The patient with hypertrophic cardiomyopathy has a family

Christiaans, I.; Wilde, A.A.M.

DOI
10.1136/hrt.2010.216762

Publication date
2011

Document Version
Final published version

Published in
Heart

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
FEATURED CORRESPONDENCE

Propafenone contraindicated in the elderly?

To the Editor With great interest we read the paper by Alboni et al.1 The investigators studied intravenous class Ic antiarrhythmic drug (AAD) administration (propafenone and flecainide) as a predictor for adverse effects when used in a ‘pill-in-the-pocket’ regimen (PITP).

Alboni and colleagues suggest that intravenous administration of flecainide or propafenone for pharmacological conversion of atrial fibrillation to sinus rhythm cannot predict the occurrence of adverse effects when these agents are subsequently used in a PITP treatment modality. In fact, intravenous AAD administration was accompanied by a 6% incidence of serious adverse effects when the AAD was used as an oral compound, particularly with propafenone. The authors concluded that clinical intravenous drug testing should not be used as a safety indicator for PITP approach.

First, the pharmacological and pharmaco-kinetic profile of flecainide differs from propafenone, particularly with respect to the intrinsic adrenergic receptor blocking actions.2–3 As the authors mentioned in the discussion section, only propafenone caused serious side effects requiring hospital admission. In addition, in the majority of cases these side effects were related to bradyarrhythmic phenomena. In our opinion, this is a very important observation with clinical implications. Second, the observed bradyarrhythmic side effects of propafenone only occurred in elderly, at least one SD above the mean study population age. In this age group latent sick sinus syndrome may be present, and may become manifest by using drugs with intrinsic β-blocking action.

In our opinion, present knowledge suggests that patient’s tolerance for intravenous administration of propafenone does not seem to predict adverse effects during out-of-hospital self-administration of this drug. At present, a predictable ability of intravenous testing with flecainide is not yet proved.

Paolo Alboni
Correspondence to Dr Paolo Alboni, Division of Cardiology, Ospedale Civile, Cento (FE), Italy; p.alboni@ausl.fe.it
Competing interests None.
Provenance and peer review Commissioned; not externally peer reviewed.

Heart 2011;97:262. doi:10.1136/hrt.2011.217604

REFERENCES

The Authors’ reply We thank Drs Kirchhof, Crijns and van Gelder1 for their interest in our paper2 referring to ‘pill-in-the-pocket’ treatment of recent-onset atrial fibrillation (AF). The study was interrupted on the recommendation of the data- and safety-monitoring committee because the results suggested that the intravenous administration of flecainide or propafenone does not predict the occurrence of adverse effects after a loading oral dose of these drugs. A 5% incidence of major side effects during the first out-of-hospital treatment was regarded as high, considering that such patients have haemodynamically well-tolerated episodes of AF. All the patients showing major side effects during the first loading oral dose were receiving treatment with propafenone. No patient receiving flecainide had major adverse effects; however, only 20 patients were receiving treatment with this drug. This patient population is too small to draw conclusions about whether tolerance to intravenous administration of flecainide may predict the safety of the pill-in-the-pocket treatment. We wrote3 that “further data on larger population samples should be collected in order to assess the predictive ability of an intravenous testing with flecainide.” We agree with Dr Kirchhof et al4 that the bradyarrhythmias observed after a loading oral dose of propafenone may be an expression of a latent sick sinus syndrome. The four patients showing major adverse effects during the first out-of-hospital treatment were about 70 years old and this suggests that the pill-in-the-pocket treatment cannot be indicated in the elderly because in this age group latent sick sinus syndrome may be more common. However, because of the premature interruption of the study, the patient population is too small to draw any conclusion.

We carried out the study because the pill-in-the-pocket approach is underused since the guidelines5 recommend an in-hospital loading oral dose of flecainide or propafenone as a screening for the out-of-hospital self-administration, but the doctors of the emergency rooms prefer intravenous administration, which has a more rapid action than the time-consuming oral administration. In the real world, the recording of 24 h ECG before intravenous administration of the drug is not feasible; moreover, we believe that a prolonged ECG recording during AF is not useful to identify patients with latent sick sinus syndrome. Only seven patients were treated with β blockers and none took verapamil or diltiazem. None of the four patients showing major adverse effects during the first out-of-hospital treatment took β blockers. We did not report the use of ACE inhibitors and angiotensin receptor blockers because in the first pill-in-the-pocket study6 no correlation between the use of these drugs and major side effects was seen. In our opinion, present knowledge suggests that patient’s tolerance for intravenous administration of propafenone does not seem to predict adverse effects during out-of-hospital self-administration of this drug. At present, a predictable ability of intravenous testing with flecainide is not yet proved.

Charles J J H Kirchhof,1 H J G M Crijns,2 I C van Gelder
1Department of Cardiology, Rijnland Hospital, Leiderdorp, The Netherlands; 2Academic Hospital Maastricht, Maastricht, The Netherlands

Correspondence to Charles J H J Kirchhof, Department of Cardiology, Rijnland Hospital, Leiderdorp, The Netherlands; ch.kirchhof@orange.nl
Competing interests None.
Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2011;97:262. doi:10.1136/hrt.2010.217596

REFERENCES

The patient with hypertrophic cardiomyopathy has a family

To the Editor We have read the paper on hypertrophic cardiomyopathy (HCM) by ten Berg et al with great interest.1 As the paper
has an educational aim, we would like to address some minor misconceptions that could have major implications.

Genotyping in HCM to establish a molecular diagnosis in HCM patients can indeed probably not be used to guide prognosis or therapy. However, it has been proved to be a more cost-effective strategy than cardiac screening to identify relatives at risk. This is mainly due to the inability of ECG and echocardiography to exclude a future risk of HCM, which is possible by genotyping, because contrary to what the authors state hypertrophy in relatives often develops after adolescence. Studies in HCM mutation carriers have shown that disease penetrance increases with age and a significant subset of carriers develops hypertrophy well into adulthood. Unfortunately the penetrance increases with age and a significant number of mutation carriers have shown that disease penetrance is increased in relatives often develops after adolescence. Studies in HCM mutation carriers have shown that disease penetrance increases with age and a significant subset of carriers develops hypertrophy well into adulthood.

The incomplete and age-dependent disease penetrance together with the clinical heterogeneity of the disease also explain why many HCM patients do not know of any affected relatives. The latter is therefore probably not due to sporadic mutation and more complex patterns of inheritance as the authors suggest. With the current knowledge the main causal genetic defect sordam is to novo and is usually inherited in an autosomal dominant way. Individuals without the disease-causing mutation therefore do not have an increased risk of developing HCM and carriers do. Clinical heterogeneity and disease penetrance, however, are likely to be influenced by genetic modifiers, which still need to be identified. Hopefully, future genetic research in HCM will enable us to predict the phenotype and prognosis better in the individual HCM patient or carrier of a disease-causing mutation.

Imke Christiaans, Arthur A M Wilde
Department of Clinical Genetics and Cardiology, Academic Medical Centre, Amsterdam, The Netherlands

Correspondence to Dr Imke Christiaans, Academic Medical Centre, Department of Clinical Genetics, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands; i.christiaans@amc.uva.nl

Competing interests None declared.

Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2011;97:262–263. doi:10.1136/hrt.2010.216782

REFERENCES

The Authors’ reply We thank Christiaans and coworkers for their critical review of our paper on hypertrophic cardiomyopathy (HCM).1 We fully agree—as is stated in our paper—that genotyping is useful to identify relatives at risk while ECG and echocardiography are often unable to exclude HCM. As we also stated, it is recommended to repeat ECG and echocardiographic evaluation every 5 years even in adults without hypertrophy because hypertrophy can develop after the end of adolescence. In our experience, however, the incidence of patients developing hypertrophy late in life is low. We appreciate the additional information that it is probably not sporadic mutations but the influence of modifier genes on the autosomal inherited trait that explains the heterogeneity of the penetrance of HCM.

Jurrien M ten Berg
Correspondence to Dr Jurrien M ten Berg, St Antonius Hospital, Department of Cardiology, Koekezaak 1, Nieuwegein 3435 CM, The Netherlands; jurtenberg@wxs.nl

Competing interests None to declare.

Provenance and peer review Commissioned; not externally peer reviewed.

Heart 2011;97:263. doi:10.1136/hrt.2010.216770

REFERENCES

What is the best dose of aspirin in association with P2Y12 antagonists?

To the Editor In their Viewpoint article, Warner et al hypothesised that the administration of aspirin to patients who are treated with potent antagonists of the platelet P2Y12 receptors might increase cardiovascular risk. The authors’ hypothesis is based on the observation that P2Y12 antagonists inhibit the platelet production of thromboxane A2 (TXA2) (which would render the use of aspirin superfluous), and on the consideration that aspirin may cause adverse effects. It is my opinion that there is no evidence yet to suggest that aspirin is superfluous or even detrimental when administered in combination with P2Y12 antagonists. In fact, the inhibition of TXA2 production by P2Y12 antagonists in mono-therapy is incomplete and may be insufficient to inhibit the TXA2-dependent component of thrombus formation. The clinical relevance of effective TXA2 inhibition is demonstrated by the extremely good efficacy of aspirin in patients with acute coronary syndromes, which, in my opinion, was underestimated by Warner et al. I think that the real question is not whether or not aspirin should be associated with P2Y12 antagonists, but rather, what is the best dose of aspirin to be used in association. We recently showed that inhibition of the platelet P2Y12 receptor potentiates the antiplatelet effect of prostacyclin and hypothesised that this effect may substantially contribute to the antithrombotic efficacy of P2Y12 antagonists.3 As aspirin, at high doses, inhibits the endothelial production of prostacyclin, it can be hypothesised that the higher the dose of aspirin used in combination with P2Y12 antagonists, the lower will be the prostacyclin-dependent antithrombotic activity of P2Y12 antagonists.3 The results of the PLATO trial, which showed that high-dose aspirin tended to be less effective than low-dose aspirin in acute coronary syndrome patients treated with the potent P2Y12 antagonist, ticagrelor,1 are compatible with our hypothesis and with the suggestion by Warner et al that high-dose aspirin may be more detrimental when associated with potent P2Y12 antagonists. However, the results of the CURRENT OASIS-7 trial, which showed that high-dose aspirin was more effective than low-dose aspirin in combination with high-dose clopidogrel (but not with standard dose clopidogrel), oppose it.4 Therefore, the issue of the best dose of aspirin to be associated with P2Y12 antagonists can only be settled by the results of properly designed experimental studies.

Marco Cattaneo
Medicina 3, Ospedale San Paolo, Università degli Studi di Milano, Milan, Italy

Correspondence to Dr Marco Cattaneo, Medicina 3, Ospedale San Paolo, Università degli Studi di Milano, Via di Rudini 8, Milano 20142, Italy; marco.cattaneo@unimi.it

Competing interests Marco Cattaneo participated to advisory board meetings and received lecture honoraria from AstraZeneca, Eli Lilly-Daiichi Sankyo.

Provenance and peer review Not commissioned; not externally peer reviewed.

Heart 2011;97:263–264. doi:10.1136/hrt.2010.216812

REFERENCES
2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among