Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

Hooftman, D.A.P.; Flavell, A.J.; Jansen, H.; den Nijs, J.C.M.; Syed, N.H.; Sørensen, A.P.; Orozco-ter Wengel, P.; van de Wiel, C.C.M.

Published in:
Evolutionary Applications

DOI:
10.1111/j.1752-4571.2011.00188.x

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Figure S1. Histograms of P-value distributions for distortion in the direction of containing more *L. serriola* or *L. sativa* alleles based on a Monte Carlo algorithm, 50,000x drawing N virtual plants from the expected distribution per locus. The observed distribution was compared to these confidence intervals. Each locus was independently drawn per virtual plant. Left-above: control population grown in the greenhouse, Right-above: *S₁* generation under field exposure; Left-middle: *BC₁* generation under field exposure. Right-middle: *BC₁S₁* generation under field exposure. Left-below: P-value distribution for all 3 populations for significant alterations in LD compared to the control generation; note the 10^x scaling of x-axis. Chi-square testing was used for testing of statistical significance, using LD and (1-LD) for both expected (control) and observed (one of the populations) as variables (df = 1).