Search for neutral MSSM Higgs bosons decaying to $\tau^+\tau^-$ pairs in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1016/j.physletb.2011.10.001

Publication date
2011

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for neutral MSSM Higgs bosons decaying to $\tau^+\tau^-$ pairs in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

ARTICLE INFO

Article history:
Received 25 July 2011
Received in revised form 30 September 2011
Accepted 2 October 2011
Available online 6 October 2011
Editor: H. Weerts

Keywords:
Higgs boson
MSSM
Tau lepton

ABSTRACT

A search for neutral Higgs bosons decaying to pairs of τ leptons with the ATLAS detector at the LHC is presented. The analysis is based on proton–proton collisions at a center-of-mass energy of 7 TeV, recorded in 2010 and corresponding to an integrated luminosity of 36 pb$^{-1}$. After signal selection, 276 events are observed in this data sample. The observed number of events is consistent with the total expected background of 269 ± 36 events. Exclusion limits at the 95% confidence level are derived for the production cross section of a generic Higgs boson ϕ as a function of the Higgs boson mass and for A/h production in the Minimal Supersymmetric Standard Model (MSSM) as a function of the parameters m_A and $\tan\beta$.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Discovering the mechanism responsible for electroweak symmetry breaking and the origin of mass for elementary particles is one of the major goals of the physics program at the Large Hadron Collider (LHC) [1]. In the Standard Model (SM) this mechanism requires the existence of a scalar particle, the Higgs boson [2–6]. In extensions of the Standard Model to the Minimal Supersymmetric Standard Model (MSSM) [7,8], two Higgs doublets of opposite hypercharge are required, resulting in five observable Higgs bosons. Three of these are electrically neutral (h, H, and A) while two are charged (H^\pm). At tree level their properties such as masses, widths, and branching ratios can be predicted in terms of only two parameters, often chosen to be the mass of the CP-odd Higgs boson, m_A, and the ratio of the vacuum expectation values of the two Higgs doublets, $\tan\beta$. The Higgs boson production proceeds mainly via gluon fusion or in association with b quarks, with the latter becoming more important for large $\tan\beta$.

In this Letter, a search for neutral MSSM Higgs bosons in the decay mode $A/H/h \rightarrow \tau^+\tau^-$ with the ATLAS detector [9] is presented. The decay into a $\tau^+\tau^-$ pair is a promising channel since the coupling of the Higgs bosons to third-generation fermions is strongly enhanced over large regions of the MSSM parameter space. The search considers Higgs boson decays to $e\mu4\nu, e\tau_{had}3\nu$, and $\mu\tau_{had}3\nu$, where τ_{had} denotes a hadronically decaying τ lepton. These topologies have branching ratios of 6%, 23%, and 23%, respectively. This analysis is complementary to previous searches at the e^+e^- collider LEP at CERN [10] and similar to those performed at the $p\bar{p}$ collider Tevatron at Fermilab [11,12], and extends to regions of the MSSM parameter space untested by these machines. The CMS Collaboration has recently published results of a similar analysis [13].

2. Event samples

The data used in this search were recorded with the ATLAS detector in proton–proton collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV during the 2010 LHC run. The ATLAS detector is described in detail elsewhere [9]. In the ATLAS coordinate system, polar angles θ are measured with respect to the LHC beamline and azimuthal angles ϕ are measured in the plane transverse to the beamline. Pseudorapidities η are defined as $\eta = -\ln\tan\frac{\theta}{2}$. Transverse momenta are computed from the three-momenta p as $p_T = |p|\sin\theta$. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were fully operational, is 36.1 ± 1.2 pb$^{-1}$ [14]. The data were collected using a single-electron trigger with p_T threshold in the range 10–15 GeV for the $e\tau_{had}$ and $e\mu$ final states, and a single-muon trigger with p_T threshold in the range 10–13 GeV for the $\mu\tau_{had}$ final state. With respect to the signal selection described below, the total trigger efficiencies are 99% and 82% for electrons and muons, respectively. Events that pass the trigger are selected if they have a reconstructed vertex that is formed by three or more tracks and lies within 15 cm of the nominal interaction point along the beam axis.

The cross sections for Higgs boson production have been calculated using HIGLU [15] and ggh@nnlo [16] for the gluon fusion
process. For the b-quark associated production, a matching scheme described in [17] is used to combine the next-to-leading order (NLO) calculation for $gg \rightarrow bbA/H/h$ in the 4-flavor scheme [18, 19] and the next-to-next-to-leading order (NNLO) calculation for $bb \rightarrow A/H/h$ in the 5-flavor scheme [20]. The masses, couplings, and branching ratios of the Higgs bosons are computed with FeynHiggs [21]. The ratio of the MSSM Yukawa couplings and their SM counterparts, constituting a largely irreducible background for Higgs boson masses m_{h}^{mix} and branching ratios of the Higgs bosons are computed with FeynHiggs [21]. The ratio of the MSSM Yukawa couplings and their SM counterparts, constituting a largely irreducible background for Higgs boson masses m_{h}^{mix} and branching ratios of the Higgs bosons are computed with FeynHiggs [21].

Table 1 summarizes the inclusive cross sections for the above processes, which are used to normalize the simulated event samples. The cross section for single gauge boson production is calculated at NNLO in QCD perturbation theory [34], for $t\bar{t}$ production at NLO and next-to-leading logarithms (NLL) [35,36], and for single-top and di-boson production at NLO [23]. No simulated samples for the QCD jet background are used, as this background is entirely estimated with data. All simulated samples are processed through a full simulation of the ATLAS detector based on GEANT4 [37,38]. To match the pile-up (overlap of several interactions in the same bunch crossing) observed in the data, minimum-bias events [39, 40] are overlaid to the generated signal and background events, and the resulting events are reweighted so that the distribution of the number of reconstructed vertices per bunch crossing agrees with the data.

3. Object reconstruction

Electron candidates are reconstructed from a cluster of energy deposits in the electromagnetic calorimeter matched to a track in the inner detector. The cluster must have a shower profile consistent with an electromagnetic shower [41]. Electron candidates are required to have a transverse momentum above 20 GeV and a pseudorapidity in the range $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. Muon candidates are reconstructed by combining tracks in the muon spectrometer with tracks in the inner detector [41]. They must have a transverse momentum above 10 GeV and a pseudorapidity in the range $|\eta| < 2.5$ and < 2.4 in the ℓ_{had} and ℓ_{μ} final states, respectively. Isolation requirements are imposed on electron (muon) candidates by requiring that the additional transverse energy in the calorimeter cells in a cone of radius $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.3$ (0.4) centered on the lepton direction is less than 10% (6%) of the electron (muon) transverse energy (momentum). In addition, the sum of the transverse momenta of all tracks with $p_T > 1$ GeV within $\Delta R = 0.4$ around the lepton direction, excluding the lepton track, must be less than 6% of the lepton track transverse momentum. The reconstruction of candidates for hadronic τ decays is based on calorimeter jets reconstructed with the anti-k_T algorithm [42,43] with a distance parameter $R = 0.4$, seeded using three-dimensional topological calorimeter energy clusters. Their identification, including vetoing electrons and muons, is based on observables that describe the shape of the calorimeter shower and on tracking information, which are combined in a likelihood discriminant [44]. A τ candidate must have a visible transverse momentum, p_T^{vis}, above 20 GeV, a pseudorapidity in the range $|\eta| < 2.5$, 1 or 3 associated tracks ($p_T > 1$ GeV) and a total charge of ± 1, computed from all tracks associated with the candidate. The efficiency of the τ identification for 1-prong (3-prong) τ candidates with $p_T^{\text{vis}} > 20$ GeV is about 65% (60%) and the probability to misidentify a jet as a τ lepton, as determined from a di-jet control sample, is about 10% (5%). When candidates fulfilling the above criteria overlap with each other geometrically (within $\Delta R < 0.2$), only one of them is selected. The overlap is resolved by selecting muons, electrons and τ candidates in this order of priority. The missing transverse momentum in the event, $E_T^{\text{miss}} = \sqrt{(E_{x}^{\text{miss}})^2 + (E_{y}^{\text{miss}})^2}$, is reconstructed as the vector sum of all topological calorimeter energy clusters in the region $|\eta| < 4.5$ and corrected for identified muons [41].

4. Event selection

The signatures of $A/H/h \rightarrow \tau^+\tau^- \rightarrow e\nu\nu\ell$ or $\ell^+\ell^-\nu\nu$ signal events are one isolated electron, one isolated muon and E_T^{miss} due to the undetected neutrinos from the two τ decays. Exactly one electron with $p_T^e > 20$ GeV and one muon with $p_T^\mu > 10$ GeV with opposite electric charge are required. In order to suppress backgrounds
from $t\bar{t}$, single-top and di-boson production two additional requirements are applied. The scalar sum of the transverse momentum of the electron, the transverse momentum of the muon and the missing transverse momentum must be smaller than 120 GeV, and the azimuthal opening angle between the electron and the muon must be larger than 2.0 rad.

The signatures of $A/H/h \to \tau^+ \tau^-$ signal events, where one τ lepton decays leptonically and the other hadronically, are an isolated electron or muon, ℓ, a τ candidate, and E_T^{miss} due to the undetected neutrinos from the two τ decays. Exactly one electron or muon with $p_T^{\ell} > 20$ GeV or $p_T^{\ell} > 15$ GeV and one oppositely-charged τ candidate with $p_T^{\tau} > 20$ GeV are required in the event. Events with more than one electron or muon, using the lepton p_T thresholds from the object definition given in Section 3, are rejected to suppress events from $Z/\gamma^* \to \ell^+ \ell^-$ ($\ell = e, \mu$) decays and from $t\bar{t}$ and single-top production. A missing transverse momentum above 20 GeV is required to reject events with jets from QCD processes as well as $Z/\gamma^* \to \ell^+ \ell^-$ ($\ell = e, \mu$) decays. Events with real leptons from $W \to \ell v$ decays are suppressed by requiring the transverse mass of the $\ell-E_T^{\text{miss}}$ system, defined as

$$m_T = \sqrt{2p_T E_T^{\text{miss}}(1 - \cos \Delta\phi)},$$

(1)

to be below 30 GeV. Here p_T^{ℓ} is the transverse momentum of the electron or muon and $\Delta\phi$ is the angle between the electron or muon and the E_T^{miss} vector in the plane perpendicular to the beam direction.

Table 2 compares the number of selected events in data with those expected from the simulation of various background processes, not including QCD jet production. After the full selection, 70, 74, and 132 data events are observed in the $e\mu$, τ^τ_{had}, and $\mu\tau^\tau_{\text{had}}$ channels, respectively. The estimation of backgrounds based on data control samples used for the final results of the analysis is discussed in Section 5. The signal efficiency amounts to 7 (3)% for $m_A = 120$ GeV and 9 (8)% for $m_A = 200$ GeV in the $e\mu$ ($\ell\tau_{\text{had}}$) final states.

After the selection of signal candidates in the $e\mu$ final state, the effective mass, $m_{\tau\tau}^{\text{effective}}$, is used as the discriminating variable to search for a potential Higgs boson signal. Here, $m_{\tau\tau}^{\text{effective}}$ is calculated as the invariant mass of the electron, muon and E_T^{miss} system according to

$$m_{\tau\tau}^{\text{effective}} = \sqrt{(p_e + p_\mu + p_{\text{miss}})^2},$$

(2)

where p_e and p_μ denote the four-vectors of the electron and muon, respectively, and the missing momentum four-vector is defined by $p_{\text{miss}} = (E_{T\text{miss}}^x, E_{T\text{miss}}^y, E_{T\text{miss}}^z, 0)$.

In the τ^τ_{had} and $\mu\tau^\tau_{\text{had}}$ final states, the visible $\tau^+ \tau^-$ mass, $m_{\tau\tau}^{\text{visible}}$, defined as the invariant mass of the electron or muon from the leptonic τ decay and the hadron(s) from the hadronic τ decay, is used as the discriminating variable.

Fig. 1 shows distributions of $m_{\tau\tau}^{\text{effective}}$ and $m_{\tau\tau}^{\text{visible}}$ for the data, compared to the background expectations described in Section 5.
relevant background sources: Z/γ* → τ+τ− and QCD jet production in the eµ final state, and W + jets, Z/γ* → τ+τ−, and QCD jet production in the ℓτhad final state. The remaining backgrounds given in Table 2 are estimated solely from simulation.

5.1. QCD jet background in the eµ final state

For the estimation of the QCD jet background, four independent samples are selected by using selection criteria on two variables: the isolation of the electron and muon and their charge product. The signal region A is defined by the selection criteria defined above, i.e. opposite-sign isolated leptons. Region B contains same-sign isolated leptons, region C opposite-sign anti-isolated leptons, and region D same-sign anti-isolated leptons. Anti-isolated leptons are obtained by inverting the isolation criteria described in Section 3. The shape of the mT eff distribution in the signal region A is taken from control region C and the normalization is derived by nA = rC/D × nB. Here, nA and nB denote the event yields in regions A and B and rC/D = the ratio of the event yields in regions C and D after subtracting the contribution from non-QCD jet backgrounds estimated from simulation. This method relies on the assumption that the two variables used to define the four regions are uncorrelated and that the shape of the mT eff distribution does not depend on the isolation or charge product requirement. This has been verified by comparing the event yields and shapes of the mT eff distribution in data for regions C and D and in further control regions defined by the requirement of one isolated and one non-isolated lepton.

After subtracting the contribution from non-QCD jet backgrounds, estimated from simulation, the QCD jet event yield in region B is found to be nB = 1.07 ± 1.57(stat.) and the ratio rC/D is determined to be rC/D = 1.97 ± 0.12(stat.). The QCD jet event yield in the signal region is therefore estimated to be nA = 2.1 ± 1.2(stat.) events. Systematic uncertainties are discussed in Section 6.

5.2. Background in the ℓτhad final states

The method to estimate the QCD and W + jets backgrounds [45] is based on both data and simulation and uses events with same-sign charges of the electron/muon and the τhad candidate. It relies on the assumptions that the shape of the mT eff distribution for these backgrounds is the same for opposite-sign (OS) and same-sign (SS) events and that their ratio is the same in the signal region, defined by the nominal selection, and in background-enhanced QCD and W + jets control regions. These assumptions have been verified with simulated events. The method is referred to as the baseline method and is used to derive the results for the ℓτhad channel. It is cross-checked with an alternative background estimation method.

The total number of opposite-sign background events in the signal region, nBkg OS, can be expressed as

\[n_{Bkg}^{OS} = n_{SS}^{Bkg} + n_{SS}^{QCD/SS} + n_{SS}^{W/SS} + n_{SS}^Z + n_{SS}^{other}, \]

where nBkg OS is the sum of all same-sign backgrounds in the signal region and the remaining terms are the differences between opposite-sign and same-sign events for the QCD, W + jets, Z/γ* → τ+τ−, and other backgrounds. The ratio of opposite-sign and same-sign events for the QCD background, \(r_{W/SS}^{QCD/SS} \), is expected to be close to unity. For W + jets, a significant deviation of the ratio \(r_{W/SS}^{QCD/SS} \) from unity is expected since W + jets is dominated by gluon-gluon processes that often give rise to a jet originating from a quark whose charge is anti-correlated with the W charge. From simulation, the ratio \(r_{W/SS}^{QCD/SS} \) is 2.24 ± 0.13(stat.).

Using \(n_{W}^{OS} = (r_{W}^{OSSS} - 1) \cdot n_{SS}^{W} \) and assuming \(r_{QCD}^{OSSS} = 1 \), Eq. (3) can be approximated by

\[n_{Bkg}^{OS} = n_{SS}^{Bkg} + (r_{W}^{OSSS} - 1) \cdot n_{SS}^{W} + n_{SS}^Z + n_{SS}^{other}. \]

Each of the terms in Eq. (4) is estimated separately and for each bin in the mT eff visible distribution, thus not only an estimation of the background normalization but also of the mT eff shape is obtained. The total number of same-sign events \(n_{SS}^{W} \) is determined for the nominal selection except for changing the opposite-sign charge requirement to same-sign. In the full mT eff range, 36 same-sign events are selected in data. The contributions from \(Z/γ* → τ+τ− \) and other backgrounds are taken from simulation: \(n_{SS}^{Z} = 112 ± 4(stat.) \) and \(n_{SS}^{other} = 26 ± 2(stat.) \). The W + jets term in Eq. (4) is estimated to be \(r_{W}^{OSSS} = 1 \cdot n_{SS}^W = 31 ± 2(stat.) \). Here, the number of same-sign W + jets events in the signal region, \(n_{SS}^{W} \), and the ratio \(r_{W}^{OSSS} \) are determined in a W + jets-dominated data control region selected by replacing the \(m_\text{missing} < 30 \text{ GeV} \) requirement in the nominal selection by \(m_\text{missing} > 50 \text{ GeV} \). The small contribution from backgrounds other than W + jets is subtracted based on simulation. A value of \(r_{W}^{OSSS} = 2.41 ± 0.15(stat.) \) is obtained. It has been checked in simulation that this ratio is approximately independent of the mT range and can thus be used for the signal region. \(n_{SS}^{W} \) is obtained by scaling the number of events in the W + jets control region by the ratio of events in the signal and control regions determined from simulation. The shape of the mT eff visible distribution for this contribution is taken from simulation.

The assumption \(QCD/SS \approx 1 \) used in Eq. (4) is checked with a data control sample that is dominated by relatively low-\(E_T \) jets from QCD processes, as expected in the signal region. This sample is selected by replacing the requirement \(E_\text{miss}^{\text{visible}} > 20 \text{ GeV} \) with \(E_\text{miss}^{\text{visible}} < 15 \text{ GeV} \) and relaxing the isolation of the electron/muon candidate. After subtraction of the other backgrounds using simulation, a value of \(r_{QCD}^{OSSS} = 1.16 ± 0.04(stat.) \) is obtained. The observed deviation of \(QCD/SS \) from unity is taken into account in the determination of systematic uncertainties for the final result, leading to a total systematic uncertainty of 19% on \(QCD/SS \). This uncertainty also includes an uncertainty associated with the dependence of \(QCD/SS \) on the lepton isolation and detector effects.

The total background estimate obtained from Eq. (4) is \(n_{Bkg}^{OS} = 206 ± 7(stat.) \), to be compared with 206 events observed in data.

An alternative background estimation is performed, which provides separate estimates of the QCD and W + jets background contributions and is used to cross-check the results of the baseline method discussed before. For the QCD jet background the same method and assumptions as described in Section 5.1 for the eµ final state are used, but replacing one of the leptons (e or µ) by the τhad candidate and using the mT eff visible distribution instead of the mT eff effective. The shape of the mT eff visible distribution is taken from region B and scaled by the ratio of event yields in regions C and D: \(r_{C/D} = 1.12 ± 0.04(stat.) \). The resulting estimate of the QCD jet background in the signal region is \(n_{QCD}^{SS} = m_\text{τhad} \times n_B = 7.8 ± 7.0(stat.) \). The estimate of the W + jets background is obtained by deriving a scale factor of 0.83 ± 0.04(stat.) for the normalization of the simulated mT eff visible distribution in a W-dominated data control sample. This control region is defined by replacing the \(m_\text{τ} < 30 \text{ GeV} \) requirement in the nominal selection by \(m_\text{τ} > 70 \text{ GeV} \). The shape of the W + jets background is taken from simulation. The estimated number of W + jets events for the nominal selection amounts to 54.8 ± 2.1(stat.) events. Adding the expected number of events for \(Z/γ* → τ+τ− \) and the other backgrounds from simulation (see Table 2) to the sum of the estimated QCD jet and W + jets yields, a total background contribution of
211 ± 8(stat.) events is obtained, which agrees well with the 206 events observed in data. The $m_{\tau\tau}^\text{true}$ shapes predicted by the two methods are found to agree as well.

5.3. Validation of the $Z/\gamma^* \rightarrow \tau^+\tau^-$ background shape

The shape of the $m_{\tau\tau}^\text{true}$ and $m_{\tau\tau}^\text{eff}$ distributions for the irreducible $Z/\gamma^* \rightarrow \tau^+\tau^-$ background can be determined from a high-purity data sample of $Z/\gamma^* \rightarrow \mu^+\mu^-$ events in which the muons are removed and replaced by simulated τ leptons. Thus, only the τ decays and the corresponding detector response are taken from simulation, whereas the underlying Z/γ^* kinematics and all other properties of the event are obtained from the $Z/\gamma^* \rightarrow \mu^+\mu^-$ data. Fig. 2 compares the $m_{\tau\tau}^\text{true}$ and $m_{\tau\tau}^\text{eff}$ distributions of the τ-embedded sample with simulated $Z/\gamma^* \rightarrow \tau^+\tau^-$ events. A good agreement is observed within the sizable statistical uncertainties, justifying the use of the simulation for the determination of the $Z/\gamma^* \rightarrow \tau^+\tau^-$ background. This background is normalized according to the theoretical cross section in Table 1, which agrees with the ATLAS $Z/\gamma^* \rightarrow e^+e^-$ cross section measurement [41].

6. Systematic uncertainties

Systematic effects on the signal efficiency and the estimated number of background events are evaluated. The uncertainties can be grouped in four categories: theoretical inclusive cross sections, acceptance, knowledge of detector performance and systematic uncertainties of the data-driven approaches to estimate the background contribution.

The uncertainty on the theoretical inclusive cross section for each individual signal and background process is obtained from variations of the renormalization and factorization scales (μ_R, μ_F) by factors 1/2 and 2 and a variation of the strong coupling constant and the PDF sets within their uncertainties. The uncertainty on the acceptance is estimated by varying μ_R, μ_F, matching parameters in ALPGEN and the choice of the PDF in the generation of simulated event samples. The uncertainty on the trigger efficiencies for electrons and muons is 1%. The uncertainties due to the limited knowledge of the detector performance are evaluated by varying the trigger, reconstruction and identification efficiencies for electrons, muons and τ candidates, and by varying the energy resolution and energy scale of electrons, muons, τ candidates, and energy deposits outside of these objects. These are propagated in a fully correlated way into the E_T^{miss} scale and resolution. For the probability to misidentify electrons as τ candidates, a 20% uncertainty is assumed, resulting in a 20% uncertainty on the $Z/\gamma^* \rightarrow e^+e^-$ background.

The size of the uncertainties from the different sources on the various background processes which are at least partially estimated from simulated events are summarized in Table 3. The luminosity uncertainty is 3.4%.

The dominant systematic uncertainty in the $\ell\tau_{\text{had}}$ final states is due to the variation of the jet and τ energy scales, which are dependent on transverse momentum and pseudorapidity, by typically 7% and 5%, respectively. The difference in the impact of the jet scale and resolution uncertainty on the expected event yields in the $\ell\mu_{\text{had}}$ and $\ell\mu_{\text{tag}}$ final states is caused by requiring a hadronic τ decay with $p_T^{\tau_{\text{vis}}} > 20$ GeV and a lower threshold $E_T^\tau > 20$ GeV in the $\ell\tau_{\text{had}}$ final states, whereas in the $\ell\mu_{\text{final state only an up-}}$ final state the $p_T^{\tau_{\text{vis}}} > 20$ GeV and a lower threshold $E_T^\tau > 20$ GeV in the $\ell\tau_{\text{had}}$ final states, whereas in the $\ell\mu_{\text{final state only an up-}}$ final state the $p_T^{\tau_{\text{vis}}} > 20$ GeV and a lower threshold $E_T^\tau > 20$ GeV in the $\ell\tau_{\text{had}}$ final states, whereas in the $\ell\mu_{\text{final state only an up-}}$

The systematic uncertainty from the data-driven estimate of the QCD jet background in the $\ell\mu$ final state corresponds to 0.8 events. It includes the systematic uncertainty on the subtracted non-QCD background (0.2 events) and on the assumption of identical $m_{\tau\tau}^\text{eff}$ shapes in the different control regions (uncertainty on r_{jet} of 0.78). The final estimate for the QCD jet yield in the signal region is therefore $n_A = 2.1^{+3.1}_{-2.1}\text{stat.} ± 0.8\text{syst.} = 2.1^{+3.1}_{-2.1}$. The total uncertainty is dominated by the small event yield in control region B.

For the $\ell\tau_{\text{had}}$ channels, the most important uncertainties for the data-driven estimation of the QCD jet and $W + \text{jets}$ backgrounds (see Eq. (4)) are the statistical uncertainty on the number of same-sign events in the signal region (17%) and the uncertainty on the ratios r_{WSS} (19%) and $r_{\text{OS/SS}}$ (11%). An additional uncertainty of 10% is derived from the m_ℓ dependence of r_{WSS}, i.e. for the extrapolation from control to signal region. The final estimate for the total background yield is $n_{\text{Bkg}} = 206 ± 7\text{stat.} ± 34\text{syst.} = 206 ± 35$.

![Fig. 2. Effective mass distribution for the $\ell\mu$ final state (top) and visible mass distribution for the $\ell\tau_{\text{had}}$ final states (bottom) for simulated $Z/\gamma^* \rightarrow \tau^+\tau^-$ events (points) passing the signal selection. The size of the boxes and the length of the error bars indicate the statistical uncertainty on the simulated and τ-embedded sample, respectively.](image-url)
In this Letter, a search for neutral MSSM Higgs bosons $A/H/h$ with the ATLAS detector in proton–proton collisions corresponding to an integrated luminosity of 36 pb$^{-1}$ at a center-of-mass energy of 7 TeV is presented. Candidates for $A/H/h \to \tau^+ \tau^-$ decays are selected in the three final states $\ell\mu$, $\tau\tau$, and $\mu\tau$. No evidence for a Higgs boson signal is observed in the reconstructed mass spectra. Exclusion limits on both the cross section for the production of a generic Higgs boson ϕ as a function of its mass and on MSSM Higgs boson production $A/H/h$ as a function of m_A and tanβ are derived. These results exclude regions of parameters space beyond the existing limits from previous experiments at LEP and the Tevatron and are similar to those recently obtained by the CMS Collaboration.

8. Conclusions

No significant excess of events is observed in the data, compared to the SM expectation. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio of a generic Higgs boson ϕ as a function of its mass and for MSSM Higgs boson $A/H/h$ production as a function of the parameters m_A and tanβ. The exclusion limits are derived with the profile likelihood method [46] from an analysis of the $m_{\text{miss}}^{\text{eff}}$ distribution for the $\ell\mu$ final state and the $m_{\text{miss}}^{\text{vis}}$ distribution for the $\ell\tau$ final states.

Systematic uncertainties are separated into common, fully correlated (energy scale, acceptance, luminosity) and channel-specific, and are included as nuisance parameters. The $m_{\text{miss}}^{\text{eff}}$ and $m_{\text{miss}}^{\text{vis}}$ shape uncertainties due to variation of the energy scales of leptons and $E_{\text{miss}}^{\text{miss}}$ for the backgrounds obtained from simulation are taken into account.

The p-values for the consistency of the observed data with the background-only hypothesis range from 3% for a mass of 300 GeV to 59% for a mass of 110 GeV for the combination of the $\ell\mu$ and $\ell\tau$ channels.

Background-only toy MC experiments are generated to find the median expected limit along with the $\pm\sigma$ and $+2\sigma$ error bands. As a protection against excluding the signal hypothesis in cases of downward fluctuations of the background, the observed limit is not allowed to fluctuate below $-\sigma_\text{of the expected limit, i.e. a power-constrained limit [PCL [47]], with the power required to be larger than 16% is given.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at scienceDirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Fig. 3. Left: Expected and observed limits on the production cross section and branching ratio for a generic Higgs boson ϕ, $m_\phi \times BR(\phi \rightarrow \tau^+ \tau^-)$, at the 95% confidence level, as a function of the Higgs boson mass for both production modes considered. The solid and dashed lines show the observed and expected exclusion limits, respectively. For comparison the SM cross section, $\sigma_{SM} \times BR(H_{SM} \rightarrow \tau^+ \tau^-)$, is also shown. Right: Expected and observed exclusion limits in the m_A-$\tan \beta$ plane of the MSSM. The region above the drawn limit curve is excluded at the 95% confidence level. The dark grey (green) and light grey (yellow) bands correspond to the $\pm 1\sigma$ and $\pm 2\sigma$ error bands, respectively. For comparison the observed limit based on CL_s [48,49] is shown in addition to the one based on CL_s+b. The observed limit is shown up to $\tan \beta = 65$ although it should be noted that the region $\tan \beta > 65$ is considered to be theoretically not well under control [50]. The exclusion limits from LEP, D0, and CMS are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

1 University of Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dušanpinar University, Kütahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
4 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogaş University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantap;
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, University of Arizona, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Fisica d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogaş University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantap;
19 (a) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago; (b) Departamento de Fisica, Universidad Técnica Federico Santa Maria, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui;
34 (a) Department of Physics, Nanjing University, Jiangsu; (b) High Energy Physics Group, Shandong University, Shandong, China
35 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
36 Nevis Laboratory, Columbia University, Irvington, NY, United States
37 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
38 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, Italy
39 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
40 (a) The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland; (b) Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
48 INFN Laboratori Nazionali di Frascati, Frascati, Italy
49 Division of Physics, University of Alberta, Edmonton, AB, Canada
50 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
51 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
52 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
53 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
54 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
55 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
56 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
57 Department of Physics, Hampton University, Hampton, VA, United States
58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
60 (a) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Science, Hiroshima University, Hiroshima, Japan
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63 Department of Physics, Indiana University, Bloomington, IN, United States
64 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
65 University of Iowa, Iowa City, IA, United States
66 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
69 Graduate School of Science, Kobe University, Kobe, Japan