Fitting model parameters in conformal geometric algebra to Euclidean observation data
Cibura, C.

Citation for published version (APA):
Cibura, C. (2012). Fitting model parameters in conformal geometric algebra to Euclidean observation data
List of Figures

2.1. A 2-blade $a \wedge b$ and distributivity over addition 11
2.2. Reflection at a vector ... 15
2.3. Purely Euclidean rotation about the origin as a versor 18
2.4. A conformal circle by the outer product of three conformal points 23
2.5. Inversion in a hypersphere ... 23

3.1. Orthogonal transformation as a sequence of reflections in mid-planes 37
3.2. Set of minimal data: a localized frame and an additional point 39
3.3. Determining minimal data from point correspondences 45
3.4. Scaling with respect to Cartesian transfer frame 46

4.1. Articulated structure with three links in 3D .. 55
4.2. True motion vs. instantaneous motion between two constellations in 2D .. 56
4.3. Progression of meta-motions at different meta-levels 59
4.4. Parameters of a screw motion in 3D ... 62
4.5. Chords between Euclidean vectors on a screw axis and rotated versions ... 64
4.6. 1-parameter family of rotations between two Euclidean 3D bivectors 68
4.7. Mid-plane between two 3D Euclidean bivectors 71
4.8. A geometric degeneracy where a translation is partially subsumed by a preceding screw motion ... 78

5.1. Bayesian network showing dependencies in parameter estimation 83
5.2. Gaussian Cartesian functional model for circle estimation 84
5.3. Geometric rationale for closed form likelihood of circle parameters 90
5.4. Sphere imaged under (near) parallel projection .. 94
5.5. Noisy observations of points on a sphere with different spread parameters .. 95
5.6. MLE and non-linear least squares estimates of spheres given noisy points ... 96
5.7. Estimators’ bias as a function of the spread parameter 97
5.8. Determinant of estimators’ covariance matrices 98
5.9. Ratio of determinants of estimators’ covariance matrices 99
A.1. Mean instantaneous motion noise for three random elemental motions 117
A.2. Sum of chord errors for three random elemental motions 118
A.3. Mean chord errors of reconstructed true motion, three random links 119
A.4. Mean distance between true point and point moved by reconstructed true motion, three random links ... 120
A.5. Mean instantaneous motion noise for three elemental motions along unit cube 121
A.6. Sum of chord errors for three elemental motions along unit cube 122
A.7. Mean chord errors of reconstructed true motion, three links along cube 123
A.8. Mean distance between true point and point moved by reconstructed true motion, three links along cube .. 124
A.9. Mean instantaneous motion noise for two random elemental motions 125
A.10. Sum of chord errors for two random elemental motions 126
A.11. Mean chord errors of reconstructed true motion, two random links 127
A.12. Mean distance between true point and point moved by reconstructed true motion, two random links .. 128
A.13. Mean instantaneous motion noise for two elemental motions along unit cube ... 129
A.14. Sum of chord errors for two elemental motions along unit cube 130
A.15. Mean chord errors of reconstructed true motion, two links along cube 131
A.16. Mean distance between true point and point moved by reconstructed true motion, two links along cube .. 132
A.17. Mean instantaneous motion noise for three elemental motions along unit cube, accelerated third link ... 133
A.18. Sum of chord errors for three elemental motions along unit cube, accelerated third link .. 134
A.19. Mean chord errors of reconstructed true motion, three links along cube, accelerated third link .. 134
A.20. Mean distance between true point and point moved by reconstructed true motion, three links along cube, accelerated third link 135
A.21. Mean instantaneous motion noise for two elemental motions along unit cube, accelerated second link ... 136
A.22. Sum of chord errors for two elemental motions along unit cube, accelerated second link .. 137
A.23. Mean chord errors of reconstructed true motion, two links along cube, accelerated second link .. 137
A.24. Mean distance between true point and point moved by reconstructed true motion, two links along cube, accelerated second link 138