Measurement of the inclusive isolated prompt photon cross section in pp collisions at $\sqrt{s} = 7$ TeV using 35 pb$^{-1}$ of ATLAS data

DOI
10.1016/j.physletb.2011.11.010

Publication date
2011

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Measurement of the inclusive isolated prompt photon cross-section in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV using 35 \(\text{pb}^{-1} \) of ATLAS data

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 1 August 2011
Received in revised form 18 October 2011
Accepted 4 November 2011
Available online 6 November 2011
Editor: H. Weerts

Keywords:
Photon
ATLAS
LHC
Standard Model

ABSTRACT

A measurement of the differential cross-section for the inclusive production of isolated prompt photons in \(pp \) collisions at a center-of-mass energy \(\sqrt{s} = 7 \) TeV is presented. The measurement covers the pseudorapidity ranges \(|\eta| < 0.6 \) and \(1.52 \leq |\eta| < 2.37 \) in the transverse energy range \(45 \leq E_T < 400 \) GeV. The results are based on an integrated luminosity of 35 \(\text{pb}^{-1} \), collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

The production of prompt photons at hadron colliders provides means for testing perturbative QCD predictions [1], providing a colorless probe of the hard scattering process. The measurement of the inclusive production of prompt photons could be used to constrain the parton distribution functions; in particular it is sensitive to the gluon content of the proton [2] through the \(qg \rightarrow q\gamma^* \) subprocess, which at leading order dominates the inclusive prompt photon cross-section at the LHC.

ATLAS has recently published a measurement of the inclusive photon cross-section in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV using an integrated luminosity of 880 \(\text{nb}^{-1} \) [3]; a similar measurement has been performed by the CMS Collaboration [4] using an integrated luminosity of 2.9 \(\text{pb}^{-1} \). Analogous measurements have been performed in \(pp \) collisions at a lower center of mass at the Tevatron [5,6], and in deep inelastic \(ep \) scattering at HERA [7,8]. This Letter presents the measurement of the differential production cross-section of isolated prompt photons with transverse energies \(E_T \) above 45 GeV using 34.6 \(\pm 1.2 \) \(\text{pb}^{-1} \) of \(pp \) collision data at \(\sqrt{s} = 7 \) TeV collected in 2010. Isolated prompt photons in the pseudorapidity ranges \(|\eta| < 0.6, 0.6 \leq |\eta| < 1.37, 1.52 \leq |\eta| < 1.81 \) and \(1.81 \leq |\eta| < 2.37 \) are studied.1

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln\tan(\theta/2)\).

In the following, all photons produced in \(pp \) collisions and not coming from hadron decays are considered as prompt: they include both direct photons, which originate from the hard subprocess, and fragmentation photons, which are the result of the fragmentation of a colored high-\(p_T\) parton [9,10]. Isolated photons are considered: from a theoretical perspective, photons are isolated if the transverse energy \(E_T^{\text{iso}} \), within a cone of radius \(R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \) centered around the photon direction in the pseudorapidity \(\eta\) and azimuthal angle \(\phi\) plane, is smaller than \(E_T^{\text{iso}} \). In Jetphox [9], used for next-to-leading order (NLO) calculations, \(E_T^{\text{iso}} \) is calculated from all partons. Similarly, a corresponding isolation prescription is applied experimentally on the reconstructed objects, based on the energy reconstructed in an \(R = 0.4 \) cone around the photon candidate, corrected for the effects associated with: the energy of the photon candidate itself, the underlying event and the collision pileup [3]. The main background to these isolated prompt photons is composed of photons from decays of light neutral mesons, such as the \(\pi^0\) or \(\eta\).

Photons are detected in ATLAS by a lead-liquid Argon sampling electromagnetic calorimeter (ECAL) with an accordion geometry, divided into a barrel section covering the pseudorapidity region \(|\eta| < 1.475 \) and two endcap sections covering the pseudorapidity regions \(1.375 < |\eta| < 3.2 \). It consists of three longitudinal layers. The first layer has a high granularity along the \(\eta\) direction between 0.003 and 0.006 depending on \(\eta\), with the exception of the regions \(1.4 < |\eta| < 1.5 \) and \(|\eta| > 2.4 \), sufficient to provide an event-by-event discrimination between single photon showers and...
showers coming from a π^0 decay. The second layer has a granularity of 0.025 × 0.025 in η × φ. A third layer is used to correct for the leakage beyond the electromagnetic calorimeter for high-energy showers, while in front of the accordion calorimeter a thin presampler layer, covering the pseudorapidity interval |η| < 1.8, is used to correct for the energy absorbed before the calorimeter.

The ECAL energy resolution is parametrized as σ(E)/E = a/\sqrt{E} (GeV) + ε with the largest contribution coming from the sampling term a, corresponding to approximately 10% (20%) in the barrel (endcap) region. For energies above 200 GeV the global constant term c, estimated to be (1.2 ± 0.6)% ((1.8 ± 0.6)% in the barrel (endcap) for the 2010 data, starts to dominate [11]. In front of the electromagnetic calorimeter the inner detector allows the reconstruction of tracks from the primary pp collision point and also from secondary vertices, permitting an efficient reconstruction of photon conversions in the beam pipe and inner detector up to a radius of ~80 cm. Further details of the inner detector, the electromagnetic calorimeter and the whole ATLAS detector are documented in Ref. [12].

Event samples simulated with PYTHIA 6.4.21 [13] are used to study the characteristics of signal and background events. To estimate systematic uncertainties related to the choice of the event generator and the parton shower model, alternative samples are generated with HERWIG 6.5 [14]. Events used in this analysis are triggered using a single-photon trigger with a nominal transverse energy threshold of 40 GeV. The trigger efficiency, ε_{trig}, is measured using a bootstrap method to be (99.4±0.2)% for prompt photon candidates with E_T > 45 GeV passing the selection criteria presented below. The same trigger condition was used for the whole dataset, even though the mean number of events per collision rose from ~1 to ~3 as the instantaneous luminosity increased during 2010. Collision candidates are selected by requiring a primary vertex with at least three associated charged particle tracks, consistent with the beam interaction region. The total number of selected events in data after these requirements is almost 1.7 million, with a negligible amount of non-collision background.

Photon candidates are formed from clusters of energy deposits reconstructed in the electromagnetic calorimeter [15]. Clusters without the isolation vertex are classified as unconverted photon candidates. The presence of one or two tracks coming from a conversion vertex is used to distinguish converted photons from electrons. Converted photon clusters are rebuilt with a wider size in φ, to account for the opening angle between the conversion products due to the magnetic field. A specific energy calibration [15] is then applied separately for converted and unconverted photon candidates to account for energy loss in front of the ECAL and both lateral and longitudinal leakage. Photon clusters are removed if their barycenter lies in the transition between the barrel and endcap regions of the electromagnetic calorimeter, corresponding to 1.37 < |η| < 1.52, where larger uncertainties related to the efficiency measurement are expected. Clusters containing cells overlapping with the small number of regions with problematic calorimeter readout or with very noisy cells are also removed. Over 0.8 million photon candidates with E_T > 45 GeV remain in the data sample.

A measurement of the transverse isolation energy E^{iso}_T is associated with each photon candidate, computed by summing the calorimeter energy in a cone of R = 0.4 around the candidate, as detailed in Ref. [3]. Corrections to this isolation energy are derived from simulation to remove the energy of the photon itself that leaks into the isolation cone. An event-by-event correction [16,17] is applied to subtract the estimated contributions from the underlying event and in-time pileup (i.e. from additional proton–proton interactions). The correction to E^{iso}_T is typically 900 MeV. After this subtraction, the remaining fluctuations are dominated by electronic noise from the calorimeter measurement. The effect of the out-of-time pileup, associated with collisions taking place in previous bunch-crossings, is found to be minimal (i.e. shifts of 200 MeV at most, towards lower isolation energies). The corrections mentioned above allow E^{iso}_T to be directly compared to parton-level theoretical predictions.

All photon candidates having reconstructed isolation energy <3 GeV are considered as experimentally isolated. This definition is similar to applying a 4 GeV cut on the particle-level isolation, defined as the transverse energy of all stable particles in a cone of radius R = 0.4 around the photon direction (with the underlying event removed as before). The small difference between the two, caused by noise and other detector effects, is taken into account in the uncertainties associated with the photon reconstruction efficiency ε^{reco} discussed below. The particle-level isolation can in turn be related to the parton-level isolation in JETPHOX that is used for the NLO predictions. The efficiency of the isolation criteria is found to be similar (i.e. within a few percent) at both the particle-level and the parton-level for simulated photons passing the selection described below.

As in Ref. [3], the reconstruction and preselection efficiency ε^{reco} is computed from simulated prompt photons as a function of the true photon E_T. It is defined as the ratio between the number of photons reconstructed in a given |η| interval with reconstructed E^{iso}_T < 3 GeV, and the total number of true prompt photons with true pseudorapidity in the same |η| interval, and with particle-level transverse isolation energy <4 GeV. The estimated ε^{reco} for photons with 45 < E_T < 400 GeV is ~85% (75%) in the barrel (endcap) region. The main inefficiency (~10%) is due to the acceptance loss originating from a few inoperative optical links in the calorimeter readout. A similar reduction is caused by the isolation requirement in the pseudorapidity region 1.52 < |η| < 1.81 where the calorimetric isolation suffers from larger detector effects. The systematic uncertainty on ε^{reco} associated with the experimental isolation requirement is evaluated from the prompt photon simulation by varying the value of the isolation criterion by the average difference (~500 MeV) observed for electrons from W → eν events in data and simulation. The estimated uncertainty varies between 3 and 4% depending on η. The uncertainty associated with the imperfect knowledge of the material in front of the ECAL is estimated by comparing the expected efficiencies in a sample simulated with the nominal ATLAS setup, and one with increased material. It varies between 1 and 2.5%, depending on η.

Shape variables computed from the lateral and longitudinal energy profiles of the shower in the calorimeters are used to discriminate signal from background [15,18]. As detailed in Ref. [3], selection criteria on these variables, optimized independently for unconverted and converted photons, are applied to reconstructed photon candidates. The requirements on these variables are applied in stages resulting in tight candidates: firstly jets are removed whilst still keeping a high photon efficiency and then secondly wide or closely spaced showers (i.e. those consistent with jets or meson decays) are rejected. The selection criteria have been revised to minimize the systematics on the efficiency extraction, especially in the region 1.81 < |η| < 2.37. The photon identification efficiency ε^{ID} is computed from simulation as a function of transverse energy in each pseudorapidity region. It is defined as the efficiency for reconstructed (true) prompt photons, with measured E^{iso}_T < 3 GeV, to pass the identification criteria mentioned above.

Following the same method as in Ref. [3], the value of ε^{ID} is determined after correcting the simulated shower shapes for the observed average differences with respect to data. In the present analysis, however, the corrections are estimated for unconverted and converted photons separately. This helps to reduce the systematic uncertainties associated with the correction procedure. The
The purity of isolated prompt photons measured with this selection criteria. The non-tight distribution is normalized to the tight distribution for $E_\text{T} > 5$ GeV (non-isolated region), where the signal contamination is fairly small.

The average differential cross-section $(d\sigma/dE_\text{T}^{\text{true}})$ for the production of isolated prompt photons in a bin j of E_T^{true} (integrated over one true $|\eta|$ bin k) is related to the signal yield $N_{i_1}^{\gamma,\text{true},k}$ (in the kth $|\eta|$ bin and ith E_T bin) by the relationship:

$$N_{i_1}^{\gamma,\text{true},k} = \left(\int \mathcal{L} \text{d}t \right) e_\text{IGS} e_\text{ID,k} \times \sum_j R_{i_1}^{\gamma,\text{true},j} \Delta E_\text{T,j} \frac{d\sigma^k}{dE_\text{T}^{\text{true}}_j}$$

where $e_\text{ID,k}$ is the average identification efficiency and $R_{i_1}^{\gamma,\text{true},j}$ is the E_T response matrix. The elements of $R_{i_1}^{\gamma,\text{true},j}$ are evaluated from the ratio of the true to reconstructed E_T distributions of photon candidates, using simulated samples of isolated prompt photons. The migration from one E_T bin to another is less than 10% in most E_T and $|\eta|$ regions. A larger migration of up to 18% is observed in the region $1.52 < |\eta| < 1.81$, where more material is present in front of the electromagnetic calorimeter. Migrations between $|\eta|$ bins are neglected given the large bin size and the excellent ECAL η resolution. A singular value decomposition (SVD) [19] is used to unfold the E_T distribution for detector effects. The regularization of the resulting unfolded distribution is tuned using simulated events and chosen to be very loose to avoid a potential bias toward the truth reference spectrum. The simulation model dependence is tested with pseudo-experiments, using PYTHIA and HERWIG simulated samples. The difference of the unfolded cross-section obtained in both cases is found to be <3%. The uncertainty associated with the ECAL energy resolution is ~1%. The lower and upper E_T constraints have negligible effect on the unfolded spectrum.

The measured inclusive isolated prompt photon production cross-sections are shown in Fig. 2. They are presented as a function of the photon transverse energy, for each of the four considered pseudorapidity intervals. They are also presented in tabular form in Appendix A. The error bars on the data points represent the combination of the statistical and systematic uncertainties: systematic uncertainties dominate over the entire kinematic range considered. The contribution from the luminosity uncertainty (3.4%) is shown separately as it represents a possible global change by a common multiplicative factor. The data agree with NLO pQCD calculations, obtained with JETPHOX 1.2.2 [9] using the CTEQ 6.6 PDFs [20] and the BFG set II [21] fragmentation functions (FF). These predictions are negligibly affected when using BFG set I instead. The nominal renormalization, factorization and fragmentation scales are set to the E_T of the photon. Theoretical calculations using MSTW 2008 [22] and NNPDF2.0 [23] PDFs show a similarly good agreement to data. The central values obtained with the MSTW 2008 (NNPDF2.0) PDFs are 3 to 5% (1 to 4%) higher than those predicted using the CTEQ 6.6 PDFs. The total systematic uncertainties on the theoretical predictions are represented with a solid band. The scale uncertainty (~10%) is the leading theoretical systematic uncertainty. It is estimated from the env-

Fig. 1. Distributions of E_T^{ID} for photon candidates with $45 < E_\text{T} < 55$ GeV in $|\eta| < 0.6$ passing the tight (solid dots) and non-tight (open triangles) shower-shape-based selection criteria. The non-tight distribution is normalized to the tight distribution for $E_\text{T}^{\text{ID}} > 5$ GeV (non-isolated region), where the signal contamination is fairly small.
Measured (dots) and expected (shaded area) inclusive prompt photon production cross-sections, and their ratio, as a function of the photon E_T and in the range $|\eta| < 0.6$, $0.6 \leq |\eta| < 1.37$, $1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$. The data error bars combine the statistical and systematic uncertainties, with the luminosity uncertainty shown separately (dotted bands).

In conclusion, the inclusive isolated prompt photon production cross-section in pp collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV has been measured using 35 pb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the LHC. The differential cross-section has been measured as a function of the prompt photon transverse energy between 45 and 400 GeV, in the pseudorapidity ranges $0.0 \leq |\eta| < 0.6$, $0.6 \leq |\eta| < 1.37$, $1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$. In general, good agreement between the data and the NLO pQCD predictions is observed. This measurement improves the precision and significantly extends the kinematic regime explored in the previous measurement [3] and is consistent in the region where the two measurements overlap.

Over most of this extended kinematic range the experimental errors are smaller than the theoretical ones. The large theoretical scale error limits the discrimination between PDFs. Future measurements of this process in finer pseudorapidity binning and those of the photon $+$ jet system should provide more insight into the PDF differences.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NNSF, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European
Table A.1
Measured isolated prompt photon cross-section for $|\eta| < 0.6$ with statistical and systematic uncertainties. The total uncertainty includes both the statistical and all systematic uncertainties (summed in quadrature), except for the uncertainty on the luminosity.

<table>
<thead>
<tr>
<th>$E_{\text{T}}^{\text{min}}$ [GeV]</th>
<th>$E_{\text{T}}^{\text{max}}$ [GeV]</th>
<th>$d\sigma/dE_{\text{T}}$ [pb/GeV]</th>
<th>δ_{stat} [pb/GeV]</th>
<th>δ_{fold} [pb/GeV]</th>
<th>$\delta_{\text{efficiency}}$ [pb/GeV]</th>
<th>δ_{lumi} [pb/GeV]</th>
<th>δ_{corr} [pb/GeV]</th>
<th>δ_{folding} [pb/GeV]</th>
<th>δ_{tot} [pb/GeV]</th>
<th>δ_{umi} [pb/GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>55</td>
<td>83.3</td>
<td>0.5</td>
<td>4.8</td>
<td>3.3</td>
<td>3.4</td>
<td>2.5</td>
<td>7.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>70</td>
<td>32.7</td>
<td>0.3</td>
<td>1.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>2.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>85</td>
<td>12.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>100</td>
<td>5.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>125</td>
<td>2.2</td>
<td>0.05</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>150</td>
<td>0.80</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>0.26</td>
<td>0.01</td>
<td>0.01</td>
<td>0.9 \times 10^{-3}</td>
<td>7 \times 10^{-3}</td>
<td>8 \times 10^{-3}</td>
<td>0.02</td>
<td>9 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>2.8 \times 10^{-2}</td>
<td>2 \times 10^{-3}</td>
<td>2 \times 10^{-3}</td>
<td>1 \times 10^{-3}</td>
<td>4 \times 10^{-4}</td>
<td>8 \times 10^{-4}</td>
<td>3 \times 10^{-3}</td>
<td>9 \times 10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>

Table A.2
Measured isolated prompt photon cross-section for $0.6 \leq |\eta| < 1.37$, uncertainties as in Table A.1.

Table A.3
Measured isolated prompt photon cross-section for $1.52 \leq |\eta| < 1.81$, uncertainties as in Table A.1.

Table A.4
Measured isolated prompt photon cross-section for $1.81 \leq |\eta| < 2.37$, uncertainties as in Table A.1.

Union; IN2P3–CNRS, CEA–DSM/JJRL, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MŠRR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Appendix A. Cross-section measurements

Tables A.1–A.4 list the values of the measured isolated prompt photon production cross-sections, for the $0.0 \leq |\eta| < 0.6$, $0.6 \leq |\eta| < 1.37$, $1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$ regions, respectively. The various systematic uncertainties originating from the purity measurement, the photon selection and identification efficiency and the luminosity are shown. In addition, the correlated uncertainties between the efficiency and the purity determination.
are propagated as such and included separately (σ_{corr}). The total uncertainty is the combination of the statistical and systematic uncertainties (summed in quadrature), except for the uncertainty on the luminosity.

Open access

This article is published Open Access at scienceDirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.B., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova, (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

Institute of Physics and Astronomy and Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton, VA, United States

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Science, Hiroshima University, Hiroshima, Japan

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington, IN, United States

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, United States

Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Køge University, Køge, Denmark

Faculty of Science, Kyushu University, Fukuoka, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

Department of Physics, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Egham, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, IPMMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska Institutionen, Lunds Universitet, Lund, Sweden

Departamento de Física Teórica, C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, MA, United States

Department of Physics, McGill University, Montreal, QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor, MI, United States

Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

Group of Particle Physics, University of Montreal, Montreal, QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MPEI), Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science, Nagoya University, Nagoya, Japan

(a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

NIKHEF National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, IL, United States

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

Department of Physics, New York University, New York, NY, United States

Ohio State University, Columbus, OH, United States

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

Department of Physics, Oklahoma State University, Stillwater, OK, United States

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, OR, United States

LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

Petersburg Nuclear Physics Institute, Gatchina, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
q Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

r Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

s Also at High Energy Physics Group, Shandong University, Shandong, China.

t Also at Section de Physique, Université de Genève, Geneva, Switzerland.

u Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

v Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

w Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

x Also at California Institute of Technology, Pasadena, CA, United States.

y Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

z Also at Department of Physics, Oxford University, Oxford, United Kingdom.

aa Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

ab Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

ac Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.

ad Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

ae Also at Department of Physics, Nanjing University, Jiangsu, China.

* Deceased.