Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions

ATLAS Collaboration

1. Introduction

Many extensions of the Standard Model (SM) include heavy coloured particles, some of which could be accessible at the LHC. The squarks and gluinos of supersymmetric theories are one example of such particles. This Letter presents the first ATLAS search for squarks and gluinos in final states containing only jets and large missing transverse momentum. Interest in this final state is motivated by the large number of R-parity conserving models [2] in which squarks, q, and gluinos, \tilde{g}, can be produced in pairs ($q\tilde{g}, q\tilde{g}, q\tilde{g}$) and can generate that final state in their decays $q \rightarrow q\tilde{X}_1^0$ and $g \rightarrow q\tilde{X}_1^0$ to weakly interacting neutralinos, \tilde{X}_1^0, which escape the detector unseen. The analysis presented here is based on a study of purely hadronic final states; events with reconstructed electrons and muons are vetoed to avoid overlap with a related ATLAS search [3] which requires them. The search strategy was optimised for maximum exclusion in the $(m_\tilde{g}, m_\tilde{q})$-plane for a set of simplified models in which all other supersymmetric particles (except for the lightest neutralino) were given masses beyond the reach of the LHC. Though interpreted in terms of supersymmetric models, the main results of this analysis (the data and expected background event counts in the signal regions) are relevant for excluding any model of new physics that predicts jets in association with missing transverse momentum. Currently, the most stringent limits on squark and gluino masses are obtained at the LHC [4] and at the Tevatron [5–9].

2. The ATLAS detector and data samples

The ATLAS detector [10] is a multipurpose particle physics apparatus with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. The layout of the detector is dominated by four superconducting magnet systems, which comprise a thin solenoid surrounding inner tracking detectors and three large toroids supporting a large muon tracker. The calorimeters are of particular importance to this analysis. In the pseudorapidity region $|\eta| < 3.2$, high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. An iron-scintillator tile calorimeter provides hadronic coverage over $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with LAr calorimetry for both EM and hadronic measurements.

The data sample used in this analysis was taken in 2010 with the LHC operating at a centre-of-mass energy of 7 TeV. Application of beam, detector and data-quality requirements resulted in a total integrated luminosity of 35 pb$^{-1}$. The detailed trigger specification varied throughout the data-taking period, partly as a consequence of the rapidly increasing LHC luminosity, but always guaranteed a trigger efficiency above 97% for events with a reconstructed jet with transverse momentum (p_T) exceeding 120 GeV and more than 100 GeV of missing p_T.

\dagger ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2)$.

© CERN, for the benefit of the ATLAS Collaboration.

* E-mail address: atlas.publications@cern.ch.
3. Object reconstruction

Jet candidates are reconstructed using the anti-kt jet clustering algorithm [11,12] with a distance parameter of 0.4. The inputs to this algorithm are clusters of calorimeter cells seeded by those with energy significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum over these cell clusters, treating each as an \((E, \vec{p})\) four-vector with zero mass. These jets are corrected for the effects of calorimeter non-compensation and inhomogeneities by using \(p_T\) and \(\eta\)-dependent calibration factors based on Monte Carlo (MC) corrections validated with extensive test-beam and collision-data studies [13]. Only jet candidates with \(p_T > 20\) GeV and \(|\eta| < 4.9\) are subsequently retained.

Electron candidates are required to have \(p_T > 10\) GeV, to have \(|\eta| < 2.47\), to pass the ‘medium’ electron shower shape and track selection criteria of Ref. [14], and to be outside problematic regions of the calorimeter. Muon candidates are required to have \(p_T > 10\) GeV and \(|\eta| < 2.4\). The sum of the transverse momenta of charged particle tracks within a cone of radius \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.2\) around the muon trajectory is required to be less than 1.8 GeV.

Following the steps above, overlaps between candidate jets with \(|\eta| < 2.5\) and leptons are resolved using the method of Ref. [15] as follows. First, any such jet candidate lying within a distance \(\Delta R < 0.2\) of an electron is discarded. Then the whole event is rejected if any electron candidate remains in the calorimeter transition region \(1.37 < |\eta| < 1.52\) between barrel and end-cap. Finally, any lepton candidate remaining within a distance \(\Delta R = 0.4\) of such a jet candidate is discarded.

The measurement of the missing transverse momentum two-vector \(\vec{p}_{T}^{\text{miss}}\) (and its magnitude \(E_T^{\text{miss}}\)) is then based on the transverse momenta of all remaining jet and lepton candidates and all calorimeter clusters not associated to such objects. Following this, all jet candidates with \(|\eta| > 2.5\) are discarded. Thereafter, the remaining jet and lepton candidates are considered “reconstructed”, and the term “candidate” is dropped.

4. Event selection

Following the object reconstruction described above, events are discarded if any electrons or muons remain, or if they have any jets failing quality selection criteria designed to suppress detector noise and non-collision backgrounds [16], or if they lack a reconstructed primary vertex associated with five or more tracks.

In order to achieve maximal reach over the \((m_{\tilde{g}}, m_{\tilde{q}})\)-plane, several signal regions are defined. When production of squark pairs \(\tilde{q}\tilde{q}\) is dominant, only a small number of jets (one per squark from \(q \rightarrow \tilde{g}\chi^0_1\)) is expected. The optimal strategy for the \(\tilde{q}\tilde{q}\) region therefore makes requirements on two jets only. When production involves gluinos \((\tilde{g}\tilde{g}\) and \(\tilde{g}\tilde{\tau}\)), extra jets are expected from \(g \rightarrow q\chi^0_1\). In these regions, requiring at least three jets yields better sensitivity. The higher total cross section in the associated \(\tilde{g}\tilde{g}\) region where both species are accessible permits the use of tighter criteria than in the \(\tilde{g}\tilde{q}\) region. Four signal regions A, B, C and D are therefore defined (targeting light-\(\tilde{q}\tilde{q}\), heavy-\(\tilde{q}\tilde{q}\), \(\tilde{g}\tilde{g}\) and \(\tilde{g}\tilde{\tau}\) production, respectively) as shown in Table 1. In this table, \(\Delta p_T\) (jet, \(E_T^{\text{miss}}\)) is the smallest of the azimuthal separations between \(P_T^{\text{miss}}\) and jets with \(p_T > 40\) GeV (up to a maximum of three, in descending order of \(p_T\), whether pre-selected or not). The variable \(m_{T_2}\) is defined to be the maximal lower bound on the mass of a pair produced particle which decays into one of the pre-selected jets and a massless undetected particle, assuming the two undetected particles are the only source of the event \(E_T^{\text{miss}}\). The effective mass, \(m_{\text{eff}}\), is defined as the sum of \(E_T^{\text{miss}}\) and the magnitudes of the transverse momenta of the two highest \(p_T\) jets (in signal region A) or three highest \(p_T\) jets (in signal regions C and D). The \(q\tilde{q}\) channel has two signal regions, A and B, because the \(m_{T_2}\) distribution has the best expected reach in \(m_{\tilde{q}}\), but \(m_{\text{eff}}\) offers better coverage for lighter squarks.

5. Backgrounds, simulation and normalisation

Standard Model background processes contribute to the event counts in the signal regions. The dominant sources are: \(W + \text{jets}\), \(Z + \text{jets}\), top pair, multi-jet and single top production. Non-collision backgrounds are negligible. The majority of the \(W + \text{jets}\) background is composed of \(W \rightarrow \tau\nu\) events, or \(W \rightarrow l\nu\) events in which no electron or muon candidate is reconstructed. The largest part of the \(Z + \text{jets}\) background comes from the irreducible component in which \(Z \rightarrow \nu\nu\) generates large \(E_T^{\text{miss}}\). Hadronic \(\tau\) decays in \(t\bar{t} \rightarrow b\bar{b} \nu\nu\) can generate large \(E_T^{\text{miss}}\) and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in the signal regions is predominantly caused by poor reconstruction of jet energies in calorimeters leading to ‘fake’ missing transverse momentum. There is also a contribution from neutrinos when events contain semileptonic decays of heavy quarks. Extensive validation of MC against data has been performed for each of these background sources and for a wide variety of control regions. The excellent agreement found motivates an approach in which the systematic uncertainties on the \(W + \text{jets}\), \(Z + \text{jets}\) and top background estimates are derived from the validation against data, while the central values for those estimates are taken from MC simulation to reduce sensitivity to correlations between data-driven estimates for different backgrounds. In contrast, the multi-jet background is normalised to data in control regions as described below.

Production of \(W\) and \(Z\) bosons, in association with jets, was simulated with ALPGEN [20] v2.13 at leading order (LO) and up to 2 → 5 partons using CTQ6L1 PDFs [21]. Both were separately normalised to the next-to-next-to-leading-order inclusive \(W\) and \(Z\) cross sections from HERWIG 2.23 v2.0. Both resulting samples were found to be consistent with a variety of data-driven estimates, including methods based on: re-simulation of reconstructed leptons as hadronically decaying taus; removal of leptons from \(W(\ell)\) and jet and \(Z(\ell)\) jet events; and by comparing MC predictions to data in control regions enriched with background events.

Production of top quarks (both singly and in pairs, assuming \(m_{\text{top}} = 172.5\) GeV) was simulated with MC@NLO [24,25] v3.41 using CTEQ6.1 next-to-leading-order (NLO) PDFs [26]. This estimate was found to be consistent with a data-driven cross-check based on replacement of reconstructed muons in the corresponding single lepton channels with simulated hadronic \(\tau\) decays. Agreement was also found after reweighting the \(t\bar{t}\) MC according to experimentally measured b-tag weights.

Simulated multi-jet events were generated both with PYTHIA [27] v6.4.21, which uses 2 → 2 LO matrix elements (ME) with the MRST2007 LO+ PDF set [28], and with ALPGEN implementing the exact LO ME for up to 2 → 5 partons. The normalisation of these samples was fixed by a scaling designed to achieve a match to data in control regions obtained by reversing the \(\Delta p_T\) requirements. After this scaling, both sets of simulations were in agreement within the experimental uncertainties, and therefore only PYTHIA multi-jet simulations are used further in this analysis. The resulting simulation was found to be consistent with a data-driven estimate in which high \(E_T^{\text{miss}}\) events were generated from data by smearing low \(E_T^{\text{miss}}\) events on a jet-by-jet basis with measured jet energy resolution functions. This latter technique has
no MC dependencies; it provides a completely independent determination of the multi-jet background using only quantities measured from the data. Additional control regions having reversed $E_T^{\text{miss}}/m_{\text{eff}}$ requirements were used as further checks on the normalisation.

Supersymmetric events were generated with HERWIG++ [29] v2.4.2. These samples were normalised using NLO cross sections provided by HERWIG-6.510 [31] to simulate parton showering and fragmentation, while JIMMY [32] v4.31 was used to generate the underlying event. All samples were produced using an ATLAS ‘tune’ [33] and a full detector simulation [34].

6. Systematic uncertainties

The primary sources of systematic uncertainties in the background estimates are: the luminosity determination, the jet energy scale (JES), the jet energy resolution (JER), the MC modelling, the lepton efficiencies, the extrapolation from control regions into signal regions, and the finite statistics of the MC samples and control regions. The uncertainty on the luminosity determination is estimated to be 11% [35]. The JES uncertainty has been measured from the complete 2010 data set using the techniques described in Ref. [13] and, though p_T and η dependent, is around 7%. The JER measured in data [36] was applied to all MC simulated jets and was propagated to P_T^{miss}. The difference between the re-calibrated and nominal MC is taken as the systematic uncertainty on the JER. The uncertainty on the estimated top background is dominated by the JES uncertainty. Systematic uncertainties associated with mis-identification of leptons, jet energy scale inter-calibration, the rate of leptonic b-decays and the non-Gaussian tail of the jet response function have also been incorporated where appropriate.

Systematic uncertainties on the SUSY signal were estimated by variation of the factorisation and renormalisation scales in PROSPINO between half and twice their default values and by considering the PDF uncertainties provided by CTEQ6. Uncertainties were calculated for individual production processes (e.g. $q\bar{q}$, $g\bar{g}$, etc.).

7. Results, interpretation and limits

The number of observed data events and the number of SM events expected to enter each of the signal regions are shown in Table 2. The background model is found to be in good agreement with the data, and the distributions of m_{eff}, m_{12} and E_T^{miss} are shown in Fig. 1.

An interpretation of the results is presented in Fig. 2 as a 95% confidence exclusion region in the $(m_{\tilde{g}}, m_{\tilde{q}})$-plane for the simplified set of models with $m_{\tilde{e}_R^0} = 0$ for which the analysis was optimised. In these models the gluino mass and the masses of the squarks of the first two generations are set to the values shown in the figure. All other supersymmetric particles, including the squarks of the third generation, are decoupled by being given masses of 5 TeV. ISASUSY from ISAJET [37] v7.80 was used to calculate the decay tables, and to guarantee consistent electroweak symmetry breaking. The SUSY Les Houches Accord files for the models used may be found online [38]. The results are also interpreted in the $\tan\beta = 3$, $A_0 = 0$, $\mu > 0$ slice of MSUGRA/CMSSM [39–44] in Fig. 3.

These figures also show the variation of the expected limit in response to ±1σ fluctuations of the SM expectation including the stated systematic uncertainties. The character of the statistic which is used to construct the exclusion regions in the ($m_{\tilde{g}}, m_{\tilde{q}}$) and CMSSM planes varies as a function of position. Specifically, at each point in these planes only the data from a single signal region (A, B, C or D) is used to find that statistic, where the region was chosen based on the best expected sensitivity. For a given signal region, the statistic is defined to be the log of the profile likelihood ratio [45,46] for the observed event count in that region, assuming a non-negative signal contribution. A detailed description of how this is done and how the correlated and uncorrelated nuisance parameters representing systematic uncertainties are incorporated may be found in the Higgs chapter of Ref. [15]. Plots showing where each signal region is dominant may be found in the stated systematic uncertainties. The character of the statistic which is used to calculate the decay tables, and to guarantee consistent electroweak symmetry breaking. The SUSY Les Houches Accord files for the models used may be found online [38].

8. Summary

This Letter reports a search for new physics in final states containing high-p_T jets, missing transverse momentum and no electrons or muons. Good agreement is seen between the numbers of events observed in the four signal regions and the numbers of events expected from SM sources. Signal regions A, B, C and D exclude non-SM cross sections within acceptance of 1.3, 0.35, 1.1 and 0.11 pb respectively at 95% confidence.

Table 1
Criteria for admission to each of the four overlapping signal regions A–D. All variables are defined in Section 4.

<table>
<thead>
<tr>
<th>Pre-selection</th>
<th>Number of required jets</th>
<th>≥ 2</th>
<th>≥ 2</th>
<th>≥ 3</th>
<th>≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading jet p_T [GeV]</td>
<td>> 120</td>
<td>> 120</td>
<td>> 120</td>
<td>> 120</td>
<td></td>
</tr>
<tr>
<td>Other jet(s) p_T [GeV]</td>
<td>> 40</td>
<td>> 40</td>
<td>> 40</td>
<td>> 40</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final selection</th>
<th>$\Delta\phi(\text{jet}, P_T^{\text{miss}})_{\min}$</th>
<th>> 0.4</th>
<th>> 0.4</th>
<th>> 0.4</th>
<th>> 0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T^{\text{miss}}/m_{\text{eff}}$</td>
<td>> 0.3</td>
<td>–</td>
<td>> 0.25</td>
<td>> 0.25</td>
<td></td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td>> 500</td>
<td>–</td>
<td>> 500</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>m_{12} [GeV]</td>
<td>–</td>
<td>> 300</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

2 There are five parameters which are needed to specify a particular MSUGRA/CMSSM model. They are the universal scalar mass, m_0, the universal gaugino mass $m_{1/2}$, the universal trilinear scalar coupling, A_0, the ratio of the vacuum expectation values of the two Higgs fields, $\tan\beta$, and the sign of the higgsino mass parameter, $\mu = \pm$.
Table 2
Expected and observed numbers of events in the four signal regions. Uncertainties shown are due to "MC statistics, statistics in control regions, other sources of uncorrelated systematic uncertainty, and also the jet energy resolution and lepton efficiencies" [u], the jet energy scale [j], and the luminosity [L]. Totals are correct within rounding errors.

<table>
<thead>
<tr>
<th>Signal region A</th>
<th>Signal region B</th>
<th>Signal region C</th>
<th>Signal region D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-jet</td>
<td>7 ± 2(u + j)</td>
<td>0.6 ± 0.4(u + j)</td>
<td>9 ± 3(u + j)</td>
</tr>
<tr>
<td>W+jets</td>
<td>50 ± 11(u + j)</td>
<td>4.4 ± 3.2(u + j)</td>
<td>35 ± 9(u + j)</td>
</tr>
<tr>
<td>Z+jets</td>
<td>52 ± 21(u + j)</td>
<td>4.1 ± 2.9(u + j)</td>
<td>27 ± 12(u + j)</td>
</tr>
<tr>
<td>t and t</td>
<td>10 ± 0(u + j)</td>
<td>0.9 ± 0.1(u + j)</td>
<td>17 ± 1(u + j)</td>
</tr>
<tr>
<td>Total SM</td>
<td>118 ± 25(u + j)</td>
<td>10.0 ± 4.3(u + j)</td>
<td>88 ± 18(u + j)</td>
</tr>
<tr>
<td>Data</td>
<td>87</td>
<td>11</td>
<td>66</td>
</tr>
</tbody>
</table>

Fig. 1. The distributions of m_{eff} (separately for the ≥ 2 and ≥ 3 jet regions) and m_{T2} are shown for data and for the expected SM contributions after application of all selection criteria — cuts on the variables themselves are indicated by the red arrows. Also shown is the $E_{\text{T}}^{\text{miss}}$ distribution after the ≥ 2 jet preselection cuts only. For comparison, each plot includes a curve showing the expectation for an MSUGRA/CMSSM reference point with $m_0 = 200$ GeV, $m_{1/2} = 190$ GeV, $A_0 = 0$, $\tan \beta = 3$ and $\mu > 0$. This reference point is also indicated by the star on Fig. 3. Below each plot the ratio of the data to the SM expectation is provided. Black vertical bars show the statistical uncertainty from the data, while the yellow band shows the size of the Standard Model MC uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

The results are interpreted in both a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with $\tan \beta = 3$, $A_0 = 0$ and $\mu > 0$. In the simplified model, gluino masses below 500 GeV are excluded at the 95% confidence level with the limit increasing to 870 GeV for equal mass squarks and gluinos. In the MSUGRA/CMSSM models equal mass squarks and gluinos below 775 GeV are excluded.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNFSC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NTA, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 University at Albany, Albany NY, United States
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 a) Department of Physics, Ankara University, Ankara; b) Department of Physics, Dumlupinar University, Kutahya; c) Department of Physics, Gazi University, Ankara; d) Division of Physics, Tohoku University of Economics and Technology, Tokyo, Japan; e) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
6 Department of Physics, Arizona, Tucson AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 a) Institute of Physics, University of Belgrade, Belgrade; b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 a) Department of Physics, Bogazici University, Istanbul; b) Division of Physics, Dagestani State University, Makhachkala, Russia; c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19 a) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 c) INFN Sezione di Bologna; d) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, Universität Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States
23 a) Department of Physics, Brandeis University, Waltham MA, United States
24 a) Universidade Federal do Rio De Janeiro COPPE/EIE, Rio de Janeiro; b) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 a) Physics Department, Brookhaven National Laboratory, Upton NY, United States
26 a) National Institute of Physics and Nuclear Engineering, Bucharest; b) University Politehnica Bucharest, Bucharest; West University in Timisoara, Timisoara, Romania
27 Departmento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States
32 a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; b) Department of Modern Physics, University of Science and Technology of China, Anhui; c) Department of Physics, Nanjing University, Nanjing; d) High Energy Physics Group, Shandong University, Jinan
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 a) INFN Sezione di Roma; b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland