Reimagine, redesign and transform
Enhancing generation and exploration in creative problem finding processes in visual arts education
vande Kamp, M.T.A.
CHAPTER 2

ENHANCING DIVERGENT THINKING IN VISUAL ARTS EDUCATION: EFFECTS OF EXPLICIT INSTRUCTION OF METACOGNITION*

The enhancement of students’ creativity is one of the main purposes of visual arts education (Seidel, Tishman, Winner, Hetland, & Palmer, 2009). In a meta-analysis, Ma (2009) showed that in order to be creative, divergent thinking is crucial. We will argue that to enhance divergent thinking, it is necessary to have metacognitive knowledge about this form of thinking and that, unlike what is generally done in regular visual arts education lessons, this needs to be taught explicitly. In the present study, we investigated the effects of explicit instruction of metacognition on students’ divergent thinking.

1. THEORETICAL FRAMEWORK

The basic activity in the initial phase of a creative process is divergent thinking: the ability to produce a diversity of responses to an open-ended problem (Guilford, 1959). Divergent thinking requires creative ideation, i.e. the generation of many (fluency) and different kinds (flexibility) of original ideas (originality) (Runco & Acar, 2010). Divergent thinking starts as early as the problem finding phase, when the task concerned is explored and defined (Finke, Ward, & Smith, 1992; Getzels, & Csikszentmihalyi, 1976; Lee, & Cho, 2007), and the process continues for as long as people keep exploring creative solutions. Creative ideation also requires persistence and flexibility (Nijstad, De Dreu, Rietzschel & Baas, 2010). The role of persistence was first theorized by Mednick (1962), whose associative theory of divergent thinking claims that ideas which appear late in the associative chain are more remote and therefore more likely to be original. Gilhooly, Fioratou, Anthony and Wynn (2007) showed that next to persistence, flexibility plays an important role in divergent thinking. Here, a strategy is concerned that is cognitively more demanding, asking first for the analysis of a stimulus (for example: parts of a shoe) and subsequently for the selection of a single element for further development in another category (for example: parts of a shoe that could be used for another purpose or in another con-

Gilhooly et al. (2007) found that participants move from this type of associative memory retrieval to strategies in which they switch between different categories with great flexibility and finally combine ideas at the end of the generating process. This implies that creative ideation requires deliberate switches between retrieval cues, including the inhibition of dominant uses and cues already retrieved (Gilhooly et al., p. 618).

When we assume that at least two different processes are involved in divergent thinking, namely associative thinking and flexibly switching between categories, we may also assume that some sort of executive monitoring must play a role (Ellamil, Dobson, Beeman, & Christoff, 2012). It can be argued that the ability to alternate between associative thinking and flexibly switching between categories requires knowledge about when, how and why to shift between these processes (Gabora, 2010; Nijstad et al., 2010; Sowden, Pringle, & Gabora, 2014). This means that cognition must be involved in divergent thinking processes.

Some authors refer to what they call ‘strategic knowledge’, i.e. knowing when to apply divergent thinking as a strategy and knowing under which conditions and in which contexts this is required to ensure good performance (Baer, 1993; Hu, Adey, Jia, Lui, Zhang, Li, & Dong, 2010). Another cognitive factor is what is generally termed ‘conceptual knowledge’: knowing what the concepts of creativity, divergent thinking and originality entail. Such knowledge plays a particularly important role in the elimination of misconceptions that may inhibit the creative process (Sternberg & Lubart, 1999; Sternberg & Lubart, 1999), such as the idea that people are creative by nature. Such misconceptions have affective consequences: they reduce creative self-efficacy, the belief to improve and thus the effort to improve (Ranellucci, Muis, Duffy, Wang, Sampasivam, & Franco, 2013; Silvia & Phillips, 2004). Affective factors also involve the effects of mood states on the process of generating ideas. Nijstad et al. (2010, p. 61), for instance, reported that positive activating mood states stimulate creativity through flexibility and that negative activating mood states stimulate creativity through persistence. Worrying about the self – a negative mood state – or negative self-judgement reduces intrinsic motivation and creative self-efficacy (Baas, De Dreu, & Nijstad, 2008; Bandura & Locke, 2003). As a consequence, the generative process will be a disruptive one. Interestingly, this negative effect does not occur when one feels able to achieve future improvements (Silvia and Phillips, 2004; Tierney & Farmer, 2011), i.e. when one attributes failure to the specific situation rather than to a stable factor such as ability. It is this feeling of being ‘able to improve’ that forms the driving force not only in learning processes in general, but especially in creative processes (Dweck, 1986; Herman & Reiter-Palmon, 2011).

The key to orchestrate the above factors is regulation: it monitors and controls (Groenendijk, Janssen, Rijlaarsdam & Van den Bergh, 2013; Nelson & Narens, 1990). In the model developed by Nelson & Narens (1990), monitoring concerns a flow of information from the object level to the meta-level, changing or confirming the task representations built so far. Conversely, in control processes, information moves from the meta-level to the object level and may change the executive process. Monitoring the effects of these executive changes may, in turn, lead to changes in the meta-level, where knowledge about processes is consolidated. We assume that this model also holds when learners are involved in divergent thinking.
Using think aloud protocols, Ku and Ho (2010) examined students' critical thinking processes and concluded that the difference between low performers and high performers concerned the use of metacognitive strategies: these were applied by high performers in particular. The investigators also demonstrated the importance of metacognitive knowledge with respect to the effective regulation of critical thinking skills. We may therefore argue that in order to obtain metacognitive knowledge, it is important to explicitly teach related metacognitive knowledge, so that the habit of regulation can be built that is needed to enhance students' divergent thinking (Dignath and Büttner, 2008). To support students, it is also effective and efficient to teach domain-specific metacognitive knowledge in an explicit manner (Gama, 2004; Houtveen, & Van de Grift, 2007). However, the meta-analysis carried out by Scott, Leritz, & Mumford (2004) reveals that intervention studies on the improvement of creativity generally do not include explicit instruction on metacognition, for example metacognitive knowledge about creativity, discussion and reflection about students' own creative processes and their divergent thinking skills.

Including explicit instruction of metacognition is an uncommon practice in visual arts education, too. Arts education generally involves students looking at art works (reception), creating art products (production) or reflecting on artworks (reflection) (Hetland, Winner, Veenema, & Sheridan, 2007). During arts education lessons, students interact with each other and the teacher about their own art production, a process which feeds the repertoire of ideas, designs and techniques. The art reception and art production assignments set during the creative process, which can take several weeks, aim to generate and consolidate knowledge that supports the further mastery of creative processes. However, and by definition, the construction of knowledge through such individual reflection tasks is bound by the individual creative experience that is built during the process of making that particular product. Precisely this may limit the speed and quality of learning: it takes many art reception and production tasks before students have built a rich knowledge base that supports the further enhancement of creativity and divergent thinking. In addition, common misconceptions about originality and creative processes may lead to negative self-evaluations that disrupt the generative processes. Misconceptions about creativity are not easily corrected, and we expect that explicit instruction is required to correct these. Furthermore, we assume that divergent thinking processes in art practices can be boosted when impulses related to creativity knowledge building and metacognitive knowledge building are interspersed. This is what we tested in the present study:

"Does the explicit instruction of metacognition aimed at gaining insight into creative processes improve creative thinking, i.e. does it lead to enhanced divergent thinking skills?"

2. METHOD

We implemented a quasi-experimental study with a pre-test post-test control group design with switching replications (Shadish, Cook, & Campbell, 2002). Five classes
with a total number of 147 students participated in our investigation. Three classes were randomly assigned to group A, and two classes were assigned to group B. In all classes, students worked on the same project assignment concerning art reception, production and reflection. In the first panel, group A followed one intervention lesson with explicit instruction of metacognition, while group B followed a regular art reception lesson instead. Conditions were switched in the second panel.

2.1 Participants
Participants were 147 Grade-11 students aged 16 to 17 years (80 female/67 male) from one single school for secondary education located in the Netherlands. All students attended compulsory classes in cultural and arts education. We opted for Grade-11 students at pre-university level because we expected these students to be sensitive to (and to appreciate) the rather complex content involved in the explicit instruction of metacognition. All students, their parents and the art teachers involved in the project provided their consent to participate.

2.2 Design
The 19-week project was part of the regular arts curriculum consisting of one 50-minute lesson per week. During the project, an equal number of lessons was dedicated to art reception, art production and reflection assignments.

All participants worked with the same materials and completed identical art reception, art production and reflection assignments. These assignments resulted in a series of artworks in which students had to verbalize and visualize their concept of the disruptive and evanescent nature of reflective, non-reflective or natural materials. This had to be done in an original way and students were credited for their work. All classes participated in the intervention during one specific lesson held within this project, either in Panel 1 (Group A, week 5) or in Panel 2 (Group B, week 9).

2.3 Intervention
The intervention consisted of one compact session of 50 minutes. We based the explicit instruction of metacognition about divergent thinking on effect studies investigating creativity training (Scott, Leritz, & Mumford, 2004), metacognition (Dignath & Büttner, 2008; Dole & Sinatra, 1998; Houtveen & Van de Grift, 2007) and strategy instruction (Elshout-Mohr, Van Hout-Wolters & Broekkamp, 1999; Murphy & Alexander, 2006; Nelson & Narens, 1990). A summary of the intervention is included in Table 1.

Instructional scripts of the intervention lesson. The model proposed by Nelson & Narens (1990) states that students who are able to control and monitor their thinking process can generate new procedural and conditional knowledge to improve their divergent thinking skills. The instruction lesson on metacognitive knowledge consisted of explicit instruction concerning precisely what creativity, creative processes
and divergent thinking entail, and why, how and when divergent thinking can be applied in creative processes. The instructional scripts for the instruction lesson on metacognition were formulated as follows:

1) Increase students' metacognitive knowledge through (1) the explicit instruction of monitoring and by regulating creative processes and divergent thinking and (2) discussing and reflecting on students' practice in divergent thinking. (Lesson phases 1 to 5, Table 1).

2) Increase students' understanding of creativity, divergent thinking and originality by (1) stimulating conscious reflection on students' own creative thinking processes and (2) reflecting on examples from creative products in visual art and design. To this end, we used visual examples of award-winning innovative design products and artworks. (Lesson phases 1 to 4, Table 1).

3) Increase students' understanding of divergent thinking as a strategy, especially with respect to the differences between divergent thinking and convergent thinking. This was done through (1) instruction, (2) discussion and (3) reflection concerning the different strategies applied in divergent thinking versus convergent thinking and the strategies used in problem-finding versus problem-solving processes. (Lesson phases 2, 3 and 4, Table 1).

4) Increase students' understanding in terms of ways to generate many and different types of unusual or original ideas, ways to inhibit common uses, and knowing how and when to switch, by (1) exemplifying how to generate unusual ideas through whole-class exercises and (2) discussing the process of generating ideas and the originality of ideas. (Lesson phases 3, 4 and 5, Table 1).

5) Increase students' self-knowledge about divergent thinking skills by learning through (1) the experience of generating ideas and (2) reflecting about the ideas generated. This should help students estimate the chances of negative effects of self-evaluation occurring while they generate ideas, and it should also strengthen their improvement beliefs, which in turn could stimulate their efforts to improve (Silvia & Phillips, 2004). This was done through instruction and reflection, including comprehensible, coherent, plausible and rhetorically compelling information about creativity and divergent thinking (Dole & Sinatra, 1998). (Lesson phases 4 and 5, Table 1).

After the intervention lesson, students started working on their art reception and production assignments; they started their creative and reflective processes and received guidance from art teachers as usual.

Control group. In the control condition and different from the intervention lesson, students worked for 50 minutes on a set of assignments focusing on art reception, production and reflection concerning the meaning of artworks related to the concept of the photography theme used for this purpose.
Table 1. Intervention lesson

<table>
<thead>
<tr>
<th>Lesson phase</th>
<th>Learning goals</th>
<th>Instructional and learning activities</th>
<th>Content of the lesson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Activating students’ prior knowledge of creativity (5 minutes).</td>
<td>Whole-class discussion about examples of innovative art and design. Students were asked about their concepts of creativity and about their experiences with creativity.</td>
<td>The innovation and usefulness (for the purpose of saving energy) of the award-winning pow-er-aware cord was discussed.</td>
</tr>
<tr>
<td>2</td>
<td>Constructing cognitive and metacognitive knowledge (12 minutes).</td>
<td>Direct instruction with classroom interaction concerning declarative, procedural, conditional and contextual knowledge about creative processes and about using divergent thinking strategies in the generative phase of creative processes.</td>
<td>With images thinking strategies like divergent and convergent thinking, and problem finding and problem solving were explained and discussed.</td>
</tr>
<tr>
<td>3</td>
<td>Constructing conceptual knowledge of creativity and thinking strategies (8 minutes).</td>
<td>Through whole-class discussion, students exchanged ideas in order to construct new concepts on creativity and divergent thinking. Students were asked to compare and combine their old and new concepts on creativity and thinking strategies.</td>
<td>Through discussion experiences, strategies, conceptions and misconceptions about creative processes were discussed.</td>
</tr>
<tr>
<td>4</td>
<td>Constructing higher order knowledge about divergent thinking strategies (10 minutes).</td>
<td>Direct instruction of abstract concepts and new examples from visual art and design (decontextualisation and recontextualisation). Next, students were asked to explain these concepts of creativity and originality.</td>
<td>With the new notions and higher order knowledge about creativity and divergent thinking as a strategy, by talking about the uses of an ipad as an example of divergent thinking and about the production of the ipad and the innovativeness of it.</td>
</tr>
<tr>
<td>5</td>
<td>Practising and evaluating divergent thinking (15 minutes).</td>
<td>Students practised divergent thinking with a few simple exercises and an alternative uses task. Students were asked to go beyond clichés and to produce original solutions. They received feedback from their teacher and peers about the way they generated ideas and about the originality of their ideas. Finally, a new example was shown and students were asked to evaluate this example with the knowledge and concepts they had developed.</td>
<td>Students practised divergent thinking with for example an alternative uses task (think of as many different types of original uses for a brick). The generated ideas and the process of generating ideas were discussed in dyads and later through whole class discussions focusing on exchange of experiences, by talking about the possibilities and difficulties of applying new knowledge gained from this lesson and talking about their own past approach of strategy knowledge, task knowledge and person knowledge while reflecting on their approach in this particular alternative uses task.</td>
</tr>
</tbody>
</table>
Teacher training. The participating art teachers performed a divergent thinking test before the lessons started, so they could experience the test themselves. Test experiences were discussed afterwards to understand the procedure of the test and the skills involved in divergent thinking. The first author demonstrated the intervention lesson to the two other art teachers involved. Afterwards, the intervention was discussed with these teachers. On the basis of their advice, certain adjustments were made: more visual examples of original creative products were included to stimulate the construction of conceptual knowledge about creative products. The teachers involved used the adapted protocol for the lesson and the adapted instruction materials (instructional scripts, presentation material and tasks).

Fidelity measures. During the intervention by three different teachers, another art teacher, using a pre-structured observation form, observed whether the intervention had been performed according to the protocol described above. In Panel 1, it turned out that in one group (out of three) only a small part of the instruction lesson had actually been performed. We therefore excluded this class of 28 students from the analyses. Of the remaining group of 119 students, another 15 students missed one or two of the tests due to absence in class.

2.4 Measures

A pre-test was administered in week 1, followed by the instruction in Panel 1 and a post-test two weeks later (week 7). In Panel 2, the instruction was carried out in week 9 and followed by a second post-test in week 15. We administered computerized verbal instances tests (Guilford, 1967). Students had to list within five minutes 'as many different kinds of original materials as they could think of'. The materials varied per test: they were shiny (pre-test 1), non-shiny (post-test 1) or natural materials (post-test 2). These materials were part of the domain-specific task that students had received for their visual arts education classes, so the divergent thinking test was related to the context of a real-world creativity task (Chand & Runco, 1993).

The approach we used to analyze divergent thinking skills is based upon the specific concept of divergent thinking, indicating thinking in many different directions (flexibility), generating many different ideas (fluency) that may – but not necessarily will – lead to many original, unusual or infrequent ideas (Runco, 2008). Fluency was indicated by the number of all responses per student. Flexibility was indicated by the number of different categories of the responses for each student. From the data, we formed a total of 10 categories (for example: organic materials such as organic metals or plants, human/animal materials such as skin or fur, artificial materials such as plastic, transport materials such as bikes, and utensils such as scissors). For each response, a category label was determined. To determine the reliability of flexibility, two raters each independently coded 800 responses. Inter-rater reliability was satisfactory ($\kappa = 0.83$, with a 95% interval between .67 en .98 for pre-test and post-test 1 and $\kappa = 0.89$ with a 95% interval between .81 en .98 for post-test 2).

To indicate the originality of responses, a choice can be made between subjective scoring – ratings by an expert jury – or objective scoring of originality as statistical
infrequency (Runco, 2010; Runco & Acar, 2010). We opted for objective scoring, i.e. determining the originality of answers on the basis of the statistical infrequency of unusual or original answers in the sample (Plucker, Qian, & Wang, 2011). Responses that did not occur in the rest of the sample received a score of 2 (infrequent or original), responses that were given by two to four percent of the students received a score of 1 (unusual), and all other responses received a score of 0. Taking into account that originality can also be determined by dividing originality by fluency and to correct for confounding effects, we also included originality percentage scores (Plucker, Qian, & Schmalensee, 2014).

The three indicators were correlated at all three measurement moments (fluency and flexibility $r = .61$ to .67; fluency and originality $r = .69$ to .79, and originality and flexibility $r = .42$ to .56).

2.5 Data analysis

In both conditions, the two groups did not differ in the pre-test (fluency (t (96.02) = -0.53; $p = 0.60$), in terms of flexibility (t (102) = 0.51; $p = 0.61$) or in terms of originality (t (102) = 1.83; $p = 0.71$). The three verbal instances tests were similar but not equivalent or parallel tests. Therefore, a direct comparison of the observed scores between subsequent test occasions is not meaningful. To observe an intervention effect in Panel 1, we ran a multivariate analysis of covariance with condition as independent factor, scores for fluency, originality and flexibility at time 1 as covariates and time 2-scores for fluency, originality and flexibility as dependent variables. We repeated this analysis with time 3-scores for fluency, originality and flexibility as dependent variables and hypothesized to find no effects as both groups had participated in the intervention at measurement time 3.

3. RESULTS

The results for Panel 1 are presented in Table 2. The multivariate analysis of covariance showed a significant effect of the intervention (Wilks’ λ (3, 97) = 0.91; $p = 0.02$; $\eta^2 = 0.09$), with significant condition effects for fluency (F(1, 103) = 5.54; $p = 0.02$; $\eta^2 = 0.05$; Cohen’s $d = 0.40$) and flexibility (F(1, 103) = 6.69; $p = 0.01$; $\eta^2 = 0.06$; Cohen’s $d = 0.45$), but not for originality (F(1, 103) = 1.26; $p = 0.26$; $\eta^2 = 0.01$; Cohen’s $d = 0.30$) nor for originality percentage (F(1, 103) = 0.70, $p = 0.41$; $\eta^2 = 0.07$; Cohen’s $d = 0.34$). This means that students in the intervention condition generated more (fluency) responses and also used a higher number of different categories (flexibility) than students in the control condition.
4. DISCUSSION AND CONCLUSIONS

Divergent thinking is important for the generation of many different kinds of original ideas, and increasing students' metacognition about divergent thinking is presumed to result in an enhancement of their divergent thinking. This study shows
effects of explicit instruction of metacognition on students’ divergent thinking skills. We found an effect of explicit instruction of metacognition on students’ fluency and flexibility for Panel 1 (Group A), but no effects were found for originality or originality percentage. The interpretation of the findings for Panel 2 is more complex. After the second intervention, we found no differences between Groups A and B at measurement occasion 3. This may indicate a treatment effect in Panel 2 for Group B, because the differences we found at measurement occasion 2 between the two groups, are now as a result of the intervention in Panel 2 diminished. Though, strictly speaking this equalization effect might also be due to other effects in the experimental condition as well as the control condition. In other words, when tests are not equivalent, the research design with switching panels does in fact play an ethical role - all participants were involved in the experimental intervention - but cannot be considered to be a full replication of the experiment.

Nevertheless, the effects in Panel 1 demonstrate the effectiveness of the explicit instruction of metacognition. Our results confirm previous research on the effectiveness of explicit instruction of metacognition for self-regulation and add to this the effectiveness of explicit instruction of metacognition for the domain of visual arts and for developing skills such as fluency and flexibility in divergent thinking (Dignath & Büttner, 2008; Gama, 2004; Houtveen, & Van de Grift, 2007; Ku & Ho, 2010).

4.1 Limitations and future research

One intriguing issue that remains is why we found an effect for fluency and flexibility for Panel 1 but not for originality. First of all, the effects found for fluency and flexibility demonstrate that students did develop more effective regulating skills as a result of explicit instruction of metacognition (Dignath & Büttner, 2008). The effects found for fluency and flexibility can be explained by the use of two different strategies that students obtained from the intervention, focusing to a greater extent on either persistence of generating words within one category (fluency) and/or switching to a flexibility strategy, with a greater focus on switching between different categories (flexibility). This means that different strategies have to be used with respect to either fluency or flexibility (Nijstad et al., 2010; Gilhooly et al., 2007). To enhance originality as well, different and even more complex cognitive processes such as selective encoding and selective combination will have to be part of the intervention. These may need greater attention in the instruction phase and it may also be that students need more time to internalize the use of different strategies. Although our study demonstrated that the intervention had positive effects on fluency and flexibility in as little time as one single lesson, one may have to invest more learning time for improving originality.

It might also be the case that an even stronger focus on domain-specific explanations and exercises about originality in visual arts prove to be effective regarding the enhancement of originality. In this study, we based our instructions on interventions for language education and mathematics. A special adaptation to the domain-specific learning processes involved in visual arts education, namely using images
and visual ideation as part of the exercises instead of words and verbal ideation, could have been more effective in this respect. In other words, the use of images instead of words in the divergent thinking exercises could be an important tool to relate divergent thinking to the domain of visual art.

Further research is needed to determine whether the effects we found are long-term effects. However, on the basis of research on the explicit instruction of metacognition in other domains, we believe that the explicit instruction of metacognition in arts education will also likely enhance students' divergent thinking skills in similar age groups (from Grade-9 onwards) and at similar school levels.

The effects found in this study in terms of fluency and flexibility are relevant for the development of students' general divergent thinking skills and also for the development of methodologies for teaching divergent thinking skills within the domain of visual arts education. If enhancement of students' creativity is one of the most important purposes of arts education, then students should have access to metacognitive knowledge about divergent thinking and creative processes. They should be able to perceive that they themselves can use these strategies in actual creative and divergent processes, in order to become able to control these processes and learn from them via monitoring.