratios of data to the total background prediction. The
hashed area represents the total uncertainty in the background. The last bin in each distribution
contains the overflow.
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Figure 8. Comparison between the data and background prediction for the yields in each of the
VRs considered (top) pre-fit and (bottom) post-fit, performed under the background-only hypothesis
considering only the fit regions. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson,
and multijet backgrounds. The expected T singlet signal (solid red) formT = 1.6 TeV and κ = 0.5 is
included in the pre-fit figure. The bottom panels display the ratios of data to the total background
prediction. The hashed area represents the total uncertainty in the background.
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(a) (b)

(c) (d)

Figure 9. Comparison between the data and prediction for the me� distribution under the
background-only hypothesis, in the (LJ, ≥3b, ≥1fj, 0H, ≥1(V+tl+th )) validation region (a) pre-fit
and (b) post-fit, and the (LJ, ≥3b, 0fj, 0(th+tl ), ≥1H, 0V) validation region (c) pre-fit and (d)
post-fit. The expected T singlet signal (solid red) for mT = 1.6 TeV and κ = 0.5 is included in the
pre-fit figures. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and multijet
backgrounds. The bottom panels display the ratios of data to the total background prediction. The
hashed area represents the total uncertainty in the background. The last bin in each distribution
contains the overflow.
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(a) (b)

(c) (d)

Figure 10. Comparison between the data and prediction for the me� distribution under the
background-only hypothesis, in the (HJ, ≥3b, ≥1fj, 0H, ≥1(V+tl+th )) validation region (a) pre-fit
and (b) post-fit, and the (HJ, ≥3b, 0fj, ≥1H, ≥1(V+tl+th )) validation region (c) pre-fit and (d)
post-fit. The expected T doublet signal (solid purple) for mT = 1.6 TeV and κ = 0.5 is included in
the pre-fit figures. The “others” background includes the tt̄ V/H, VH, tZ, tt̄tt̄, diboson, and multijet
backgrounds. The bottom panels display the ratios of data to the total background prediction. The
hashed area represents the total uncertainty in the background. The last bin in each distribution
contains the overflow.
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T singlet T doublet
mT = 1.5 TeV, κ = 0.4 mT = 1.5 TeV, κ = 0.7

Uncertainty source ∆µ ∆µ
Process modelling uncertainties

tt̄+light-jets ±0.05 ±0.11
tt̄+≥1c ±0.03 ±0.08
tt̄+≥1b ±0.09 ±0.27
Single-top ±0.12 ±0.07
W/Z+jets ±0.03 ±0.09

Object uncertainties
Jets ±0.07 ±0.13
b-tagging ±0.03 ±0.11

Other sources ±0.02 ±0.04
Background reweighting ±0.04 ±0.11
Total systematic uncertainty ±0.23 ±0.33
Total statistical uncertainty ±0.09 ±0.17

Table 7. Breakdown of the contributions to the uncertainties in µ, shown for the singlet T signal
with κ = 0.4 and the doublet T signal with κ = 0.7, both with mT = 1.5 TeV. The contributions
from the different sources of uncertainty are evaluated after the fit. The ∆µ values are obtained
by repeating the fit after having fixed a certain set of nuisance parameters corresponding to a
group of systematic uncertainties, and then evaluating (∆µ)2 by subtracting the resulting squared
uncertainty of µ from its squared uncertainty found in the full fit.
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10.2 Limits on single vector-like quark production

No significant excess above the SM prediction is found in any of the considered regions in
the background-only fit. Unconditional fits with a floating signal-strength parameter µ were
also consistent with the background-only hypothesis. Upper limits at 95% CL on the single-
T production cross section are derived in both the singlet (T ) and doublet (T B) scenarios.

The observed cross-section limits at each point in the parameter space are compared
with the NLO theoretical prediction to set exclusion limits on model parameters. Since
the theory cross-section calculations with finite-width effects and non-resonant contribu-
tions are only reliable for relative T -quark widths (ΓT /mT ) up to ∼50% [106], results are
presented only in this restricted regime.

The obtained limits corresponding to the singlet and doublet scenarios are shown in
figure 11 and figure 12, respectively, for a set of three values of the common coupling param-
eter κ, chosen to approximately span the sensitivity range of the search in each scenario.
The corresponding limits are also derived in the mass versus coupling plane, where exclusion
contours indicate the interpolated intersection between the planes of excluded and theoret-
ically predicted cross sections, shown in figure 13 for both the singlet and doublet scenarios.
Additionally, upper limits on the production cross section of both the singlet and doublet
scenarios are derived as a function of mass and coupling, as shown in figures 14 and 15. As
expected, the exclusion limits on the T -quark mass are generally stronger in the singlet sce-
nario than in the doublet scenario. All T -quark masses below 2.1 TeV (expected 1.9 TeV)
are excluded for singlet T quarks at couplings κ ≥ 0.6. At a mass of 1.6 TeV, κ values above
0.3 (expected 0.41) are all excluded. By comparison, the previous ATLAS search in the all-
hadronic T → Ht channel has excluded κ values above ∼0.5 (expected ∼0.65) at a mass of
1.6 TeV [21]. In the doublet scenario, the limits on the considered mass range extend down
to coupling values of κ = 0.55, corresponding to a T -quark mass limit of 1.0 TeV. Masses
up to 1.68 TeV are excluded at κ = 0.75, at a relative T -quark width threshold of 50%.

The expected limits on the cross section get progressively stronger at larger masses
in both scenarios, as the decay products of the T quark become more boosted, and the
fraction of signal in the highest meff bins increases. The limits deteriorate at larger values
of κ, since this regime corresponds to large resonance width and a larger fraction of the
signal resides in the low mass regime away from the peak of the resonance. As can be seen,
the observed limits exceed the expected limits in both benchmark scenarios in a few cases.
These deviations are larger for the singlet scenario, reaching almost 2σ at high masses.
These findings can be ascribed to downward statistical fluctuations in a few of the most
signal-sensitive bins, most notably in the last bin of the (LJ, ≥4b, ≥1fj, 0th, ≥1tl, ≥1H,
0V) region, which has no data events, and the last few bins of the (HJ, ≥4b, ≥1fj, 0th,
1tl, ≥1H, 0V) region. The origin of these discrepancies was investigated, and no evidence
of any systematic bias was found. Notably, the pre- and post-fit meff distributions in the
corresponding validation regions, shown in figure 9 and figure 10, respectively, exhibit good
agreement between the data and expectations. Several other fit regions with kinematic
features and background compositions similar to those in the two regions mentioned above
show good agreement between data and predictions. The observed discrepancies were
therefore deemed to be consistent with statistical fluctuations.
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Finally, the results are interpreted in a more generalised representation of the param-
eter space, displaying the largest excluded mass as a function of ΓT /mT and the relative
coupling parameter ξW (figure 16). As discussed in section 1, the T -quark width is deter-
mined by the T -quark mass mT and the universal coupling constant κ and is independent
of the multiplet representation. The relative coupling parameter ξW controls the branching
fraction B(T → Wb). For ease of representation, the limits are shown for the assumption
ξZ = ξH , which is valid for all VLQ multiplet scenarios in the phenomenological model
discussed in section 1. Since the relative coupling constants ξW,Z,H must sum to unity,
the assumption of equal ξZ and ξH fully determines the values of these parameters for any
given value of ξW .

In all of the benchmarks considered in this search, only the contributions from T -quark
production were taken into account. In particular, limits presented in the doublet (T B)
scenario neglect contributions from B-quark production. The most relevant signature of
B-quark production for this analysis would occur in the B →Wt decay channel, when the
top quark decays leptonically and the W boson decays hadronically. This process has a
signature almost identical to the T → Zt decay signatures considered in the search, and
would therefore make very similar contributions to the fit regions. By the same argument,
contributions from B-quark production in the RSRs and the background control regions
are expected to be negligible. Thus, the limits presented for the doublet scenario in this
paper can be considered to be conservative.
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(a) (b) (c)

Figure 11. Observed (solid black line) and expected (dashed black line) 95% CL upper limits
on the single-T production cross section as a function of the T -quark mass in the singlet scenario
with the common coupling parameter (a) κ = 0.2, (b) κ = 0.4, and (c) κ = 0.6. The surrounding
shaded bands correspond to ±1 and ±2 standard deviations around the expected limit. The red line
shows the NLO theoretical cross-section prediction, with the surrounding shaded band representing
the corresponding uncertainty. Limits are only presented in the regime ΓT /mT ≤ 50%, where the
theory calculations are known to be valid, as indicated by the vertical grey dashed line.

(a) (b) (c)

Figure 12. Observed (solid black line) and expected (dashed black line) 95% CL upper limits
on the single-T production cross section as a function of the T -quark mass in the doublet scenario
with the common coupling parameter (a) κ = 0.2, (b) κ = 0.4, and (c) κ = 0.6. The surrounding
shaded bands correspond to ±1 and ±2 standard deviations around the expected limit. The red line
shows the NLO theoretical cross-section prediction, with the surrounding shaded band representing
the corresponding uncertainty. Limits are only presented in the regime ΓT /mT ≤ 50%, where the
theory calculations are known to be valid, as indicated by the vertical grey dashed line.
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Figure 13. Observed (solid black line) and expected (dashed black line) 95% CL exclusion limits
on the universal coupling constant κ as a function of the T -quark mass in the (a) SU(2) singlet and
(b) SU(2) doublet scenarios. All values of κ above the black contour lines are excluded at each mass
point. The shaded bands correspond to ±1 and ±2 standard deviations around the expected limit.
The red hashed area around the observed limit corresponds to the theoretical uncertainty of the
NLO cross-section prediction. The grey dashed lines represent configurations of (mT , κ) resulting
in equal values of the relative resonance width ΓT /mT . Limits are only presented in the regime
ΓT /mT ≤ 50%, where the theory calculations are known to be valid.
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Figure 14. (a) Observed and (b) expected 95% CL exclusion limits on the cross section times
branching ratio of single T -quark production as a function of the universal coupling constant κ
and the T -quark mass in the SU(2) singlet scenario. The red hashed area around the observed
limit corresponds to the theoretical uncertainty of the NLO cross-section prediction. All values of
κ above the black contour line are excluded at each mass point. The purple contour lines denote
exclusion limits of equal cross section times branching ratio in units of fb. Limits are only presented
in the regime ΓT /mT ≤ 50%, where the theory calculations are known to be valid.
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(a) (b)

Figure 15. (a) Observed and (b) expected 95% CL exclusion limits on the cross section times
branching ratio of single T -quark production as a function of the universal coupling constant κ
and the T -quark mass in the SU(2) doublet scenario. The red hashed area around the observed
limit corresponds to the theoretical uncertainty of the NLO cross-section prediction. All values of
κ above the black contour line are excluded at each mass point. The purple contour lines denote
exclusion limits of equal cross section times branching ratio in units of fb. Limits are only presented
in the regime ΓT /mT ≤ 50%, where the theory calculations are known to be valid.

(a) (b)

Figure 16. (a) Observed and (b) expected upper limits at 95% CL on the T -quark mass as a
function of the relative resonance width (ΓT /mT ) and the relative coupling parameter ξW , for the
assumption B(T → Ht) = B(T → Zt). The white contour lines denote exclusion limits of equal
mass in units of GeV. The white regions represent points in parameter space that are not excluded
for any mass in the considered range.
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11 Conclusion

A search for the single production of up-type vector-like quarks (T ), with subsequent decays
T → Ht with H → bb̄ or T → Zt with Z → qq̄, is presented. The search uses pp collision
data at

√
s = 13 TeV, collected by the ATLAS detector at the LHC during the 2015–2018

Run 2 data-taking period. The recorded dataset corresponds to an integrated luminosity of
139 fb−1. Events are analysed in the lepton+jets final state, characterised by the presence
of a single lepton and multiple jets and b-jets in the event. The search exploits the presence
of boosted, hadronically decaying Higgs and vector bosons, and hadronically or leptonically
decaying top quarks in signal events.

No significant excess above Standard Model expectations is observed, and 95% CL
upper limits are set on the production cross section of single T quarks. The results are
interpreted in benchmark scenarios to set limits on the mass and universal coupling strength
(κ) of the vector-like quark. For singlet T quarks, all masses below 2.1 TeV are excluded at
couplings κ ≥ 0.6, while the limits extend down to κ = 0.3 for a T -quark mass of 1.6 TeV.
For T quarks in the doublet scenario, where the production cross section is much lower,
coupling values as low as κ = 0.55 are excluded at a T -quark mass of 1.0 TeV. The limits
extend up to 1.68 TeV and κ = 0.75, at a threshold of 50% relative T -quark width.
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