Relation extraction methods for biomedical literature

Bui, Q.C.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References

75. Nguyen QL, Tikk D, Leser U: **Simple tricks for improving pattern-based information extraction from the biomedical literature.** *Journal of biomedical semantics* 2010, 1:9.

77. Fox AD, Jr WAB, Johnson HL, Hunter LE, Slonim DK: **Mining Protein-Protein Interactions from GeneRIFs with OpenDMAP.** In *LNBI6004*. 2010. 43-52.

78. Choi YS: **Tree pattern expression for extracting information from syntactically parsed text corpora.** *Data Mining and Knowledge Discovery* 2010, 22:211-231.

95. Niu Y, Otasek D, Jurisica I:
Evaluation of linguistic features useful in extraction of interactions from PubMed: application to annotating known, high-throughput and predicted interactions in I2D.

96. Van Landeghem S, Abeel T, Saey Y, Van de Peer Y:
Discriminative and informative features for biomolecular text mining with ensemble feature selection.
Bioinformatics 2010, 26:i554-60.

97. Segura-Bedmar I, Martínez P, de Pablo-Sánchez C:
Using a shallow linguistic kernel for drug-drug interaction extraction.
Journal of biomedical informatics 2011.

98. Kim S, Yoon J, Yang J, Park S:
Walk-weighted subsequence kernels for protein-protein interaction extraction.

99. Li J, Zhang Z, Li X, Chen H:
Kernel-Based Learning for Biomedical.

100. Fayruzov T, De Cock M, Cornelis C, Hoste V:
Linguistic feature analysis for protein interaction extraction.
BMC bioinformatics 2009, 10:374.

101. Riedel S:

102. Björne J, Salakoski T:

103. Quirk C, Choudhury P, Gamon M, Vanderwende L:

104. UNAIDS:

105. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ:
The challenge of finding a cure for HIV infection.

106. Vercauteren J, Vandamme A-M:
Algorithms for the interpretation of HIV-1 genotypic drug resistance information.
Antiviral research 2006, 71:335-42.

107. Lengauer T, Sing T:
Bioinformatics-assisted anti-HIV therapy.

108. Saigo H, Uno T, Tsuda K:
Mining complex genotypic features for predicting HIV-1 drug resistance.

109. Cohen AM, Hersh WR:
A survey of current work in biomedical text mining.

110. Saric J, Jensen Lj, Ouzounova R, Rojas I, Bork P:
Extraction of regulatory gene/protein networks from Medline.

111. Chowdhary R, Zhang J, Liu JS:
Bayesian inference of protein-protein interactions from biological literature.

112. Abulaish M, Dey L:
Biological relation extraction and query answering from MEDLINE abstracts using ontology-based text mining.

140. Wren JD: **Question answering systems in biology and medicine--the time is now.** *Bioinformatics* 2011, 27:2025-2026.