Fitting model parameters in conformal geometric algebra to Euclidean observation data
Cibura, C.

Citation for published version (APA):
Cibura, C. (2012). Fitting model parameters in conformal geometric algebra to Euclidean observation data

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Background on the Hypergeometric Function

In this section we provide some brief background discussion about concepts needed to express the results in section 5.4.

Given any function, one can approximate its value at the point $x = 0$ by its power series expansion

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots$$ \hspace{1cm} (C.1)

Conversely, given a sequence of coefficients \{a_0, a_1, a_2, \ldots\}, one can attempt to find a function that generates this sequence as coefficients of the respective power in its power series expansion. This function is called a generating function of the sequence. For example, the sequence \{1, 1, 1, \ldots\} is generated by the function $f(x) = \frac{1}{1-x}$.

A sequence which fulfills the property that the ratio of consecutive terms can be written as a rational function of polynomials in the index, is called a hypergeometric sequence, i.e.

$$\frac{c_{k+1}}{c_k} = \frac{P(k)}{Q(k)} = \frac{(k + a_1)(k + a_2)\ldots(k + a_p)}{(k + b_1)(k + b_2)\ldots(k + b_q)(k + 1)}$$ \hspace{1cm} (C.2)

where the factor $(k + 1)$ in the denominator is present for historical reasons of notation. A hypergeometric function is a function that has a hypergeometric series (i.e. one whose coefficients
form a hypergeometric sequence) as its power series expansion, i.e.

\[pF_q(x) = pF_q(a_1, \ldots, a_p, b_1, \ldots, b_q, x) = \sum_k c_k x^k = \sum_k \frac{(a_1)_k(a_2)_k \ldots (a_p)_k x^k}{(b_1)_k(b_2)_k \ldots (b_q)_k k!}, \tag{C.3} \]

where consecutive coefficients \(c_k \) and \(c_{k+1} \) fulfill (C.2) and \((a)_k\) is the Pochhammer symbol or rising factorial \((a)_k = \frac{\Gamma(a+k)}{\Gamma(a)} = a(a+1) \ldots (a+k-1)\).

Some hypergeometric functions have specific names. For example, \(_0F_1 \) is called the

confluent hypergeometric limit function

and often arises in statistical physics as well as in section 5.4. For more details about hypergeometric functions see for example [LBC10].

Note that some well-known functions can be expressed as hypergeometric functions, e.g.

\[_0F_1 \left(\frac{1}{2}, \frac{x^2}{4} \right) = \cosh(x), \]
\[_0F_1 \left(1, \frac{x^2}{4} \right) = I_0(x), \]
\[_0F_1 \left(\frac{3}{2}, \frac{x^2}{4} \right) = \frac{\sinh(x)}{x}, \]

where \(I_0(x) \) denotes the modified Bessel function of the first kind.

Among many other representations, the hypergeometric limit function \(_0F_1 \) has the integral representation

\[_0F_1(b, x) = \frac{\Gamma(b)}{\sqrt{\pi} \Gamma\left(b - \frac{1}{2}\right)} \int_0^\pi \exp\left(-2\sqrt{x} \cos t\right) (\sin t)^{2b-2} \, dt, \tag{C.4} \]

if the real part of the argument \(b, \text{Re}(b) \), is larger than 1/2. If we substitute \(b = n/2 \) with \(n > 1 \), we get

\[_0F_1 \left(\frac{n}{2}, x \right) = \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \int_0^\pi \exp\left(-2\sqrt{x} \cos t\right) (\sin t)^{n-2} \, dt. \tag{C.5} \]

We invoked this result (C.5) in section 5.4.