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Chapter 4

Volatility: Expectations and

realizations

“Not to be absolutely certain is, I think, one of the essential things in rationality” (Bertrand

Russell, 1947).

4.1 Introduction

At the heart of financial markets are market expectations. Embedded in option prices are

market expectations regarding future volatility of the asset on which the option contract

is written. While the assumption of rational expectations has been a popular (as well

as convenient) paradigm, it is difficult to ignore the subjective nature of expectations

as evidenced in recent empirical studies. Han (2008) and Constantinides et al. (2009)

denote two such examples for the options market. “A growing literature shows that S&P

500 options are mispriced or not efficiently priced relative to a large class of rational

option pricing models ... These lead to calls for research outside traditional rational option

pricing” (Han, 2008; page 387). The proposed way forward is to extend the option pricing

framework “to incorporate imperfect market and/or imperfect rationality” (Han, 2008;

page 410), which will ultimately fit the empirical data better.1

1Han (2008) finds that investor sentiment, for example, plays an important role in determining option
prices; “there is no guarantee that sentiment-induced mispricing will get corrected over a given horizon
because of unpredictable investor sentiment in the future” (Han, 2008; page 390). As is to be expected,
“the impact of sentiment is stronger when there are more limits to arbitrage” (Han, 2008; page 408).
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The objective of this chapter is to make market expectations visible as they evolve over

time, and to price options in line with prevailing expectations, be they rational or non-

rational. Like financial volatility, market expectations are hidden. If not rational, market

expectations can take on many different forms. Capturing expectations accurately is key

for pricing options accurately. The expectation formation process denotes an integral part

of the option pricing model.

Consider a European Call option contract that gives the owner the right to buy a

specified quantity of an asset on which the contract is written (the underlying) at a specified

future time (the expiration date) for a specified price (the strike price). Given the current

price of the underlying asset, and the risk-free interest rate prevailing until expiration, the

value of the option contract will be determined by the anticipated future volatility of the

asset price. Agents trading option contracts are speculating on future volatility, in effect

making the option market a market for financial volatility. “Because option value depends

critically on expected future volatility, the volatility expectation of market participants

can be recovered by inverting the option valuation formula” (Dumas, Fleming and Whaley,

1998).

Traditionally, implied volatility expectations are obtained by inverting the Black-Scholes

and Merton (BSM) option pricing model that is built on the assumption that volatility

fluctuates deterministically over time. The BSM model can be inverted for each strike

price, but it predicts that all implied volatilities are the same. The well-documented smile

and smirk pattern, that emerges when implied volatility is plotted against the strike price,

contradicts the assumption of deterministic volatility.

We now know that volatility is best described by a stochastic process. Assuming that

the market acknowledges the stochastic nature of volatility, implied volatility expectations

will take on the form of a probability density function (pdf). Unlike traditional implied

volatility, the implied pdf cannot be obtained from data on a single strike price. Instead,

the option data for all strike prices jointly determine the implied pdf of volatility. So

there can be no disagreement between different strike prices, there is only one implied pdf

between them. The latter collapses to the traditional measure of implied volatility only in

the event that the market believes volatility to be deterministic.

The 1987 stock market crash provides a great example where market expectations can

be seen to change over time, arguably due to learning behaviour. Constantinides et al.

(2009) note that “before the crash, option traders were using average historical volatility

to price options and were not actively forecasting volatility changes”. Although justifiable
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at the time perhaps, it does not sit well with rational expectations; “option traders were

extensively using the BSM pricing model and the dictates of this model were imposed

on the option prices even though these dictates were not necessarily consistent with the

time series behavior of index prices” (Constantinides et al., 2009; page 1271). Market

participants like most humans are creatures of habit, until they are shaken out of their

comfort zone. In their studies of this transition, Jackwerth and Rubinstein (1996) and

Bates (2000), among others, compare the subjective distribution of asset prices obtained

from option prices to the objective distribution. They find that through the eyes of the

market, the volatility process before and after the crash of 1987 is fundamentally different.

As the objective distributions show no sign of such change in the volatility process, this

suggests that the market has changed instead.2 Market expectations are more aligned with

objective data after the crisis. Yet, recent findings by Constantinides et al. (2009) still

“cast doubts on the hypothesis that the option market is becoming more rational over

time, particularly after the crash” (Constantinides et al., 2009; page 1271).

We put forward an analytically convenient option pricing framework that accommo-

dates both stochastic volatility and asymmetric volatility. The latter, also known as the

Fischer Black effect, captures an important stylized fact of asset prices, namely that volatil-

ity rises in times of negative price changes and drops in times of positive price changes.

Option pricing models that do not accommodate this feature are found to be seriously mis-

specified (see e.g. Andersen et al., 2002). The way we incorporate asymmetric volatility

may be viewed as the simplest possible extension of the Hull and White (1987) stochastic

volatility model. It offers an alternative to the Heston (1993) model. Both our model and

Heston (1993) are nested as a special case in the generalized Black-Scholes model of Garcia

et al. (2003a, 2010) (see also Garcia and Renault, 2001, and Garcia et al., 2003b).

Daily estimates of the implied pdf of volatility are obtained by estimating the option

pricing model one day at a time.3 This means that we choose not to capture the dynamics

of the volatility process, as perceived by the market, into a parametric model and then

estimate the model parameters using the time series of option prices (from which one

could re-construct the implied pdfs of volatility). Instead we keep the volatility model

as simple as possible. Our sole interest is the implied distribution of volatility which

2Note that over time, agents may change their beliefs as well as their preferences. They may learn
about the volatility process, and they may adjust their risk-aversion. If either of these changes happened
abruptly, and were large enough, both might in principle be able to explain the findings linked to the crash
of 1987. In this chapter, our interest is to inspect the subjective expectations held by the market as they
evolve over time during every-day-trading-days, in a post-crash period, and assess market rationality.

3Estimation is based on the cross-section of option prices for different strike prices.
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can be estimated directly, without having to first identify the model that underlies the

distribution of volatility. Each new day’s implied distribution of volatility is treated as

a new (independent) parameter, whose estimate is not tied to estimates for other days

in the sample. We worry not whether our simplistic model for volatility can rationalize

the obtained time-series of implied pdfs. Market expectations are driven by many factors,

including sentiment, therefore it is unlikely that any one model will be able to capture its

time-variation. We explicitly do not want to impose too much structure a priori on how

the market updates its expectations over time, but allow market expectations to take their

course, and permit them to deviate freely from rational expectations.

Note that volatility here refers to the average variance over the remaining lifetime of

the option. Even though the implied pdf of volatility is the natural measure to consider for

volatility expectations in a world where volatility is stochastic, studies of the implied pdf

of volatility and its time-variation are still uncommon. Upon replacing tradition implied

volatility with the implied pdf of volatility, a popular empirical question that is worthwhile

revisiting is whether volatility expectations contained in option prices yield better predic-

tions of future volatility than predictors based on past (realized) volatility (see e.g. Busch

et al. (2011), and the references therein).

Under the standard assumption that volatility risk is not priced, comparing the implied

pdf to estimates of the objective pdf of average volatility opens the door for testing of

market rationality. The objective pdf, however, is not easily estimated. For any given

period in time we observe at best the level of average volatility that has been realized, but

not the distribution from which it has been drawn. Yet, under suitable assumptions, daily

obervations of realized volatility will lend itself for estimating moments of the objective

pdf that can then be compared to moments of the subjective pdf. An example of such a

moment is the degree of persistence in volatility, which determines how fast the volatility

of average volatility declines when increasing the time to expiration. Similarly, estimates

of realized volatility may be compared to the first moment of the implied pdf (although

the former denotes a noisy estimate).

Our first empirical findings include: (i) the first moment of the implied pdf closely

follows estimates of average realized variance, (ii) estimates of implied persistence in vari-

ance suggest that the market is fully aware of the fact that variance exhibits long-range

dependence, and (iii) market expectations about future average variance appear to exhibit

a degree of foresight.

In addition to fitting our option pricing model to the data, we include an analytic study
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of the implied variance function. The analytic expressions obtained show how the implied

variance function is shaped by the model parameters. These results help with gauging the

ability of the model to fit the empirical data, and may also be used in the estimation of

the model parameters.

The remainder of the chapter is organized as follows. Section 4.2 presents our data.

The theoretical framework is presented in Section 4.3 which includes the derivation of the

option pricing model. Subsequently we study the implied variance function in Section 4.4.

In Section 4.5 we discuss the method of estimation and provide a brief evaluation of model

performance. Section 4.6 presents the empirical results. Finally, Section 4.7 concludes.

4.2 Data

4.2.1 Underlying value

For the underlying value we consider the German DAX stock index. The data used in our

empirical illustration covers a period of one year: December 15, 2005 until December 15,

2006. We derive the price data from the most actively traded future on the DAX, which

is the one with the shortest time to expiration. For the future’s price we take the average

between the bid and ask price recorded daily at 17:30 (the option prices too are recorded

at 17:30).

The DAX stock index is corrected for dividends on the underlying stocks, which means

that dividends are automatically reinvested. We view this as a convenient property. Alter-

natively, we would first need to derive the (expected) dividends until expiration ourselves,

and correct the underlying prices accordingly.

Since we need not worry about dividends, the price of the underlying at time t denoted

by St can be obtained by:

St = Ft,T e
−r(T−t), (4.1)

where Ft,T denotes the future price at time t with expiration T > t, and where r denotes

the instanteneous interest rate (which for the sake of simplicity is assumed constant). Our

interest rate data consists of quotes on the 1-12 month Euribor rate. The time t anual

interest rate for any 0 < t < T is obtained by means of linear interpolation.
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4.2.2 Realized volatility

We construct a measure of realized variance for the underlying value by using tick-by-

tick data on the DAX future(s) for the period December 15, 2005 until December 15,

2006. While the DAX future is traded from 9:00 until 20:00, the future is not traded very

actively any more after the closing of stock trading at 17:30. For this reason we will focus

on intraday future prices between 9:00 and 17:30.

Let Ftn,j denote the jth observation of the future price at day n corresponding to time

tn.4 The length of the interval between subsequent obervations measures two minutes,

which yields a total of 255 observations per day. The sum of the intraday squared returns

will define our measure of quadratic variation rvtn at day n:

rvtn =
(
logFtn,1 − logFtn−1,255

)2
+

255∑
j=2

(
logFtn,j − logFtn,j−1

)2
.

The DAX future is among the most liquid futures on the European market which helps

curb the effects of market microstructure, even at two minute intervals.

We use the daily realized variances to construct measures of average (anual) variance

over periods with varying times to expiration T−t (as t approaches T ). A confirmation that

realized variance provides accurate estimates of the stochastic variance process, such that

standardized returns are indeed standard normal, can be found in e.g. Peters and de Vilder

(2006). For a more elaborate discussion of realized variance we refer to Barndorff-Nielsen

and Shephard (2002), and the references therein.

4.2.3 Option prices

Our option data consists of both puts and calls on the German DAX stock index, which

are of the European type, with expiration date December 15, 2006 (the third Friday of the

month). For each trading day between December 15, 2005 and December 15, 2006 (one

year to expiration), we have both bid and ask prices recorded at 17:30 for a large series of

strike prices. The number of strikes available varies by day. There tends to be no trade

in options when the difference between their strike price and the value of the DAX has

become too large. Also new strikes are introduced as the underlying value reaches new

price levels over time.

4For notational convenience we supressed the indicator for expiration time.
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Let us briefly summarize the construction of the option price data we use in the em-

pirical illustration. For each strike price we have at most four daily observations:

(Cb, Ca, Pb, Pa) (4.2)

where Cb, Pb (Ca, Pa) denote the bid (ask) price of the put and call option, respectively.

For notational convenience we supressed the indicator for t. As there are no quoting

obligations at the German option market, it is possible that the vector above is only

partially observable. Provided there exists at least one bid price, and one ask price, the

vector (Cb, Ca, Pb, Pa) can in principle be fully reconstructed using the put-call parity:

S + P a − Cb = Ke−r(T−t), (4.3)

where K denotes the strike price, and where r denotes the interest rate.

We estimate r by exploiting the put-call parity for strike prices for which we have both

the call and the put price.5 This yields an implied interest rate for each strike price. We

take the average as our estimate for r. It follows that the estimated r closely matches the

trend of the (interpolated) Euribor rate. We do observe a small bias. For much of the

period, our estimate for r is slightly lower (2.7 versus 3 percent at the start of the period

in December, 2005; 3 versus 3.5 half a year later). The two converge however toward

expiration. Our estimate for r is used in the estimation of the option pricing model.

As puts and calls are directly related, we focus on one of them, which will be the call

price. We either use the actual quote on the call option, or the price derived from the

corresponding put using the put-call parity. If both are available, the one with the smaller

bid-ask spread is used. We decided to drop option prices if they fall below 50 cents. Once

the appropriate adjustments have been made, the price of the call we will work with is the

mid-price:

C(t, T,K) =
Cb(t, T,K) + Ca(t, T,K)

2
. (4.4)

Let Nt denote the number of option prices available at time t, and let Ki(t, T ) with

i = 1, . . . , Nt denote the corresponding strike prices. As we will be estimating implied

pdf’s (of average volatility) for each day t separately, it is important that Nt is sufficiently

large as it denotes the number of observations available to construct these daily estimates.

Let mt (Mt) measure the minimum (maximum) strike price as a fraction of the price of

5We exclude options whose price is less than 50 cents and options that are far out of the money (with
a log moneyness below −0.10).
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the underlying at day t:

mt = min{K1(t, T ), . . . , KNt,T (t, T )}/St (4.5)

Mt = max{K1(t, T ), . . . , KNt,T (t, T )}/St. (4.6)

Expiry # Days N̄ m̄ M̄

2006-12 257 26.2 0.852 1.184

Table 4.1: Summary statistics of option price data set

Table 4.1 presents the summary statistics for our option price data set; it shows the

total number of trading days, the average number of observations per trading day, and the

average of mt and Mt. Note that averages are taken over the total number of trading days.

4.3 Option pricing framework

4.3.1 Model for underlying value

This section introduces our model for the stock price process. We formulate our model in

discrete time, which provides an analytically convenient framework that is accommodating

to asymmetric volatility.6 The model is built on the probability space (Ω,F ,P). Let

0 = t0 < . . . < tN = T denote the timepoints at which we observe price quotes. For

notational convenience we assume they are equidistant7, ∆t = tn−tn−1. At each timepoint

tn the information available to the market is denoted by Fn, n = 0, . . . , N . Formally,

Fn, n = 0, . . . , N is an increasing sequence of σ-algebras with F0 = {∅,Ω} and FN = F .

Conditional on Fn−1 the price of a stock Sn is determined by:

Sn = Sn−1 exp

(
µn∆t− Vn

2
∆t+ (βVn − γn)∆t+ V

1
2
n ∆t

1
2Un

)
(4.7)

Vn = hn(Wn), (4.8)

where V0, . . . , VN denotes the variance process, which is assumed bounded in L2. The

random variables Un andWn, n = 1, . . . , N , are measurable with respect to Fn. Conditional

6For arguments in favour of discrete time, other than analytical convenience, see e.g. Brennan (1979)
and Rubinstein (1976a).

7It is straightforward to generalize this to allow for non-equidistant timepoints.
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on Fn−1 the random variable Un is normally distributed with mean zero and unit variance.

The variable Wn is independent of Fn−1. Moreover, the sequences (Un)Nn=1 and (Wn)Nn=1

are independent.

Assumption 4.1 The processes (γn)Nn=0 is deterministic and satisfies:

γn = ∆t−1 log(E[exp(βVn∆t)|Fn−1]), (4.9)

which yields:

µn = ∆t−1 logE[(Sn/Sn−1)|Fn−1]. (4.10)

With Assumption 4.1 we rule out the possibility of arbitrage opportunities where per-

sistently low (high) values of Vn would yield predictably higher (lower) returns. While

Assumption 4.1 places strong restrictions on the stochastic volatility model, it is found

to be effective in the sense that the framework accommodates asymmetric (stochastic)

volatility, fits the empirical data well (as we will show later), and preserves analytical con-

venience. For a number of popular stochastic volatility models, for which γn would be

stochastic, the option pricing formula may be viewed as an accurate approximation where

it is no longer exact.8

β governs the degree of asymmetric volatility.9 For non-zero β we have that stock

returns are correlated with the variance process. Negative values are consistent with the

Fischer Black effect, a key stylzed fact of the stock price process: Volatility is high in times

of negative price changes, and volatility is low in times of positive price changes.

Vn measures the variance of the log asset price return when Vn is known. In what follows

we will derive quadratic variation rvtn and treat this as realizations of Vn. Note that at any

time prior to time tn both Vn and rvtn are random variables. While we observe rvtn ex post,

we do not observe realizations of Vn. Instead we estimate the distribution of Vn conditional

on the information that is available at times prior to tn, and then consider the first moment

of this distribution as an estimate for Vn (and compare this to rvtn). Conditional on Fn−1

8Examples of such stochastic volatility models are the autoregressive models and simple regime switch-
ing models for parameter values that correspond to a strong persistence in volatility.

9Asymmetric volatility can be captured in different ways. In our model the volatility shocks that
correlate with the asset return are modeled as deviations from the ‘local mean’. This choice is largely
motivated by analytic convenience; it follows that the latent stochastic volatility process in this case
only impacts option prices via its average over time to expiration. The stochastic volatility model of
Heston (1993) denotes a well-known alternative where volatity shocks are modeled as incremental changes
in volatility. While this imposes fewer restrictions on the volatility process, the pricing of options now
require integration over the joint distribution of average volatility and the volatility at expiration.
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we have that var[log (Sn/Sn−1)|Fn−1] = E[Vn|Fn−1]∆t + (β − 1
2
)2var[Vn|Fn−1]∆t2. The

second term however can be made arbitrarily small relative to the first term by choosing

∆t arbitrarily small, so that var[log (Sn/Sn−1)|Fn−1] ≈ E[Vn|Fn−1]∆t.

Average variance V is given by:

V =
N∑
n=1

Vn/N. (4.11)

Let ϕ denote the probability density function of V . The first two moments of ϕ will be

denoted by λ = E[V ] and ν = var[V ]. Let us define γ = T−1 log(E[exp(βTV )]). If the

variance of V is positive then the distribution of stock price returns is leptokurtic. It

follows that skewness largely depends on the parameter β.

Without loss of generality, we pick t0 = 0 as our reference point at which options with

expiration time T will be priced.

4.3.2 Pricing of options

When “trading takes place only at discrete intervals, it is in general not possible to con-

struct a portfolio containing the contingent claim and the underlying asset in such pro-

portions that the resulting portfolio return is non-stochastic” (Brennan, 1979).10 But even

in continuous time, when volatility is stochastic and the corresponding risks cannot be

hedged, markets are incomplete, such that we cannot price derivatives via risk-free repli-

cating portfolios, as can be done in e.g. Black and Scholes (1973) and Cox, Ross and

Rubinstein (1979). In the more realistic setups where volatility is stochastic and trading

is not continuous, it is however still possible to derive option pricing formulas. It follows

that preferences and consumption will then play a role.

The Stochastic Discount Factor (SDF) provides a general framework for asset pricing.

The fundamental equation states that the price Pn of an asset at time tn with payoff Gn+1

solves:

Pn = E [mn+1Gn+1|Fn] , (4.12)

where the (positive) random variable mn+1 denotes the SDF. Expectations are taken over

the objective probability distribution. The SDF mn+1 is used to price all assets (includ-

ing derivatives), with the bond price Bn,n+1 (E[mn+1] = Bn,n+1) and the stock price Sn

10For conditions under which the Black-Scholes formula can be obtained within a discrete-time model
see e.g. Merton (1973) and Rubinstein (1976b). They assume, however, that volatility is non-stochastic.
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(E[mn+1Sn+1] = Sn) nested as obvious special cases. For a recent overview on option pric-

ing see Garcia et al. (2003a, 2010), who adopt the SDF framework to derive a generalized

Black-Scholes model.

In a multi-period setting the SDF is given by the concatenation of the one-period SDFs:

mN
0 =

N∏
n=1

mn. (4.13)

Accordingly, the price of a contingent claim P0 at t0 with payoff G(SN) is given by:

P0 = E
[
mN

0 G(SN)|F0

]
. (4.14)

Consider the following two assumptions on the SDF which we borrow from Garcia et

al. (2003a):

Assumption 4.2 The distribution of (log(mn), log(Sn/Sn−1)) conditionally on Fn−1 and

Wn is bivariate normal for n = 1, . . . , N .

Assumption 4.3 The pair (log(mn), log(Sn/Sn−1)) is independent of Fn−1 given W1, ...Wn−1

for n = 1, . . . , N .

It follows that when Assumptions 4.2 and 4.3 are satisfied, and U1, . . . , UN are i.i.d. normal,

contingent claims can be priced via risk neutral valuation relationships (RNVR), which

permits the following convenient representation (see Garcia et al., 2003a):

P0 = e−rTEQ [G(SN)|F0] . (4.15)

Here Q denotes the risk-neutral probability measure. Under this new measure the drift

exp(
∑N

n=0 µn∆t) of the stock price process is shifted to exp(rT ).

Albeit not explicitly, Assumptions 4.2 and 4.3 make assumptions about investors pref-

erences. By definition the SDF is determined by:

mn+1 = β
u′(Cn+1)

u′(Cn)
, (4.16)

where Cn denotes aggregate consumption at time tn, and u the investor’s utility func-

tion. Equation (4.16) can be derived from optimizing utility. Note that Assumption 4.2 is



76 CHAPTER 4. VOLATILITY: EXPECTATIONS AND REALIZATIONS

satisfied when we assume a power utility function, and that returns on aggregate wealth

log(Cn/Cn−1) equal returns on the stock log(Sn/Sn−1). Brennan (1979) was the first to

show that these are necessary and sufficient for RNVR in a one-period setting11. Assump-

tion 4.3 is included to extend these results to the multi-period case. Note that we implicitly

make the standard assumption that volatility risk is noncompensated.

The following theorem derives the price of an European call option, given our model

for the underlying value, as a function of β and ϕ, and the Black-Scholes option pricing

formula.

Theorem 4.1 Given our model for the underlying value, and Assumptions 4.1, 4.2 and

4.3, we have that the price of a call Cϕ(K,S, r, T ) = e−rTEQ[(ST − K)+] at time t0 = 0

with expiration date T and strike price K solves:

Cϕ(K,S, r, T ) = EV [e(βV−γ)TCBS(K,S, r(V ), T, V )] (4.17)

=

∫ ∞
0

e(βv−γ)TCBS(K,S, r(v), T, v)ϕ(v)dv, (4.18)

with r(v) = r+ (βv− γ), and where CBS(K,S, r(v), T, v) denotes the Black-Scholes option

pricing formula with volatility
√
v:

CBS = SΦ(d+)−Ke−r(v)TΦ(d−) (4.19)

d± = (ln (S/K) + (r(v)± v

2
)T )/
√
vT , (4.20)

with Φ the standard normal distribution function.

Proof. The proof follows directly from Garcia et al. (2003a, 2010). It can be verified

that our model is nested as a special case of their generalized Black-Scholes model (GBS);

equations (4.7) and (4.8), and Assumptions 4.1 to 4.3, are seen to satisfy Assumptions 2.2

to 2.4 of Garcia et al. (2003a).12 The GBS solves (see eq. (2.16) in section 2.6.2 of Garcia

11Assumption 4.2 thus implicitly assumes that preferences can be described by a power utility function,
as Brennan (1979) does. Yet, Brennan (1979) assumes these preferences only to establish conditional joint
lognormality of (mn+1, Sn+1), which allows him to derive RNVR. For this reason Garcia et al. (2003a,
2010) directly assume Assumption 4.2 instead. Note that Assumption 4.3 is also borrowed from Garcia et
al. (2003a, 2010).

12In Garcia et al. (2010), the same assumptions are implied by the model given in eq. (2.27) and (2.28)
in section 2.6.
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et al., 2003a):13

C0 = E0[ξ0,TS0Φ(d+)−Ke−rTΦ(d−)], (4.21)

where ξ0,T solves:

ξ0,T = E

[
mN

0

SN
S0

|W1, ...,WN

]
(4.22)

= e−rTEQ

[
SN
S0

|W1, ...,WN

]
(4.23)

= e(βV−γ)T , (4.24)

with E[ξ0,T ] = 1. The first E[.] takes expectations over the joint distribution of the

stochastic discount factor mN
0 and the log-return SN/S0. In the second step we make use

of the RNVR that holds due to Assumptions 4.2 and 4.3 (see eq. (2.8) and (2.9) on page 12

of Garcia et al., 2003a). Substituting this into equation (2.16) from Garcia et al. (2003a)

then yields:

Cϕ(K,S, r, T ) = SEV
[
e(βV−γ)TΦ(d+)−Ke−rTΦ(d−)

]
, (4.25)

where expectations are taken over stochastic (average) variance V . After rearranging terms

we obtain equation (4.17).

It can be verified that our model is nested as a special case of the generalized Black-Scholes

model (see e.g. Garcia et al., 2010). Note that for β = 0 we obtain the Hull and White

(1987) option pricing model.14

4.4 Implied variance function

Let us define money-ness by x = log( K
exp (rT )S0

). It will also be convenient to define:

cBS(x, T, v) = CBS(K,S, r, T, v)/S

= Φ(d+(x, T, v))− exΦ(d−(x, T, v)),

13The original equation (2.16) features the ratio B∗(0, T )/B(0, T ) where B∗(0, T ) denotes the bond price
conditional on the latent state variable W . For our model B∗(0, T ) = B(0, T ).

14For an early overview on the empirical performance of alternative option pricing models, which include
the popular Hull and White (1987) and Heston (1993) models, see e.g. Bakshi et al. (1997).
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where d±(x, T, v) = − x√
vT
± 1

2

√
vT . Similarly, we define cϕ by:

cϕ(x, T ) = Cϕ(K,S, r, T )/S

= EV [e(βV−γ)TCBS(K,S, r(V ), T, V )/S]

= EV [e(βV−γ)T cBS(xV , T, V )]

= EV [e(βV−γ)T (Φ(d+(xV , T, V ))− exV Φ(d−(xV , T, V )))]

= EV [e(βV−γ)TΦ(d+(xV , T, V ))− exΦ(d−(xV , T, V ))],

where xV = x − (βV − γ)T . (Note that in obtaining the last equation we used that:

e(βV−γ)T exV = ex.)

Definition 4.1 The implied variance function I(x) for the option pricing model from The-

orem 4.1 is defined as the solution to the following integral equation:

cBS(x, T, I(x)) =

∫ ∞
0

e(βv−γ)T cBS(x− (βv − γ)T, T, v)ϕ(v)dv

= cϕ(x, T ).

The function I(x) is single-valued for each x, which follows from the invertibility of cBS as

a function of variance v.

Next we will derive selected properties of I(x). As symmetric volatility (β = 0) versus

asymmetric volatility (β 6= 0) denotes an important distinction, both analytically and

empirically, we will discuss them in separate subsections.

4.4.1 Symmetric stochastic volatility

In this subsection we will assume β = 0.

Theorem 4.2 The implied variance function I(x) is quasi-convex:

∂I(x)/∂x < 0 if x < x∗

∂I(x)/∂x > 0 if x > x∗,

where x∗ denotes the unique minimum that is attained at x∗ = 0.

Proof. To proof follows from Theorem 4.2 of Renault and Touzi (1996), in which it is

assumed that volatility risk is noncompensated (Assumption 2.3), as it is in our framework.
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Theorem 4.3 The implied variance function I(x) is symmetric:

I(x) = I(−x) ∀x. (4.26)

Proof. The proof follows directly from Proposition 3.1 of Renault and Touzi (1996).

Theorem 4.2 and 4.3 show that I(x) is both quasi-convex and symmetric for β = 0. Note

that I(x) need not be a convex function, as is illustrated by the following example.

Example 4.1 Suppose that the pdf of V is given by:

ϕ(v) =
1

v1 − v0

1[v1,v0](v), v1 > v0 > 0. (4.27)

Then v0 < I(x) < v1, and hence the function I(x) cannot be convex.

Empirical IV Fitted IV 

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

0.01

0.02

0.03

0.04

0.05

Empirical IV Fitted IV 

Figure 4.1: Mismatch when imposing symmetric volatility (June 23, 2006)

It follows that the symmetry and the location of the minimum of the implied variance

function do not depend on ϕ. Provided that ϕ has positive dispersion (the market believes

in stochastic volatility), we will observe a smile where the minimum is attained at x∗ = 0.

While the empirical implied variance function exhibits a smile pattern, the theoretical

implied variance function in case of symmetric volatility (β = 0) typically does not fit the

empirical data well. Figure 4.1 shows a typical mismatch. Two observations are apparant.

First, and most notably, the horizontal alligment of the theoretical miminum (x∗ = 0) does

not match with the empirical minimum of the smile. Second, while the theoretical smile

is always symmetric, the empirical smile is not.
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4.4.2 Asymmetric stochastic volatility

Asymmetric volatility (obtained for β 6= 0) will introduce both asymmetry in the implied

variance function and a shift in where it attains its minimum.

Conjecture 4.1 The minimum of I(x) satisfies:

x∗ ≈ −2βTI(x∗). (4.28)

If the relationship from Conjecture 4.1 is not exact, our simulation results suggest that

it holds as a close approximation. Assuming that Conjecture 4.1 holds true in general,

it confirms that for β < 0 the minimum of the implied variance function is attained at

x∗ > 0, which is consistent with the empirical data. Given that β and I(x∗) are finite, the

conjecture also predicts that the location of the minimum tends to zero (x∗ → 0) when

time to expiration tends to zero (T → 0).

Corollary 4.1 Assuming Conjecture 4.1 holds true and |β| <∞, we have:

lim
T→0

x∗(T ) = 0. (4.29)

For the empirical variance function we indeed see that the minimum moves closer to x∗ = 0

as time to expiration T becomes smaller. Where the empirical minimum does not exactly

respect x∗ → 0 for T → 0, it holds approximately. Finally, note that β = 0 implies x∗ = 0

for any time to expiration T , such that the conjecture is also consistent with what we know

for β = 0.

Empirical IV Fitted IV 

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

0.01

0.02

0.03

0.04

0.05

Empirical IV Fitted IV 

Figure 4.2: Fit for asymmetric empirical smile (June 23, 2006)
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Figure 4.2 plots the empirical implied volatility function together with the fitted theo-

retical values where we allowed for β < 0. We used the same empirical data as in Figure

4.1. Now that asymmetric volatility is accounted for, we observe a nearly perfect match.

The minimum of the implied variance function perfectly coincides with the empirical min-

imum (compare Figure 4.1 with Figure 4.2), and also the skewness introduced for β < 0 is

in line with the empirical smile.

Conjecture 4.1, assuming it holds true, also suggests that we can estimate β as a function

of the minimum (x∗, I(x∗)) of the empirical implied variance function: β̂ = −1
2

x∗

TI(x∗)
.

Next we will derive the asymptotic left and right slopes of the theoretical implied

variance function. If both the left and right slope coefficients can be observed for the

empirical implied variance function, they too can be used to construct an estimate for β.

Let αR and αL measure the slopes of linear “asymptotes” to implied variance:

αR(T ) := lim
x→∞

sup
I(x, T )

|x|/T
(4.30)

αL(T ) := lim
x→−∞

sup
I(x, T )

|x|/T
. (4.31)

Using this notation, the tail slopes of I(x) (in absolute value) will be αR/T and αL/T . For

any model for the underlying value ST , the coefficients αR and αL belong to the interval

[0, 2] (see Lee, 2004), which confirms that I(x) becomes flat when T tends to infinity.

Given a model, the exact values are entirely determined by the following two moments of

the distribution of ST :

p := sup{p : E[S1+p
T |F0] <∞} (4.32)

q := sup{q : E[S−qT |F0] <∞}. (4.33)

The relationship between (p, q) and (αR, αL) is given by (see Lee, 2004):

αR = 2− 4
(√

p2 + p− p
)

(4.34)

αL = 2− 4
(√

q2 + q − q
)
. (4.35)

In the next theorem p and q are derived for our model.

Theorem 4.4 Let E[V ] = λ and var[V ] = ν. In case average variance V is Gamma or

Inverse Gaussian distributed, the moments p and q, as defined in eq. (4.32) and (4.33),
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are given by:

p = (
√
ξ − 1

2
)− β (4.36)

q = (
√
ξ − 1

2
) + β, (4.37)

where

ξ = (β − 1

2
)2 +

λ

νT
cϕ. (4.38)

with cϕ = 1 in case of Inverse Gaussian, and cϕ = 2 in case of Gamma.

Proof. The proof is given in the Appendix.

For β < 0 the result implies αR > αL, which is consistent with empirical data. Note that

only for β = 0 we have p = q. In other words, αR = αL if and only if β = 0, which denotes

the symmetric case.

Corollary 4.2 Let ϕ denote the Gamma or Inverse Gaussian pdf. Then, the degree of

asymmetry β can be derived from:

β =
1

2
(q − p), (4.39)

where p and q are uniquely determined from αR and αL. Subsequently, λ/ν can be solved

from the expression for q (or p) from Theorem 4.4:

λ

ν
= q2Tc−1

ϕ − 2q(β − 1

2
)Tc−1

ϕ . (4.40)

Proof. The proof is straightforward, and therefore omitted.

It thus follows that the degree of asymmetry β can easily be derived from the empirical

values of αR and αL, independent of the values of the other model parameters.

The next theorem provides an analytical approximation of I(x) as a function of the

moments of ϕ without making further assumptions about the functional form of ϕ.

Theorem 4.5 Let E[V ] = λ, var[V ] = ν, and γ = T−1 log(E[exp(βTV )]). Without

further assumptions about the pdf ϕ, the implied variance function I(x) can be approximated
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by:

I(x) ≈ λ+
κ

4v0

(
x2

v0T
− 1− v0T

4

)
+ βκT

(
β +

1

2
+

x

v0T
+ (v0T )

1
2 (β − 2ψ

κT
)a(x)

)
,

where

a(x) =
Φ(d−(x))

φ(d−(x))
,

with d−(x) = 1
2
(v0T )

1
2 − x(v0T )−

1
2 . The functions Φ and φ denote the standard normal

cumulative distribution and density function. Variance level v0 is defined by:15

v0 =

{
γ/β

λ

if

if

β 6= 0

β = 0

The parameters (ψ, κ) are given by: ψ = v0 − λ, and κ = ν + (v0 − λ)2.

Proof. The proof is given in the Appendix.

In the symmetric volatility case (β = 0), the approximation of the implied variance function

is indeed symmetric around x = 0 where it attains its minimum:16

I(x|β = 0) ≈ λ+
ν

4λ2

(
x2

T
− λ− λ2

4
T

)
. (4.41)

It follows that the curvature of the ‘smile’ is determined by ν/Tλ2. The implied variance

function becomes flat when ν/T → 0, while the smile will be most prominent close to

expiration (T → 0), or when ν is large. For ν = 0, regardless of β, we know that I(x) = λ,

which also holds for our approximation. (ν → 0 implies v0 → λ and κ→ 0.)

The approximation for I(x) is seen to share the important features of empirical implied

variance. For β 6= 0 asymmetry is introduced by the asymmetric function a(x). For β < 0

the minimum indeed shifts to the right. As may be expected, accuracy of the approximation

is found to be highest for at- and around the money options, while divergence can be

observed for far out of the money and far in the money options.

The analytical properties derived in this subsection show that the location and shape

of the implied variance function is sensitive to the choice of ϕ. If we keep the first two

moments of ϕ fixed but vary a third moment, the implied variance function will generally

15Note that β → 0 implies γ → βλ→ 0.
16This approximation for the symmetric case can also be found in Ball and Roma (1994).
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alter its shape. That is not to say that the time-variation in ϕ can a priori not accurately

be described by two degrees of freedom. Higher moments, which largely determine the

type of distribution (e.g. Gamma, Inverse Gamma and Inverse Gaussian), may or may not

be constant over time.

4.5 Estimation

This first subsection describes the estimation procedure adopted. The second subsection

provides a brief evaluation of the goodness-of-fit of the option pricing model.

4.5.1 Loss-function for parametric estimator

For this chapter we consider a parametric estimator for the implied pdf ϕ. We assume

a Generalized Inverse Gaussian (GIG) distribution for ϕ with three degrees of freedom,

which has Gamma, Inverse Gamma and Inverse Gaussian nested as special cases.17 β will

be estimated jointly with ϕ.

Common loss functions measure either the errors in option prices or the errors in implied

volatility.18 Our experience is that minimizing the errors in option prices is numerically

more attractive. Even so, we are keen to obtain an accurate fit of the implied volatility

function. As our objective is to estimate the model parameters for each day separately,

the number of observations will typically range between 20 and 40.

We choose to minimize the following loss function l:

l(θ) =
∑
i

(log (τ + Cϕ,i(θ))− log (τ + Ci))
2 , (4.42)

where θ denotes the parameter vector, Cϕ,i(θ) denotes the model prediction, and where

Ci denotes the observed option price at strike price Ki. τ > 0 is included to curb the

divergence of log (τ + C) for small option prices. We have set τ = 5 in our empirical

example, but results are robust to the choice of τ provided it is not too close to zero. (To

check whether the numerical optimization procedure converged to a global minimum, and

not a local minimum, we repeat the procedure with different initial values.)

17Note that the GIG distribution is closed under aggregation, which denotes a convenient property. By
averaging variance we will not leave the class of probability density functions.

18In view of consistency one may want to employ the same loss function for both estimation and evalu-
ation (see e.g. Christoffersen and Jacobs, 2004).
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Each of the model parameters is found to have a distinctive effect on the location and

shape of the implied volatility function; the first moment of ϕ largely controls the vertical

allignment. Curvature increases with the dispersion of ϕ, while β (the degree of asymmetry

in volatility) largely governs the location of the minimum and the skewness of the implied

volatility function. This should help with the identification of the parameters. It also

helps that while the number of observations is limited, they are often found to provide an

accurate description of the implied volatility function with little noise.
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Figure 4.3: Fitted empirical implied variance for: (a) 1 year (top-left); (b) half a year
(top-right); (c) 6 weeks (middle-left); (d) 2 weeks (middle-right); (e) 3 days (bottom-left);
and (f) 2 days (bottom-right) to expiration

4.5.2 Model performance

This subsection provides a first evaluation of model performance. Figure 4.3 shows six fits

for different, yet typical, implied variance functions. The time to expiration varies from two

days in the top left figure to a year in the bottom right figure. It is stimulating to observe

that our model, given its simplicity and analytical convenience, fits the data surprisingly
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well for all strike prices with longer maturities. For shorter maturities the best fits are

observed for options that are not too far out of the money.19

When discrepancies between empirical and predicted values are observed, they are

mostly at the far left or right end of the figure. By the same token the option price is not

very sensitive to volatility for far in and out of the money options, such that the fit of the

option price is still very good (which is not shown in the figure). Moreover, the right tail

of the implied volatility function is often poorly represented in the empirical data. It refers

to high values of the strike price where call option prices are small. Due to the lack of data

it will generally be harder to fit this side of the implied volatility function. (Measurement

error may also be more of an issue at this end since option prices are not quoted with

infinite precision, which matters when prices are very small.) Overall, the model appears

well equiped to handle the empirical smiles observed in practice.

4.6 Empirical results

This section shows by means of a modest empirical example how estimates of the implied

pdf of volatility ϕ evolves over time. We assume a GIG distribution for ϕ with three

degrees of freedom. The parameters are estimated jointly with β for each day of the

sample. Our focus will be on the first two moments of the implied pdf ϕ: E[V ] and

sd[V ]. The estimates will comprise a time-series of market expectations concerning the

distribution of future average variance. These will be compared with the time-series of

realized variance.

The time-variation in (ϕ, β), as we move foward t0, may reflect both the conditioning on

new information over time and the variation in the model hn (see eq. 4.8) that is adopted

by the market. While these are different types of variation, they may well co-exist over

time. We will not try to disentangle them, but focus on their joint outcome.

The first panel of Figure 4.4 shows the first moment (E[V ]) of ϕ overlayed with realized

variance (qv) as well as realized variance averaged over the time left to expiration (avg[qv])

for a period of one year with expiration at the end of the time-series. The second panel

shows the dispersion of ϕ measured by the standard deviation (sd[V ]).

Observation 4.1 The first moment of the implied pdf of volatility closely matches average

realized volatility.

19We arguably need more degrees of freedom for the implied pdf of volatility to obtain a better fit of
the implied variance function for shorter maturities.
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Figure 4.4: Time-series of: (a) first moment of implied pdf E[V], realized variance qv,
average realized variance avg[qv] (top panel), and (b) second moment of implied pdf sd[V]
(bottom panel)

It can be seen how E[V ] is particularly close to avg[qv] during the first months of the year.

Between six and seven months prior to expiration, realized variance jumps to a higher

level and exhibits frequent peaks. E[V ] climbs during this period, and remains high for

an extended period of time, noticably higher than avg[qv]. Expectations are nevetheless

steadily reduced as realized variance continues to decline following the turbulent summer

of 2006 (June to August). The fact that expectations do not immediately close the gap

with average realized variance is consistent with a market contemplating the possibility

that the remaining months leading up to expiration may bring a new surge in volatility.

In November 2006, with 6 weeks left to expiration, expectations and realizations were

fully aligned. Note that a modest rise in volatility emerged in December 2006 that was

immediately picked up by the market.
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Observation 4.2 The implied volatility of average volatility (second moment of the im-

plied pdf) does not tend to zero when the time to expiration is increased.

This observation suggests that the market is fully aware of the fact the volatility exhibits

strong persistence (long-range dependence). The variance of average variance is indeed

expected not to show a rapid decline when we increase the time to expiration. Whether

the subjective degree of volatility persistence matches objective estimates of persistence is

an empirical question left for future research. In the bottom panel of Figure 4.4 it can be

seen how sd[V ] moves up and down over the course of a year. While it increases during the

weeks/days prior to expiration (as one would expect), it does not fade away as we move

further away from expiration (where the period over which variance is averaged becomes

larger).

Observation 4.3 Market expectations about future average volatility appear to exhibit a

degree of foresight.

Figure 4.5 shows the one year period divided into three parts of about 4 months each.

What is interesting is that expectations remain close to future average realized variance

even in periods where present day realized variance is noticably lower (best seen in top

panel) or noticably higher (best seen in middle panel). This may be an indication that the

market is not fooled by current events as it correctly anticipates future levels of average

variance.

Figure 4.6 zooms in on the last six weeks. We can see here how expectations respond

faster to movements in realized variance closer to expiration. In the first three weeks of this

period realized variance is seen to be on the decline, which is closely followed by market

expectations, even though future average variance remains steady. Then, three weeks to

expiration, realized variance rises to a higher level. This is again immediately picked up

by the market which stays on top of movements in volatility until expiration. The bottom

panel shows once more how the perceived volatility of average variance increases towards

expiration, as one would expect, but that the trend is visibly not exponential.

Observation 4.4 Estimates of β appear to diverge in the limit where time to expiration

tends to zero.

See Figure 4.7. Note that this occurs when the empirical minimum of the implied variance

function does not tend to zero money-ness (i.e. β diverges if we do not have x∗ → 0 for
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Figure 4.5: Time-series of first moment of implied pdf E[V], realized variance qv, and
average realized variance avg[qv] for: (a) end of Dec 2005 - beginning of May 2006 (top
panel), (b) beginning of May 2006 - 3rd week of Aug 2006 (middle panel), and (c) 3rd week
of Aug 2006 - 3rd week of Dec 2006 (bottom panel)

T → 0), see the section on the implied variance function. Whether this is particular for

options on the DAX futures, or whether the minimum of the implied variance function

does not tend to zero at expiration more generally remains an empirical question. In this

case, our option pricing model appears better equipped to fit options with medium to long

time to expiration. While our model still provides reasonable fits for options with short

maturities, estimates of β in that case become unreasonably large.



90 CHAPTER 4. VOLATILITY: EXPECTATIONS AND REALIZATIONS

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

28/10/06 04/11/06 11/11/06 18/11/06 25/11/06 02/12/06 09/12/06 16/12/06

E[V], implied pdf
qv
avg[qv]

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

28/10/06 04/11/06 11/11/06 18/11/06 25/11/06 02/12/06 09/12/06 16/12/06

sd[V], implied pdf
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4.7 Concluding remarks

The value of European options depends crucially on market expectations about the dis-

tribution of future average volatility. The options market may therefore be viewed as a

market for volatility.

The objectives of this chapter are three-fold. First, we put forward an option pricing

model that accommodates both stochastic and asymmetric volatility, that fits the data



4.7. CONCLUDING REMARKS 91

well, and preserves analytical convenience. Second, we advocate for the use of the implied

pdf of volatility as an alternative to the traditional measure of implied volatility, which was

introduced when volatility was still considered a deterministic process. The former is more

meaningful in a world where volatility is stochastic. Third, we adopt the option pricing

model to estimate the implied pdf of volatility for each day in the sample. The time-series

of the implied pdf describes how market expectations about future volatility evolve over

time. Data on the German stock index (DAX) is used for the empirical application.

When we compare the first moment of the implied pdf of volatility to estimates of

realized volatility, it appears that the market is able to gauge the level of future average

volatility quite well. This can perhaps best be seen during periods of low volatility when

future volatility is high, and vice versa. Estimates of the second moment of the implied pdf

suggest that the market adopts a model that predicts long-range dependence in stochastic

volatility. This too is consistent with the stylized facts of realized volatility.

Let us conclude with suggestions for future research. First on the agenda is to test

the option pricing model for misspecification using a variety of option price data. Second,

given estimates of market expectations over time, a logical next step would be to infer

possible learning behaviour. How is the subjective probability distribution of future average

volatility updated over time as new observations become available? A better understanding

of the interaction between beliefs and observables would allow for more accurate estimation

of the implied pdf’s, and hence for more accurate option pricing, and hedging.

A third direction for future research is to explore the role of heterogeneity. “A further

potential advantage of the discrete time approach is that it permits the introduction of

heterogeneous probability assessments across investors and even individual uncertainty as

to the parameters of the underlying probability distributions, thus removing the most re-

strictive feature of the continuous time model which is the assumption that the parameters

of the underlying stochastic processes are known with certainty and agreed upon by all

investors” (Brennan, 1979). Note, however, that introducing heterogeneity may call for

agent based modelling where different demands for option contracts and the underlying

stock, due to different expectations, are cleared by some market maker mechanism. For

early studies both model uncertainty and heterogeneity of beliefs within an option pricing

model see e.g. Buraschi and Jiltsov (2006) and Brock at al. (2009).
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4.8 Appendix

Theorem 4.6 Let E[V ] = λ and var[V ] = ν. In case average variance V is Gamma or

Inverse Gaussian distributed, the moments p and q, as defined in eq. (4.32) and (4.33),

are given by:

p = (
√
ξ − 1

2
)− β (4.43)

q = (
√
ξ − 1

2
) + β, (4.44)

where

ξ = (β − 1

2
)2 +

λ

νT
cϕ. (4.45)

with cϕ = 1 in case of Inverse Gaussian, and cϕ = 2 in case of Gamma.

Proof. It follows that z+ = sup{z : E[SzT |F0] < ∞|z > 1} and z− = sup{z : E[SzT |F0] <

∞|z ≤ 0}. We have q = −z− (for z ≤ 0), and p = z+ − 1 (for z > 1). Observe that SzT
condtional on V (and on F0) is log-normal distributed, with:

E[SzT |V ] = c exp

(
(β − 1

2
)V Tz +

1

2
V Tz2

)
(4.46)

= c exp (τ(z)V ), (4.47)

where τ(z) = (β − 1
2
)Tz + 1

2
Tz2. The constant c depends on S0, and on the model

parameters, but not on z. E[SzT ] = Eϕ[E[SzT |V ]] may thus be derived as the expected

value of the RHS of eq. (4.47), with variance V as the random variable with pdf ϕ. Given

the functional form of E[SzT |V ], we have that E[SzT ] follows directly from the moment-

generating-function of ϕ, which we shall denote g(t) = Eϕ[exp (tV )] (with slight abuse of

notation, as t is also used to indicate time).

For the Gamma distribution with two parameters θ and k, such that E[V ] = kθ and

var[V ] = kθ2, it follows that g(t) = (1− θt)−k for t < θ−1. This implies:

E[SzT ] = c

(
1− θ((β − 1

2
)Tz +

1

2
Tz2)

)−k
. (4.48)

Given that k > 0, this will tend to infinity when (β − 1
2
)Tz + 1

2
Tz2 → 1/θ. Solving this

for z yields:

z+,− = (
1

2
− β)±

√
(β − 1

2
)2 + 2

λ

νT
, (4.49)
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where 1/θ = λ/ν, which implies the followig values for p and q:

p = −1 + z+ (4.50)

= (
√
ξ2 −

1

2
)− β (4.51)

q = −z− (4.52)

= (
√
ξ2 −

1

2
) + β, (4.53)

where ξ2 = (β − 1
2
)2 + 2 λ

νT
.

For the Inverse Gaussian distribution with two parameters µ and l, such that E[V ] = µ

and var[V ] = µ3/l, the moment-generating-function is given by:

g(t) = exp

(
l

µ

(
1−

√
1− 2µ2t/l

))
. (4.54)

This implies that E[SzT ] will exist only when 1− 2µ2τ(z)/l ≥ 0. The values of z for which

we border non-existance thus satisfy:

τ(z) =
1

2

l

µ2
=

1

2

λ

ν
. (4.55)

Solving for z yields:

z+,− = (
1

2
− β)±

√
(β − 1

2
)2 +

λ

νT
. (4.56)

If we define ξ1 = (β − 1
2
)2 + λ

νT
, and derive p and q given the solution for z, we will obtain

the expressions stated in the proposition.

Theorem 4.7 Let E[V ] = λ, var[V ] = ν, and γ = T−1 log(E[exp(βTV )]). Without

further assumptions about the pdf ϕ, the implied variance function I(x) can be approximated

by:

I(x) ≈ λ+
κ

4v0

(
x2

v0T
− 1− v0T

4

)
+ βκT

(
β +

1

2
+

x

v0T
+ (v0T )

1
2 (β − 2ψ

κT
)a(x)

)
,

where

a(x) =
Φ(d−(x))

φ(d−(x))
,
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with d−(x) = 1
2
(v0T )

1
2 − x(v0T )−

1
2 . The functions Φ and φ denote the standard normal

cumulative distribution and density function. Variance level v0 is defined by:20

v0 =

{
γ/β

λ

if

if

β 6= 0

β = 0

The parameters (ψ, κ) are given by: ψ = v0 − λ, and κ = ν + (v0 − λ)2.

Proof. Let us begin with restating the expression for the option price:

Cϕ =

∫ ∞
0

e(βv−γ)TCBS(r + (βv − γ), v)ϕ(v)dv, (4.57)

where ϕ denotes the probability density function for average variance V . Expressed as an

expected value, we have:

Cϕ = E[e(βV−γ)TCBS(r + (βV − γ), V )] (4.58)

= E[f(V )]. (4.59)

Consider the following second-order Taylor expansion for f at V = v0:

f(V ) ≈ f(v0) + f
′
(v0)(V − v0) +

1

2
f
′′
(v0)(V − v0)2

= f(v0) + f
′
(v0)((V − λ)− (v0 − λ)) +

1

2
f
′′
(v0)((V − λ)− (v0 − λ))2.

If we take expectations over V , with E[V ] = λ and var[V ] = ν, we obtain:

E[f(V )] ≈ f(v0)− f ′(v0) +
1

2
f
′′
(v0)

(
ν + (v0 − λ)2

)
, (4.60)

which provides a second-order approximation for our option pricing formula Cϕ from eq.

(4.59).

Let us take v0 = γ/β in case β 6= 0, and v0 = λ otherwise. Note that our price equation

features the expectation of the Black-Scholes price CBS(r(V ), V ) where the interest rate

depends on the variance: r(V ) = r + (βV − γ). For our choice of v0, this reduces to the

risk-free interest rate: r(v0) = r. As a result, f(v0) = CBS(r, v0).

20Note that β → 0 implies γ → βλ→ 0.
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A first order Taylor approximation of the Black-Scholes price CBS(I) yields:

Cϕ = CBS(I) ≈ CBS(r, v0) + (I − v0)
∂CBS
∂V

(r, v0). (4.61)

For ease of notation we will supress the indication that the derivatives are evaluated at

V = v0 with r(v0) = r. Note that the partial derivatives will be a function of x.

By combining the approximations from eq. (4.60) and eq. (4.61), we obtain:

I(x) ≈ v0 − (v0 − λ)f
′
(v0)

(
∂CBS
∂V

)−1

+
1

2

(
ν + (v0 − λ)2

)
f
′′
(v0)

(
∂CBS
∂V

)−1

.

Let us restate the definition for f : f(V ) = e(βV−µ)TCBS(r + (βV − µ), V ). Differentiating

this with respect to V yields:

∂f

∂V
= e(βV−µ)T

(
βTCBS +

∂CBS
∂V

+
∂CBS
∂r

∂r

∂V

)
. (4.62)

It follows that ∂r
∂V

= β. If we evaluate the derivative at V = v0, we find: f
′
(v0) =

βTCBS + ∂CBS
∂V

+ β ∂CBS
∂r

. By differentiating once more with respect to V , and evaluating

the derivative at V = v0, we obtain:

∂2f

∂V 2
= β2T 2CBS + 2βT

∂CBS
∂V

+ 2β2T
∂CBS
∂r

+
∂2CBS
∂V 2

+ 2β
∂2CBS
∂r∂V

+ β2∂
2CBS
∂r2

.

This would be a good moment to review the ‘Greeks’, the partial derivatives of the Black-

Scholes formula CBS = S0Φ(d1(x))−Ke−rTΦ(d2(x)):

∂CBS
∂V

=
1

2
T

1
2v
− 1

2
0 S0φ(d1(x))

∂2CBS
∂V 2

=
1

4
T

1
2v
− 3

2
0 S0

[(
(v0T )−

1
2x+

1

2
(v0T )

1
2

)
φ
′
(d1(x))− φ(d1(x))

]
∂CBS
∂r

= KTe−rTΦ(d2(x))

∂2CBS
∂r2

= Ke−rTT
1
2v
− 1

2
0

(
Tφ(d2(x))− T

3
2v

1
2
0 Φ(d2(x))

)
∂2CBS
∂r∂V

=
1

2
T

1
2v
− 1

2
0

(
x

v0T
− 1

2

)
KTe−rTφ(d2(x)),

where d2(x) = d1(x)−(v0T )
1
2 , with d1(x) = 1

2
(v0T )

1
2−x(v0T )−

1
2 . Dividing these derivatives,



96 CHAPTER 4. VOLATILITY: EXPECTATIONS AND REALIZATIONS

as well as CBS itself, by ∂CBS
∂V

, gives us:

CBS

(
∂CBS
∂V

)−1

= 2T−
1
2v

1
2
0

(
Φ(d1(x))

φ(d1(x))
− Φ(d2(x))

φ(d2(x))

)
(4.63)

∂2CBS
∂V 2

(
∂CBS
∂V

)−1

=
1

2
v−2

0

(
x2

T
− v0 −

1

4
Tv2

0

)
(4.64)

∂CBS
∂r

(
∂CBS
∂V

)−1

= 2(v0T )
1
2

Φ(d2(x))

φ(d2(x))
(4.65)

∂2CBS
∂r2

(
∂CBS
∂V

)−1

= 2T

(
1− (v0T )

1
2

Φ(d2(x))

φ(d2(x))

)
(4.66)

∂2CBS
∂r∂V

(
∂CBS
∂V

)−1

=
x

v0

− 1

2
T. (4.67)

In these derivations we used that φ(d1(x))
φ(d2(x))

= ex, and φ
′
(d1(x))

φ(d1(x))
= −d1(x).

Now define: ψ = (v0 − λ), κ = ν + (v0 − λ)2, and ai(x) = Φ(di(x))
φ(di(x))

for i = 1, 2. If we

substitute these results into our expression for the approximation of I(x), we find:

I(x) ≈ λ+ β(v0T )
1
2 (βκT − 2ψ)(a1(x)− a2(x)) + 2β(v0T )

1
2 (βκT − ψ)a2(x)

+

(
βκT + βκ(

x

v0

− 1

2
T ) + β2κT

)
− β2κT (v0T )

1
2a2(x)

+
1

4
κv−1

0

(
x2

v0T
− 1− 1

4
v0T

)
.

It can be verified that all terms with a2(x) cancel each other out. Finaly, the result stated

in the proposition can be obtained by rearranging the expression that remains.




