Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s}=7$ TeV proton-proton collisions

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2011.05.061

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 30 Jan 2020
Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions

ATLAS Collaboration

1. Introduction

Many extensions of the Standard Model (SM) include heavy coloured particles, some of which could be accessible at the LHC. The squarks and gluinos of supersymmetric theories [1] are one example of such particles. This Letter presents the first ATLAS search for squarks and gluinos in final states containing only jets and large missing transverse momentum. Interest in this final state is motivated by the large number of R-parity conserving models [2] in which squarks, \tilde{q}, and gluinos, \tilde{g}, can be produced in pairs ($\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{g}$) and can generate that final state in their decays $\tilde{q} \rightarrow q \tilde{\chi}^+_1$ and $\tilde{g} \rightarrow qq \tilde{\chi}^0_1$ to weakly interacting neutralinos, $\tilde{\chi}^0_1$, which escape the detector unseen. The analysis presented here is based on a study of purely hadronic final states; events with reconstructed electrons and muons are vetoed to avoid overlap with a related ATLAS search [3] which requires them. The search strategy was optimised for maximum exclusion in the $(m_{\tilde{g}}, m_{\tilde{q}})$-plane for a set of simplified models in which all other supersymmetric particles (except for the lightest neutralino) were given masses beyond the reach of the LHC. Though interpreted in terms of supersymmetric models, the main results of this analysis (the data and expected background event counts in the signal regions) are relevant for excluding any model of new physics that predicts jets in association with missing transverse momentum. Currently, the most stringent limits on squark and gluino masses are obtained at the LHC [4] and at the Tevatron [5–9].

2. The ATLAS detector and data samples

The ATLAS detector [10] is a multipurpose particle physics apparatus with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. The layout of the detector is dominated by four superconducting magnet systems, which comprise a thin solenoid surrounding inner tracking detectors and three large toroids supporting a large muon tracker. The calorimeters are of particular importance to this analysis. In the pseudorapidity region $|\eta| < 3.2$, high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. An iron-scintillator tile calorimeter provides hadronic coverage over $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with LAr calorimetry for both EM and hadronic measurements.

The data sample used in this analysis was taken in 2010 with the LHC operating at a centre-of-mass energy of 7 TeV. Application of beam, detector and data-quality requirements resulted in a total integrated luminosity of 35 pb$^{-1}$. The detailed trigger specification varied throughout the data-taking period, partly as a consequence of the rapidly increasing LHC luminosity, but always guaranteed a trigger efficiency above 97% for events with a reconstructed jet with transverse momentum (p_T) exceeding 120 GeV and more than 100 GeV of missing p_T.

Footnotes:

1. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2)$.
3. Object reconstruction

Jet candidates are reconstructed using the anti-k_{t} jet clustering algorithm [11,12] with a distance parameter of 0.4. The inputs to this algorithm are clusters of calorimeter cells seeded by those with energy significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum over these cell clusters, treating each as an (E, \mathbf{p}) four-vector with zero mass. These jets are corrected for the effects of calorimeter non-compensation and inhomogeneities by using p_T and η-dependent calibration factors based on Monte Carlo (MC) corrections validated with extensive test-beam and collision-data studies [13]. Only jet candidates with $p_T > 20$ GeV and $|\eta| < 4.9$ are subsequently retained.

Electron candidates are required to have $p_T > 10$ GeV, to have $|\eta| < 2.47$, to pass the ‘medium’ electron shower shape and track selection criteria of Ref. [14], and to be outside problematic re-failing quality selection criteria designed to suppress detector noise.

4. Event selection

Following the steps above, overlaps between candidate jets with $|\eta| < 2.5$ and leptons are resolved using the method of Ref. [15] as follows. First, any such jet candidate lying within a distance $\Delta R < 0.2$ of an electron is discarded. Then the whole event is rejected if any electron candidate remains in the calorimeter transition region $1.37 < |\eta| < 1.52$ between barrel and end-cap. Finally, any lepton candidate remaining within a distance $\Delta R = 0.4$ of such a jet candidate is discarded.

The measurement of the missing transverse momentum two-vector $\vec{P}_{T}^{\text{miss}}$ (and its magnitude E_{T}^{miss}) is then based on the transverse momenta of all remaining jet and lepton candidates and all calorimeter clusters not associated to such objects. Following this, all jet candidates with $|\eta| > 2.5$ are discarded. Thereafter, the remaining lepton and jet candidates are considered “reconstructed”, and the term “candidate” is dropped.

5. Backgrounds, simulation and normalisation

Standard Model background processes contribute to the event counts in the signal regions. The dominant sources are: $W + jets$, $Z + jets$, top pair, multi-jet and single top production. Non-collision backgrounds are negligible. The majority of the $W + jets$ background is composed of $W \rightarrow \tau\nu$ events, or $W \rightarrow l\nu$ events in which no electron or muon candidate is reconstructed. The largest part of the $Z + jets$ background comes from the irreducible component in which $Z \rightarrow \nu\bar{\nu}$ generates large E_{T}^{miss}. Hadronic τ decays in $t\bar{t} \rightarrow b\bar{b}t\bar{v}q\bar{q}$ can generate large E_{T}^{miss} and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in the signal regions is predominantly caused by poor reconstruction of jet energies in calorimeters leading to ‘fake’ missing transverse momentum. There is also a contribution from neutrinos when events contain semileptonic decays of heavy quarks. Extensive validation of MC against data has been performed for each of these background sources and for a wide variety of control regions. The excellent agreement found motivates an approach in which the systematic uncertainties on the $W + jets$, $Z + jets$ and top background estimates are derived from the validation against data, while the central values for those estimates are taken from MC simulation to reduce sensitivity to correlations between data-driven estimates for different backgrounds. In contrast, the multi-jet background is normalised to data in control regions as described below.

Production of W and Z bosons, in association with jets, was simulated with ALPGEN [20] v2.13 at leading order (LO) and up to $2 \rightarrow 5$ partons using CTEQ6L1 PDFs [21]. Both were separately normalised to the next-to-next-to-leading-order inclusive W and Z cross sections from POWHEG [22,23] v2.0. Both resulting samples were found to be consistent with a variety of data-derived estimates, including methods based on: re-simulation of reconstructed leptons as hadronically decaying taus; removal of leptons from $W(lv) + jet$ and $Z(l\ell) + jet$ events; and by comparing MC predictions to data in control regions enriched with background events.

Production of top quarks (both singly and in pairs, assuming $m_{\text{stop}} = 172.5$ GeV) was simulated with MC@NLO [24,25] v3.41 using CTEQ6.6.6 next-to-leading-order (NLO) PDFs [26]. This estimate was found to be consistent with a data-driven cross-check based on replacement of reconstructed muons in the corresponding single lepton channels with simulated hadronic τ decays. Agreement was also found after reweighting the $t\bar{t}$ MC according to experimentally measured b-tag weights.

Simulated multi-jet events were generated both with PYTHIA [27] v6.4.21, which uses $2 \rightarrow 2$ LO matrix elements (ME) with the MRST2007 LO* PDF set [28], and with ALPGEN implementing the exact LO ME for up to $2 \rightarrow 5$ partons. The normalisation of these samples was fixed by a scaling designed to achieve a match to data in control regions obtained by reversing the $\Delta \phi$ requirements. After this scaling, both sets of simulations were in agreement within the experimental uncertainties, and therefore only PYTHIA multi-jet simulations are used further in this analysis.

The resulting simulation was found to be consistent with a data-driven estimate in which high E_{T}^{miss} events were generated from data by smearing low E_{T}^{miss} events on a jet-by-jet basis with measured jet energy resolution functions. This latter technique has
Table 1
Criteria for admission to each of the four overlapping signal regions A–D. All variables are defined in Section 4.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of required jets</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 3</td>
</tr>
<tr>
<td>Leading jet p_T [GeV]</td>
<td>> 120</td>
<td>> 120</td>
<td>> 120</td>
<td>> 120</td>
</tr>
<tr>
<td>Other jet(s) p_T [GeV]</td>
<td>> 40</td>
<td>> 40</td>
<td>> 40</td>
<td>> 40</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Final selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi (jet, P_T^{miss}_{min})$</td>
<td>> 0.4</td>
<td>> 0.4</td>
<td>> 0.4</td>
<td>> 0.4</td>
</tr>
<tr>
<td>E_T^{miss}/m_{eff}</td>
<td>> 0.3</td>
<td>—</td>
<td>> 0.25</td>
<td>> 0.25</td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td>> 500</td>
<td>—</td>
<td>> 500</td>
<td>> 1000</td>
</tr>
<tr>
<td>m_{12} [GeV]</td>
<td>—</td>
<td>> 300</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

no MC dependencies; it provides a completely independent determination of the multi-jet background using only quantities measured from the data. Additional control regions having reversed E_T^{miss}/m_{eff} requirements were used as further checks on the normalisation.

Supersymmetric events were generated with HERWIG++ [29] v2.4.2. These samples were normalised using NLO cross sections determined by PROSPINO [30] v2.1.

All non-PYTHIA samples used HERWIG++ or HERWIG-6.510 [31] to simulate parton showering and fragmentation, while JIMMY [32] v4.31 was used to generate the underlying event. All samples were produced using an ATLAS ‘tune’ [33] and a full detector simulation [34].

6. Systematic uncertainties

The primary sources of systematic uncertainties in the background estimates are: the luminosity determination, the jet energy scale (JES), the jet energy resolution (JER), the MC modelling, the lepton efficiencies, the extrapolation from control regions into signal regions, and the finite statistics of the MC samples and control regions. The uncertainty on the luminosity determination is estimated to be 11% [35]. The JES uncertainty has been measured from the complete 2010 data set using the techniques described in Ref. [13] and, though p_T and η dependent, is around 7%. The JER measured in data [36] was applied to all MC simulated jets and was propagated to P_T^{miss}. The difference between the re-calibrated and nominal MC is taken as the systematic uncertainty on the JER. The uncertainty on the estimated top background is dominated by the JES uncertainty. Systematic uncertainties associated with misidentification of leptons, jet energy scale inter-calibration, the rate of leptonic b-decays and the non-Gaussian tail of the jet response function have also been incorporated where appropriate.

Systematic uncertainties on the SUSY signal were estimated by variation of the factorisation and renormalisation scales in PROSPINO between half and twice their default values and by considering the PDF uncertainties provided by CTEQ6. Uncertainties were calculated for individual production processes (e.g. $q\bar{q}$, $\tilde{g}\tilde{g}$, etc.).

7. Results, interpretation and limits

The number of observed data events and the number of SM events expected to enter each of the signal regions are shown in Table 2. The background model is found to be in good agreement with the data, and the distributions of m_{eff}, m_{12} and E_T^{miss} are shown in Fig. 1.

An interpretation of the results is presented in Fig. 2 as a 95% confidence exclusion region in the $(m_{\tilde{g}}, m_{\tilde{q}})$-plane for the simplified set of models with $m_{\tilde{\chi}}^0 = 0$ for which the analysis was optimised. In these models the gluino mass and the masses of the squarks of the first two generations are set to the values shown in the figure. All other supersymmetric particles, including the squarks of the third generation, are decoupled by being given masses of 5 TeV. ISASUSY from ISAJET [37] v7.80 was used to calculate the decay tables, and to guarantee consistent electroweak symmetry breaking. The SUSY Les Houches Accord files for the models used may be found online [38]. The results are also interpreted in the tan$\beta = 3$, $A_0 = 0$, $\mu > 0$ slice of MSUGRA/CMSSM [39–44] in Fig. 3.

These figures also show the variation of the expected limit in response to ±1σ fluctuations of the SM expectation including the stated systematic uncertainties. The character of the statistic which is used to construct the exclusion regions in the $(m_{\tilde{g}}, m_{\tilde{q}})$ and CMSSM planes varies as a function of position. Specifically, at each point in those planes, only the data from a single signal region (A, B, C or D) is used to form that statistic, where the region was chosen based on the best expected sensitivity. For a given signal region, the statistic is defined to be the log of the profile likelihood ratio [45,46] for the observed event count in that region, assuming a non-negative signal contribution. A detailed description of how this is done and how the correlated and uncorrelated nuisance parameters representing systematic uncertainties are incorporated may be found in the Higgs chapter of Ref. [15].

Plots showing where each signal region is dominant may be found in [38]. All signal regions contribute to the exclusion and to its boundary in the $(m_{\tilde{g}}, m_{\tilde{q}})$-plane. Region D is dominant near the CMSSM boundary. Pseudo-experiments are used to compute one-sided upper limits on the signal contribution and guarantee exact coverage. In the simplified model, changing the $\tilde{\chi}^0_1$ mass from 0 to 100 GeV reduces the number of selected events by only $\lesssim 20\%$ near the exclusion curve so only slightly modifies the excluded region in the $(m_{\tilde{g}}, m_{\tilde{q}})$-plane. In the CMSSM, varying A_0 to 300 GeV, tanβ to 30 or μ to $-\mu$ leads to significant (~5%) changes, among the strongly interacting particles, only in the stop and sbottom masses. Accordingly, the exclusion limits are not strongly sensitive to these parameters.

8. Summary

This Letter reports a search for new physics in final states containing high-p_T jets, missing transverse momentum and no electrons or muons. Good agreement is seen between the numbers of events observed in the four signal regions and the numbers of events expected from SM sources. Signal regions A, B, C and D exclude non-SM cross sections within acceptance of 1.3, 0.35, 1.1 and 0.11 pb respectively at 95% confidence.

There are five parameters which are needed to specify a particular MSUGRA/CMSSM model. They are the universal scalar mass, m_0, the universal gaugino mass $m_{1/2}$, the universal trilinear scalar coupling, A_0, the ratio of the vacuum expectation values of the two Higgs fields, tanβ, and the sign of the higgsino mass parameter, μ.2
Table 2

Expected and observed numbers of events in the four signal regions. Uncertainties shown are due to "MC statistics, statistics in control regions, other sources of uncorrelated systematic uncertainty, and also the jet energy resolution and lepton efficiencies" \[u\], the jet energy scale \([j]\), and the luminosity \([L]\). Totals are correct within rounding errors.

<table>
<thead>
<tr>
<th>Signal region A ([u + j])</th>
<th>Signal region B ([u + j])</th>
<th>Signal region C ([u + j])</th>
<th>Signal region D ([u + j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-jet (7.4 \pm 1.1)</td>
<td>0.6 (\pm 0.3)</td>
<td>9.8 (\pm 0.5)</td>
<td>0.2 (\pm 0.1)</td>
</tr>
<tr>
<td>(W^+) jets (50 \pm 11)</td>
<td>4.4 (\pm 3.3)</td>
<td>35 (\pm 9)</td>
<td>1.1 (\pm 0.7)</td>
</tr>
<tr>
<td>(Z^0) jets (52 \pm 21)</td>
<td>4.1 (\pm 2.9)</td>
<td>27 (\pm 12)</td>
<td>0.8 (\pm 0.7)</td>
</tr>
<tr>
<td>(t) and (\bar{t}) (10 \pm 0)</td>
<td>0.9 (\pm 0.1)</td>
<td>17 (\pm 1)</td>
<td>0.3 (\pm 0.1)</td>
</tr>
<tr>
<td>Total SM (118 \pm 25)</td>
<td>10.0 (\pm 4.4)</td>
<td>88 (\pm 18)</td>
<td>2.5 (\pm 1.0)</td>
</tr>
<tr>
<td>Data (87)</td>
<td>11</td>
<td>66</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 1. The distributions of \(m_{\text{eff}}\) (separately for the \(\geq 2\) and \(\geq 3\) jet regions) and \(m_{T2}\) are shown for data and for the expected SM contributions after application of all selection criteria — cuts on the variables themselves are indicated by the red arrows. Also shown is the \(E_{\text{T}}^{\text{miss}}\) distribution after the \(\geq 2\) jet preselection cuts only. For comparison, each plot includes a curve showing the expectation for an MSUGRA/CMSSM reference point with \(m_0 = 200\ \text{GeV}, m_{1/2} = 190\ \text{GeV}, A_0 = 0, \tan\beta = 3\) and \(\mu > 0\). This reference point is also indicated by the star on Fig. 3. Below each plot the ratio of the data to the SM expectation is provided. Black vertical bars show the statistical uncertainty from the data, while the yellow band shows the size of the Standard Model MC uncertainty. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

The results are interpreted in both a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with \(\tan\beta = 3\), \(A_0 = 0\) and \(\mu > 0\). In the simplified model, gluino masses below 500 GeV are excluded at the 95% confidence level with the limit increasing to 870 GeV for equal mass squarks and gluinos. In the MSUGRA/CMSSM models equal mass squarks and gluinos below 775 GeV are excluded.
and squark mass are displayed at 100 GeV intervals. The different model assumptions given in the legend. Contours of constant gluino assume $m_{\tilde{g}}$ is illustrative only as some are derived in the context of MSUGRA/CMSSM or may not assume $m_{\tilde{g}} = 0$.

Fig. 2. 95% C.L. exclusion limits in the $(m_{\tilde{g}}, m_{\tilde{q}})$ plane together with existing limits [5–9] and contours showing the total supersymmetric cross section, for the simplified squark–gluino model with massless χ^0_1. Comparison with existing limits is illustrative only as some are derived in the context of MSUGRA/CMSSM or may not assume $m_{\tilde{g}} = 0$.

Fig. 3. 95% C.L. exclusion limits in the $(m_{\tilde{g}}, m_{\tilde{q}})$ plane of MSUGRA/CMSSM for which $\tan\beta = 3$, $A_0 = 0$ and $\mu > 0$. Also shown are existing limits [7–9,4] having the different model assumptions given in the legend. Contours of constant gluino and squark mass are displayed at 100 GeV intervals.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVRA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF, NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[16] ATLAS Collaboration, Data-quality requirements and event cleaning for jets and missing transverse energy reconstruction with the ATLAS detector in proton–proton collisions at a center-of-mass energy of 7 TeV, ATLAS-CONF-2010-038.

38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States
40 University of Texas at Dallas, Richardson TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.B., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 INFN Sezione di Lecce; (a) Dipartimento di Fisica, Università del Salento, Lecce, Italy
73 Oxford-Liverpool Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 Department of Physics, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science, Nagoya University, Nagoya, Japan
102 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States
107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States
109 Ohio State University, Columbus OH, United States
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
112 Department of Physics, Oklahoma State University, Stillwater OK, United States
113 Palacký University, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France