Search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(*) \rightarrow 4\ell$ with the ATLAS detector


DOI 10.1016/j.physletb.2011.10.034

Publication date 2011

Document Version Final published version

Published in Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for the Standard Model Higgs boson in the decay channel \( H \rightarrow ZZ^{(*)} \rightarrow 4\ell \) with the ATLAS detector

ATLAS Collaboration

Abstract

A search for the Standard Model Higgs boson in the decay channel \( H \rightarrow ZZ^{(*)} \rightarrow \ell^+\ell^-\ell'^+\ell'^- \), where \( \ell = e, \mu \), is presented. Proton-proton collision data at \( \sqrt{s} = 7 \text{ TeV} \) recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb\(^{-1} \) are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191–197, 199–200 and 214–224 GeV.

1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is a major goal of the Large Hadron Collider (LHC) programme. Direct searches at the CERN LEP \( e^+e^- \) collider led to a lower limit on the Higgs boson mass, \( m_H \), of 114.4 GeV at 95% confidence level (CL) [4]. The searches at the Fermilab Tevatron \( p\bar{p} \) collider have excluded at 95% CL the region 156 GeV < \( m_H < 177 \text{ GeV} \) [5]. Results from the 2010 LHC run extended the search in the region 200 GeV < \( m_H < 600 \text{ GeV} \) by excluding a Higgs boson with cross section larger than 5–20 times the SM prediction [6,7].

This Letter presents a search for the SM Higgs boson in the mass range from 110 to 600 GeV in the channel \( H \rightarrow ZZ^{(*)} \rightarrow \ell^+\ell^-\ell'^+\ell'^- \), where \( \ell, \ell' = e, \mu \). Three distinct final states, \( \mu\mu\mu\mu \) (4\( \mu \)), \( e\mu\mu\mu \) (2\( e\mu \)), and \( eeee \) (4\( e \)), are selected. The largest background to this search comes from continuum \( ZZ^{(*)} \) production. For \( m_H < 180 \text{ GeV} \), contributions from \( Z + \text{jets} \) and \( t\bar{t} \) processes, where the additional charged leptons arise either from semi-leptonic decays of heavy flavour or from light flavour jets misidentified as leptons, are important. The pp collision data were recorded with the ATLAS detector at the LHC at \( \sqrt{s} = 7 \text{ TeV} \) and correspond to an average integrated luminosity of 2.1 fb\(^{-1} \) [8].

2. The ATLAS detector

The ATLAS detector [9] is a multi-purpose particle physics apparatus with forward–backward symmetric cylindrical geometry.\(^1\) The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The precision tracking chambers, and detectors for triggering. A three-level trigger system selects events to be recorded for offline analysis.

3. Data and simulation samples

The accumulated data are subjected to quality requirements ensuring that the relevant detector components were operating

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point. The z-axis is along the beam pipe, the x-axis points to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \( \phi \) being the azimuthal angle around the beam pipe. The pseudorapidity \( \eta \) is defined as \( \eta = -\ln(\tan(\theta/2)) \) where \( \theta \) is the polar angle.

© CERN for the benefit of the ATLAS Collaboration.

E-mail address: atlas.publications@cern.ch.

0370-2693/ © 2011 CERN. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2011.10.034
The number of $pp$ interactions in the same bunch crossing (pileup) is included in the simulation. The MC samples are reweighted to reproduce the observed distribution in the data.

4. Physics object identification and event selection

The data considered in this analysis were selected using single-lepton triggers. For electrons the threshold on the transverse energy, $E_T$, was 20–22 GeV depending on the LHC instantaneous luminosity and for muons the threshold on $p_T$ was 18 GeV. Both triggers are more than 99.5% efficient for events passing the offline selection described below.

Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter associated to ID tracks. The electrons must satisfy the “medium” electron criteria [43], which require the shower profiles to be consistent with those expected for electromagnetic showers and a well reconstructed ID track pointing to the corresponding cluster. The electron transverse momentum is computed from the cluster energy and the track direction.

Muons candidates are reconstructed by matching ID tracks with either full or partial tracks in the MS [43]. For the former case, the two independent momentum measurements are combined, whereas for the latter case the momentum is measured using the ID information only, with the MS providing muon identification. To reject cosmic rays, tracks are required to be consistent with having originated from the primary vertex, defined as the reconstructed vertex with the highest $\sum p_T^2$ of associated tracks.

Leptons from Higgs boson decays are expected to be isolated and to originate from a common vertex. Track and calorimeter isolation as well as transverse impact parameter significance requirements are therefore applied to further reduce the $Z+\text{jets}$ and $tt$ contributions. The sum of $p_T$ of tracks within $\Delta R < 0.2$ of the lepton divided by the lepton $p_T$ is required to be less than 0.15, while the sum $E_T$ of the calorimeter cells within $\Delta R < 0.2$ around the lepton divided by the lepton $p_T$ is required to be less than 0.3. In the case of electrons, the calorimeter cells corresponding to the electromagnetic shower are subtracted. The transverse impact parameter significance, defined as the transverse impact parameter of the lepton with respect to the primary vertex divided by its uncertainty, for the two lowest $p_T$ leptons of the quadruplet in events with $m_{4\ell} < 190$ GeV is required to be less than 3.5 and 6 for muons and electrons respectively. The selection efficiency of the isolation and impact parameter requirements has been studied using data both for isolated leptons, with $Z \rightarrow \ell\ell$ decays and non-isolated leptons from semi-leptonic $b$- and $c$-quark decays in a heavy-flavour enriched dijet sample. Good agreement is observed between data and simulation.

Higgs boson candidates are searched by selecting two-flavour, opposite-sign isolated lepton pairs in an event. Each lepton must satisfy $p_T > 7$ GeV and be measured in the pseudorapidity range $|\eta| < 2.47$ for electrons and $|\eta| < 2.5$ for muons. The electron $p_T$ threshold is increased to 15 GeV in the transition region between the barrel and end-cap calorimeters ($1.37 < |\eta| < 1.52$). At least two leptons must have $p_T > 20$ GeV. The leptons are required to be well separated from each other with $\Delta R > 0.1$. The invariant mass of the lepton pair closest to the nominal $Z$ boson mass ($m_Z$) is denoted by $m_{12}$ and it is required that $|m_{12} - m_Z| < 15$ GeV. The invariant mass of the remaining lepton pair, $m_{34}$, is required to be lower than 115 GeV and greater than a threshold depending on the reconstructed four lepton mass, $m_{4\ell}$, as summarized in Table 2. The final discriminative variable is $m_{4\ell}$, where the Higgs boson production would appear as a clustering of events. The width of the reconstructed Higgs boson mass distribution is dominated by experimental resolution at low $m_{4\ell}$ values,

Table 1

<table>
<thead>
<tr>
<th>$m_H$ [GeV]</th>
<th>$\sigma(gg \rightarrow H)$ [pb]</th>
<th>$\sigma(q\bar{q} \rightarrow H)$ [pb]</th>
<th>BR($H \rightarrow 4\ell$) x 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>14.1 ± 0.7</td>
<td>1.154 ± 0.032</td>
<td>0.19</td>
</tr>
<tr>
<td>150</td>
<td>10.5 ± 0.9</td>
<td>0.962 ± 0.028</td>
<td>0.38</td>
</tr>
<tr>
<td>200</td>
<td>5.2 ± 0.9</td>
<td>0.637 ± 0.022</td>
<td>1.15</td>
</tr>
<tr>
<td>240</td>
<td>3.6 ± 0.6</td>
<td>0.464 ± 0.012</td>
<td>1.32</td>
</tr>
<tr>
<td>300</td>
<td>2.4 ± 0.3</td>
<td>0.301 ± 0.014</td>
<td>1.38</td>
</tr>
<tr>
<td>400</td>
<td>2.0 ± 0.3</td>
<td>0.162 ± 0.010</td>
<td>1.21</td>
</tr>
<tr>
<td>600</td>
<td>0.33 ± 0.06</td>
<td>0.058 ± 0.003</td>
<td>1.23</td>
</tr>
</tbody>
</table>

The cross sections for Higgs boson production, the corresponding branching fractions, as well as their uncertainties [17], are derived to next-to-next-to-leading order (NNLO) in QCD for the gluon fusion [18–23] and vector-boson fusion [24] processes. In addition, QCD soft-gluon resummations up to NNLL are available for the gluon and vector-boson fusion production mechanisms with matrix elements up to next-to-leading order (NLO). The Higgs boson transverse momentum, $p_T$, spectrum is reweighted to the calculation of Ref. [12], providing QCD corrections up to next-to-leading order and QCD soft-gluon resummations up next-to-next-to-leading log (NNLL). POWHEG is interfaced to PYTHIA [13] for showering and hadronization, which in turn is interfaced to PHOTOS [14] for QED radiative corrections in the final state and to TAUOLA [15,16] for the simulation of $\tau$ decays.

The $Z\gamma^{(*)}$ background is generated using PYTHIA, taking into account $Z\gamma$ interference. For the inclusive total cross section and the shape of the $m_{Z\gamma^{(*)}}$ spectrum, the MCFM [32,33] prediction is used, which includes both quark-antiquark annihilation at QCD NLO and gluon fusion. The inclusive $Z$ boson production, $Z + \text{jets}$, is modelled using ALPGEN [34] and is divided into $Z + \text{light flavour jets}$ and $Z\text{bb}$; overlaps between the two samples are removed. Specifically, $bb$ pairs with separation $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > 0.4$ between the $b$-jets are taken from the matrix-element calculation, whereas for $\Delta R < 0.4$ the parton-shower $j$-jets are taken. PYTHIA is also used as a cross-check of the ALPGEN results. In this search the $Z$ + jets production is normalized from the data, but for comparisons the QCD NNLO FEWZ [35,36] and the MCFM [32,33] cross section calculations are used for the inclusive $Z$ boson and the $Z\text{bb}$ production, respectively. The $t\bar{t}$ background is modelled using MCFNNLO [37] and is normalized to the approximately NNLO cross section calculated using HATHOR [38]. Both ALPGEN and MCFNNLO are interfaced to HERWIG [39] for parton shower hadronization and to JIMMY [40] for the underlying event simulations.

All generated events undergo a full detector simulation performed using GEANT4 [41,42].

Normally, the resulting average integrated luminosity of 2.1 fb$^{-1}$ corresponds to 2.28 fb$^{-1}$ and 1.98 fb$^{-1}$ for the $4\mu$, $2e2\mu$ and $4e$ final states, respectively. The $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ signal is modelled using the POWHEG Monte Carlo (MC) event generator [10,11], which calculates separately the gluon and vector-boson fusion production processes in pp collisions at $\sqrt{s} = 7$ TeV. The cross sections include the branching ratio of $H \rightarrow 4\ell$, with $\ell = e, \mu$. The errors are the total theoretical systematic uncertainty.
with a full-width at half-maximum (FWHM) which varies according to decay mode and is between 4.5 (4µ) and 6.5 (4e) GeV for m_H = 130 GeV. At high m_H the reconstructed width is dominated by the natural width of the Higgs boson with a FWHM of approximately 35 GeV at m_H = 400 GeV.

5. Background estimation

The dominant ZZ(∗) background is estimated using MC simulation. Generated events are required to pass the complete analysis selection and the final yield is normalized to the integrated luminosity.

The t~t background is also estimated using MC simulation. Comparison of data to MC predictions, in a control sample of events with opposite sign electron–muon pairs consistent with the Z boson mass and with one or two additional charged leptons, are used to verify that the t~t background is small with respect to the dominant ZZ(∗) process and in agreement with expectation.

The Z + jets background is normalized using data. The control sample is formed by selecting events with a pair of same-flavour, opposite-sign isolated leptons consistent with the Z boson mass, |m_Z - m_Z| < 15 GeV, and a second same-flavour, opposite-sign lepton pair where only kinematic, but no isolation or impact parameter, requirements are applied. At this stage, the dominant background source depends on the flavour of the second lepton pair: Z + light flavour jets dominates the final states with a second electron pair, while Zbb production dominates the final states with a second muon pair after the contributions from t~t, ZZ(∗), and muons from in-flight π and K decays which correspond to 44% of the event yield are subtracted. The observed background, which is found to be in good agreement with expectation, is extrapolated to the signal region by means of the MC simulation.

6. Systematic uncertainties

Uncertainties on lepton reconstruction and identification efficiency, and on the momentum resolution and momentum scale are determined using samples of W, Z and J/ψ decays. The muon efficiency uncertainty results in an acceptance uncertainty on the signal and the irreducible background which is uniform over the mass range of interest and amounts to 1% (1.2%) for the 4µ (2e2µ) channel. The uncertainty on the electron efficiency results in an acceptance uncertainty of 3% (2%) for the 4e (2e2µ) channel at m_A = 600 GeV reaching 15% (6%) at m_A = 110 GeV.

A conservative theoretical uncertainty of 15% is assigned to the ZZ(∗) background contribution [44]. The Z + light flavour jets and Zbb backgrounds are evaluated using data. A systematic uncertainty between 20% and 40% is assigned on their normalization to account for the statistical uncertainty in the control sample and the MC-based extrapolation to the signal region. The uncertainty on the t~t cross section is found to be 10% by adding linearly the contributions from variations of the renormalization and factorization scales to those of the parton distribution functions.

The theoretical uncertainties on the Higgs boson production cross section are 15–20% for the gluon fusion process and 3–9% for the vector-boson fusion process [17], depending on the Higgs boson mass. They include uncertainties on the QCD scale and on the parton distribution functions [46–49]. An additional 2% uncertainty is added to the signal selection efficiency due to the modelling of the signal kinematics. This is evaluated by comparing signal samples generated with PYTHIA and the default POWHEG samples.

The overall uncertainty on the total integrated luminosity is 3.7% [8].

7. Results

The number of events observed in each final state, separately for m_A < 180 GeV and m_A ≥ 180 GeV, are compared with the ex-

---

Table 2

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>≤ 120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>165</th>
<th>180</th>
<th>190</th>
<th>≥ 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold (GeV)</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 3

The expected numbers of background events, with their systematic uncertainty, separated into “Low mass” (m_A < 180 GeV) and “High mass” (m_A ≥ 180 GeV) regions. The expected numbers of signal events for different m_H hypotheses and the observed numbers of events are also presented.

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>Low mass</th>
<th>High mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ(∗)</td>
<td>2.28 fb⁻¹</td>
<td>1.96 fb⁻¹</td>
</tr>
<tr>
<td>ZZ(∗)</td>
<td>1.02 ± 0.15</td>
<td>7.7 ± 1.2</td>
</tr>
<tr>
<td>ZZ(∗)</td>
<td>0.99 ± 0.16</td>
<td>9.6 ± 1.4</td>
</tr>
<tr>
<td>ZZ(∗)</td>
<td>0.29 ± 0.11</td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>ZZ(∗)</td>
<td>0.39 ± 0.09</td>
<td>3.6 ± 0.5</td>
</tr>
<tr>
<td>ZZ(∗)</td>
<td>0.23 ± 0.09</td>
<td>0.12 ± 0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 GeV</td>
<td>0.42 ± 0.07</td>
</tr>
<tr>
<td>150 GeV</td>
<td>0.98 ± 0.15</td>
</tr>
<tr>
<td>200 GeV</td>
<td>2.26 ± 0.33</td>
</tr>
<tr>
<td>240 GeV</td>
<td>1.74 ± 0.25</td>
</tr>
<tr>
<td>300 GeV</td>
<td>1.18 ± 0.17</td>
</tr>
<tr>
<td>400 GeV</td>
<td>0.86 ± 0.13</td>
</tr>
<tr>
<td>600 GeV</td>
<td>0.15 ± 0.02</td>
</tr>
</tbody>
</table>

---

2 The limits presented in this study for m_H > 200 GeV assume cross sections based on on-shell Higgs boson production and decay and use MC generators with an ad hoc Breit–Wigner Higgs line shape. Recently potentially important effects related to off-shell Higgs boson production and interference effects between the Higgs boson signal and backgrounds have been discussed [17,45]. The inclusion of such effects may affect limits at high Higgs masses (m_H > 400 GeV).

Fig. 1. Invariant mass distributions (a) $m_{12}$, (b) $m_{34}$, and (c) $m_{4\ell}$ for the selected candidates. The data (dots) are compared to the background expectations from the dominant $ZZ^\ast$ process and the sum of $t\bar{t}$, $Zb\bar{b}$ and $Z+\text{light flavour jets}$ processes. Error bars represent 68.3% central confidence intervals.

Fig. 2. $m_{4\ell}$ distribution of the selected candidates, compared to the background expectation. Error bars represent 68.3% central confidence intervals. The signal expectation for three $m_H$ hypotheses is also shown.

Expectations for background and signal for various $m_H$ hypotheses in Table 3. In total 27 candidate events are selected by the analysis: 12 $4\mu$, 9 $2e2\mu$, and 6 $4e$ events, while in the same mass range $24\pm 4$ events are expected from the background processes. The $m_{12}$, $m_{34}$, and $m_{4\ell}$ mass spectra are shown in Fig. 1. The $m_{4\ell}$ distribution for the total background and several signal hypotheses is compared to the data in Fig. 2. The selected events have been examined visually and no evidence for reconstruction problems was identified.

Upper limits are set on the Higgs boson cross section at 95% CL, using the $CL_s$ modified frequentist formalism [50] with the profile likelihood test statistic [51]. The test statistic is evaluated with a maximum likelihood fit of signal and background models to the observed $m_{4\ell}$ distribution. Fig. 3 shows the expected and observed 95% CL cross section upper limits as a function of the Higgs boson mass, divided by the expected SM Higgs boson cross section. The green and yellow bands indicate the expected sensitivity with $\pm 1\sigma$ and $\pm 2\sigma$ fluctuations, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Table 4
Median expected and observed 95% CL upper limits on the Higgs boson production cross section for several Higgs boson masses, divided by the expected SM Higgs boson cross section.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>3.29</td>
<td>4.11</td>
</tr>
<tr>
<td>150</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>200</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>240</td>
<td>1.28</td>
<td>2.03</td>
</tr>
<tr>
<td>300</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>400</td>
<td>1.91</td>
<td>1.77</td>
</tr>
<tr>
<td>600</td>
<td>8.40</td>
<td>12.34</td>
</tr>
</tbody>
</table>

The consistency with the background-only hypothesis is quantified using the $p$-value, the probability that a background-only experiment fluctuates more than the observation. The most significant deviation from the background-only hypothesis is observed for $m_H = 242$ GeV with a $p$-value of 4.9%. These results do not account for the so-called “look-elsewhere” effect [52]. The SM Higgs boson is excluded at 95% CL in the mass ranges 191–197, 199–200 and 214–224 GeV.

8. Summary
A search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ^\ast \rightarrow 4\ell$ based on 2.1 fb$^{-1}$ of data recorded by the
ATLAS detector at \(\sqrt{s} = 7\) TeV during the 2011 run, has been presented. No significant excess of candidates is observed in the mass range between 110 and 600 GeV with respect to the expected SM background. The observed (expected) 95% CL upper limit on the Higgs boson production cross section, in units of the SM cross section, is 0.99 (1.01) for \(m_H = 194\) GeV, the region with the best expected sensitivity for this search. The SM Higgs boson is excluded at 95% CL in the mass ranges 191–197, 199–200 and 214–224 GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR, DFN, and LLBN, Germany; INFN, INFN-CNAF, Italy; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRESIC and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SARA and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References


This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 14 Department of Physics, Ankara University, Ankara; 15 Department of Physics, Dumlupinar University, Kütahya; 16 Department of Physics, Gazi University, Ankara; 17 Division of Physics, TOBB University of Economics and Technology, Ankara; 18 Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, University of Arizona, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 Institute of Physics, University of Belgrade, Belgrade; 13 Vinca Institute of Nuclear Sciences, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; 20 Department of Physics, Bogazici University, Istanbul; 21 Division of Physics, Dogus University, Istanbul; 22 Department of Physics Engineering, Gaziantep University, Gaziantep; 23 Department of Physics, Istanbul Technical University, Istanbul, Turkey
24 (a) INFN Sezione di Bologna; 25 Dipartimento di Fisica, Università di Bologna, Bologna, Italy
26 Physikalisches Institut, University of Bonn, Bonn, Germany
27 Department of Physics, Boston University, Boston, MA, United States
28 Department of Physics, Brandeis University, Waltham, MA, United States
29 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; 30 Federal University of Juiz de Fora (UFJF), Juiz de Fora; 31 Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; 32 Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
33 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
34 (a) National Institute of Physics and Nuclear Engineering, Bucharest; 35 University Politehnica Bucharest, Bucharest; 36 West University in Timisoara, Timisoara, Romania
37 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
38 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
39 Department of Physics, Carleton University, Ottawa, ON, Canada
40 CERN, Geneva, Switzerland
41 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
42 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; 43 Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
44 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; 45 Department of Modern Physics, University of Science and Technology of China, Anhui, China
46 (a) Department of Physics, Nanjing University, Jiangsu; 47 High Energy Physics Group, Shandong University, Shandong, China
48 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
49 Nevis Laboratory, Columbia University, Irvington, NY, United States
50 Niels Bohr Institute, University of Copenhagen, København, Denmark
51 (a) INFN Gruppo Collegato di Casale; 52 Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
53 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland
54 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
55 Physics Department, Southern Methodist University, Dallas, TX, United States
56 Physics Department, University of Texas at Dallas, Richardson, TX, United States
57 DESY, Hamburg and Zeuthen, Germany
58 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
59 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
60 Department of Physics, Duke University, Durham, NC, United States
61 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
62 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
63 INFN Laboratori Nazionali di Frascati, Frascati, Italy
64 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
65 Section de Physique, Université de Genève, Geneva, Switzerland
66 (a) INFN Sezione di Genova; 67 Dipartimento di Fisica, Università di Genova, Genova, Italy
68 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; 69 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
70 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
71 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
72 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
73 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
74 Department of Physics, Hampton University, Hampton, VA, United States
75 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
76 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; 77 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
78 (a) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
79 Faculty of Science, Hiroshima University, Hiroshima, Japan
80 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
81 Department of Physics, Indiana University, Bloomington, IN, United States
82 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
83 University of Iowa, Iowa City, IA, United States
84 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
85 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
86 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
87 Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyotou University, Kojo, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(2) INFN Sezione di Lecce; (3) Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
Department of Physics, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Syfiska Institutionen, Lunds Universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, MA, United States
Department of Physics, McGill University, Montreal, QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, MI, United States
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
(4) INFN Sezione di Milano; (5) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
National Scientific and Education Centre for Particle and High Energy Physics, Minsk, Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
Group of Particle Physics, University of Montreal, Montreal, QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(6) INFN Sezione di Napoli; (7) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, IL, United States
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York, NY, United States
Ohio State University, Columbus, OH, United States
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
Department of Physics, Oklahoma State University, Stillwater, OK, United States
Palacký University, RČPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, OR, United States
(8) LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(9) INFN Sezione di Pavia; (10) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
Department of Physics, Pennsylvania State University, University Park, PA, United States
Petersberg Nuclear Physics Institute, Gatchina, Russia
(11) INFN Sezione di Pisa; (12) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
(13) Laboratorio de Instrumentacion e Fisica Experimental de Particulas – LIP, Lisboa, Portugal; (14) Departamento de Fisica Teorica y del Cosmos y CAPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina, SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(15) INFN Sezione di Roma I; (16) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(17) INFN Sezione di Roma Tor Vergata; (18) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(19) INFN Sezione di Roma Tre; (20) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
(21) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; (22) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (23) Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390, Marrakech 40000; (24) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (25) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
COMUE (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Instituto for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
Department of Physics, University of Washington, Seattle, WA, United States
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, BC, Canada
SLAC National Accelerator Laboratory, Stanford, CA, United States