Search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(*) \rightarrow 4\ell$ with the ATLAS detector

DOI
10.1016/j.physletb.2011.10.034

Publication date
2011

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(\ast) \rightarrow 4\ell$ with the ATLAS detector

ATLAS Collaboration

A R T I C L E I N F O

Article history:
- Received 27 September 2011
- Accepted 17 October 2011
- Available online 19 October 2011

Keywords:
- LHC
- ATLAS
- Higgs
- Leptons

A B S T R A C T

A search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(\ast) \rightarrow \ell^+\ell^-\ell'^+\ell'^-$, where $\ell = e, \mu$, is presented. Proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb$^{-1}$ are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191–197, 199–200 and 214–224 GeV.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is a major goal of the Large Hadron Collider (LHC) programme. Direct searches at the CERN LEP e^+e^- collider led to a lower limit on the Higgs boson mass, m_H, of 114.4 GeV at 95% confidence level (CL) [4]. The searches at the Fermilab Tevatron $p\bar{p}$ collider have excluded at 95% CL the region 156 GeV $< m_H <$ 177 GeV [5]. Results from the 2010 LHC run extended the search in the region 200 GeV $< m_H <$ 600 GeV by excluding a Higgs boson with cross section larger than 5–20 times the SM prediction [6,7].

This Letter presents a search for the SM Higgs boson in the mass range from 110 to 600 GeV in the channel $H \rightarrow ZZ(\ast) \rightarrow \ell^+\ell^-\ell'^+\ell'^-$, where $\ell, \ell' = e, \mu$. Three distinct final states, $\mu\mu\mu\mu$ (4μ), $ee\mu\mu$ (2$e2\mu$), and $eeee$ (4e), are selected. The largest background to this search comes from continuum $ZZ(\ast)$ production. For $m_H <$ 180 GeV, contributions from $Z + j$ and $t\bar{t}$ processes, where the additional charged leptons arise either from semi-leptonic decays of heavy flavour or from light flavour jets misidentified as leptons, are important. The $p\bar{p}$ collision data were recorded with the ATLAS detector at the LHC at $\sqrt{s} = 7$ TeV and correspond to an average integrated luminosity of 2.1 fb$^{-1}$ [8].

2. The ATLAS detector

The ATLAS detector [9] is a multi-purpose particle physics apparatus with forward–backward symmetric cylindrical geometry. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The precision tracking chambers, and detectors for triggering. A three-level trigger system selects events to be recorded for offline analysis.

3. Data and simulation samples

The accumulated data are subjected to quality requirements ensuring that the relevant detector components were operating with the ATLAS detector have excluded at 95% CL the region 156 GeV $< m_H <$ 600 GeV by excluding a Higgs boson with cross section larger than 5–20 times the SM prediction.
normally. The resulting average integrated luminosity of 2.1 fb$^{-1}$ corresponds to 2.28 fb$^{-1}$ and 1.98 fb$^{-1}$ for the 4μ, 2$\tau+2\mu$ and 4μ final states, respectively.

The $H \to ZZ^{(*)} \to 4\ell$ signal is modelled using the POWHEG Monte Carlo (MC) event generator [10,11], which calculates separately the gluon and vector-boson fusion production mechanisms with matrix elements up to next-to-leading order (NLO). The Higgs boson transverse momentum, p_T, spectrum is reweighted to the calculation of Ref. [12], providing QCD corrections up to next-to-leading order and QCD soft-gluon resummations up next-to-next-to-leading log (NNLL). POWHEG is interfaced to PYTHIA [13] for showering and hadronization, which in turn is interfaced to PHOTOS [14] for QED radiative corrections in the final state and to TAUOLA [15,16] for the simulation of τ decays.

The cross sections for Higgs boson production, the corresponding branching fractions, as well as their uncertainties [17], are derived to next-to-next-to-leading order (NNLO) in QCD for the gluon fusion [18–23] and vector-boson fusion [24] processes. In addition, QCD soft-gluon resummations up to NNLL are available for the gluon fusion process [25], while the NLO electroweak (EW) corrections are applied to both the gluon fusion [26,27] and vector-boson fusion [28,29] processes. The Higgs boson decay branching ratio to the four-lepton final state is predicted by PROPHECY4R [30,31], which includes the complete NLO QCD + EW corrections, interference effects between identical final state fermions and leading two-loop heavy Higgs boson corrections to the four-fermion width. Table 1 gives the production cross sections for the $H \to 4\ell$ for several Higgs boson masses.

The $ZZ^{(*)}$ background is generated using PYTHIA, taking into account the $Z\gamma$ interference. For the inclusive total cross section and the shape of the $m_{ZZ^{(*)}}$ spectrum, the MCFM [32,33] prediction is used, which includes both quark-antiquark annihilation at QCD NLO and gluon fusion. The inclusive Z boson production, $Z +$ jets, is modelled using ALPGEN [34] and is divided into $Z +$ light flavour jets and Zbb; overlaps between the two samples are removed. Specifically, bb pairs with separation $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > 0.4$ between the b-jets are taken from the matrix-element calculation, whereas for $\Delta R < 0.4$ the parton-shower jets are taken. PHOTOS is also used as a cross-check of the ALPGEN results. In this search the $Z +$ jets production is normalized from the data, but for comparisons the QCD NNLO FEWZ [35,36] and the MCFM [32,33] cross section calculations are used for the inclusive Z boson and the Zbb production, respectively. The $t\bar{t}$ background is modelled using MC@NLO [37] and is normalized to the approximately NNLO cross section calculated using HATHOR [38]. Both ALPGEN and MC@NLO are interfaced to HERWIG [39] for parton shower hadronization and to JIMMY [40] for the underlying event simulations.

Table 1 gives the production cross sections for the $H \to 4\ell$ for several Higgs boson masses.

The cross sections for the $H \to ZZ^{(*)} \to 4\ell$ are summarized in Table 1g. The production cross sections for the Higgs boson, the corresponding branching ratios, and the leptonic branching fractions are given for the different Higgs boson masses. The errors are the total theoretical systematic uncertainty.

<table>
<thead>
<tr>
<th>m_H [GeV]</th>
<th>$\sigma(gg \to H)$ [pb]</th>
<th>$\sigma(qq \to H)$ [pb]</th>
<th>BR($H \to 4\ell$) $\cdot 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>14.1$^{+2.7}_{-1.4}$</td>
<td>1.15$^{+0.03}_{-0.02}$</td>
<td>0.19</td>
</tr>
<tr>
<td>150</td>
<td>10.5$^{+2.0}_{-1.6}$</td>
<td>0.96$^{+0.02}_{-0.02}$</td>
<td>0.38</td>
</tr>
<tr>
<td>200</td>
<td>5.2$^{+1.6}_{-1.3}$</td>
<td>0.63$^{+0.02}_{-0.02}$</td>
<td>1.15</td>
</tr>
<tr>
<td>240</td>
<td>3.6$^{+1.0}_{-0.8}$</td>
<td>0.46$^{+0.03}_{-0.02}$</td>
<td>1.32</td>
</tr>
<tr>
<td>300</td>
<td>2.4$^{+0.3}_{-0.3}$</td>
<td>0.30$^{+0.04}_{-0.04}$</td>
<td>1.38</td>
</tr>
<tr>
<td>400</td>
<td>2.0$^{+0.3}_{-0.3}$</td>
<td>0.16$^{+0.03}_{-0.03}$</td>
<td>1.21</td>
</tr>
<tr>
<td>600</td>
<td>0.33$^{+0.06}_{-0.06}$</td>
<td>0.05$^{+0.00}_{-0.00}$</td>
<td>1.23</td>
</tr>
</tbody>
</table>

The number of pp interactions in the same bunch crossing (pileup) is included in the simulation. The MC samples are reweighted to reproduce the observed distribution in the data.

4. Physics object identification and event selection

The data considered in this analysis were selected using single-lepton triggers. For electrons the threshold on the transverse energy, E_T, was 20–22 GeV depending on the LHC instantaneous luminosity and for muons the threshold on p_T was 18 GeV. Both triggers are more than 99.5% efficient for events passing the offline selection described below.

Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter associated to ID tracks. The electrons must satisfy the “medium” electron criteria [43], which require the shower profiles to be consistent with those expected for electromagnetic showers and a well reconstructed ID track pointing to the corresponding cluster. The electron transverse momentum is computed from the cluster energy and the track direction.

Muon candidates are reconstructed by matching ID tracks with either full or partial tracks in the MS [43]. For the former case, the two independent momentum measurements are combined, whereas for the latter case the momentum is measured using the ID information only, with the MS providing muon identification. To reject cosmic rays, tracks are required to be consistent with having originated from the primary vertex, defined as the reconstructed vertex with the highest $\sum p_T^2$ of associated tracks.

Leptons from Higgs boson decays are expected to be isolated and to originate from a common vertex. Track and calorimeter isolation as well as transverse impact parameter significance requirements are therefore applied to further reduce the $Z +$ jets and tt contributions. The sum of p_T of tracks within $\Delta R < 0.2$ of the lepton divided by the lepton p_T is required to be less than 0.15, while the sum E_T of the calorimeter cells within $\Delta R < 0.2$ around the lepton divided by the lepton p_T is required to be less than 0.3. In the case of electrons, the calorimeter cells corresponding to the electromagnetic shower are subtracted. The transverse impact parameter significance, defined as the transverse impact parameter of the lepton with respect to the primary vertex divided by its uncertainty, for the two lowest p_T leptons of the quadruplet in events with $m_{4\ell} < 190$ GeV is required to be less than 3.5 and 6 for muons and electrons respectively. The selection efficiency of the isolation and impact parameter requirements has been studied using data both for isolated leptons, with $Z \to \ell\ell$ decays and non-isolated leptons from semi-leptonic b- and c-quark decays in a heavy-flavour enriched dijet sample. Good agreement is observed between data and simulation.

Higgs boson candidates are searched by selecting two same-flavour, opposite-sign isolated lepton pairs in an event. Each lepton must satisfy $p_T > 7$ GeV and be measured in the pseudorapidity range $|\eta| < 2.47$ for electrons and $|\eta| < 2.5$ for muons. The electron p_T threshold is increased to 15 GeV in the transition region between the barrel and end-cap calorimeters ($1.37 < |\eta| < 1.52$). At least two leptons must have $p_T > 20$ GeV. The leptons are required to be well separated from each other with $\Delta R > 0.1$. The invariant mass of the lepton pair closest to the nominal Z boson mass (m_Z) is denoted by m_{12} and it is required that $|m_Z - m_{12}| < 15$ GeV. The invariant mass of the remaining lepton pair, m_{34}, is required to be lower than 115 GeV and greater than a threshold depending on the reconstructed four lepton mass, $m_{4\ell}$, as summarized in Table 2. The final discriminative variable is $m_{4\ell}$, where the Higgs boson production would appear as a clustering of events. The width of the reconstructed Higgs boson mass distribution is dominated by experimental resolution at low $m_{4\ell}$ values.
with a full-width at half-maximum (FWHM) which varies according to decay mode and is between 4.5 (4\(\mu\)) and 6.5 (4\(e\)) GeV for \(m_H = 130\) GeV. At high \(m_H\) the reconstructed width is dominated by the natural width of the Higgs boson with a FWHM of approximately 35 GeV at \(m_H = 400\) GeV.

5. Background estimation

The dominant ZZ\((\pm)\) background is estimated using MC simulation. Generated events are required to pass the complete analysis selection and the final yield is normalized to the integrated luminosity.

The \(t\bar{t}\) background is also estimated using MC simulation. Comparison of data to MC predictions, in a control sample of events with opposite sign electron–muon pairs consistent with the Z boson mass and with one or two additional charged leptons, are used to verify that the \(t\bar{t}\) background is small with respect to the dominant ZZ\((\pm)\) process and in agreement with expectation.

The Z + jets background is normalized using data. The control sample is formed by selecting events with a pair of same-flavour, opposite-sign isolated leptons consistent with the Z boson mass, \(|m_Z - m_T| < 15\) GeV, and a second same-flavour, opposite-sign lepton pair where only kinematic, but no isolation or impact parameter, requirements are applied. At this stage, the dominant background source depends on the flavour of the second lepton pair: Z + light flavour jets dominates the final states with a second electron pair, while Zbb production dominates the final states with a second muon pair after the contributions from \(t\bar{t}, ZZ(\pm),\) and muons from in-flight \(\pi\) and \(K\) decays which correspond to 44% of the event yield are subtracted. The observed background, which is found to be in good agreement with expectation, is extrapolated to the signal region by means of the MC simulation.

6. Systematic uncertainties

Uncertainties on lepton reconstruction and identification efficiency, and on the momentum resolution and momentum scale are determined using samples of W, Z and J/\(\psi\) decays. The muon efficiency uncertainty results in an acceptance uncertainty on the signal and the irreducible background which is uniform over the mass range of interest and amounts to 1.7% (1.2%) for the 4\(\mu\) (2e2\(\mu\)) channel. The uncertainty on the electron efficiency results in an acceptance uncertainty of 3% (2%) for the 4e (2e2\(\mu\)) channel at \(m_{4\ell} = 600\) GeV reaching 15% (6%) at \(m_{4\ell} = 110\) GeV.

A conservative theoretical uncertainty of 15% is assigned to the ZZ\((\pm)\) background contribution [44]. The Z + light flavour jets and Zbb backgrounds are evaluated using data. A systematic uncertainty between 20% and 40% is assigned on their normalization to account for the statistical uncertainty in the control sample and the MC-based extrapolation to the signal region. The uncertainty on the \(t\bar{t}\) cross section is found to be 10% by adding linearly the contributions from variations of the renormalization and factorization scales to those of the parton distribution functions.

The theoretical uncertainties on the Higgs boson production cross section are 15–20% for the gluon fusion process and 3–9% for the vector-boson fusion process [17], depending on the Higgs boson mass.\(^2\) They include uncertainties on the QCD scale and on the parton distribution functions [46–49]. An additional 2% uncertainty is added to the signal selection efficiency due to the modelling of the signal kinematics. This is evaluated by comparing signal samples generated with PYTHIA and the default POWHEG samples.

The overall uncertainty on the total integrated luminosity is 3.7% [8].

7. Results

The number of events observed in each final state, separately for \(m_{4\ell} < 180\) GeV and \(m_{4\ell} \geq 180\) GeV, are compared with the ex-

\(^2\) The limits presented in this study for \(m_H > 200\) GeV assume cross sections based on off-shell Higgs boson production and decay and use MC generators with an ad hoc Breit–Wigner Higgs line shape. Recently potentially important effects related to off-shell Higgs boson production and interference effects between the Higgs boson signal and backgrounds have been discussed [17,45]. The inclusion of such effects may affect limits at high Higgs masses (\(m_H > 400\) GeV).
Fig. 1. Invariant mass distributions (a) \(m_{12}\), (b) \(m_{34}\), and (c) \(m_4\ell\) for the selected candidates. The data (dots) are compared to the background expectations from the dominant \(ZZ(\ast)\) process and the sum of \(t\bar{t}, Zb\bar{b}\) and \(Z + \text{light flavour jets}\) processes. Error bars represent 68.3\% central confidence intervals.

Fig. 2. \(m_4\ell\) distribution of the selected candidates, compared to the background expectation. Error bars represent 68.3\% central confidence intervals. The signal expectation for three \(m_H\) hypotheses is also shown.

Upper limits are set on the Higgs boson cross section at 95\% CL, using the \(\text{CL}_s\) modified frequentist formalism [50] with the profile likelihood test statistic [51]. The test statistic is evaluated with a maximum likelihood fit of signal and background models to the observed \(m_4\ell\) distribution. Fig. 3 shows the expected and observed 95\% CL cross section upper limits as a function of the Higgs boson mass, divided by the expected SM Higgs boson cross section. The green and yellow bands indicate the expected sensitivity with \(\pm 1\sigma\) and \(\pm 2\sigma\) fluctuations, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Table 4

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>3.29</td>
<td>4.11</td>
</tr>
<tr>
<td>150</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>200</td>
<td>0.93</td>
<td>0.96</td>
</tr>
<tr>
<td>240</td>
<td>1.28</td>
<td>2.03</td>
</tr>
<tr>
<td>300</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>400</td>
<td>1.91</td>
<td>1.77</td>
</tr>
<tr>
<td>600</td>
<td>8.40</td>
<td>12.34</td>
</tr>
</tbody>
</table>

The consistency with the background-only hypothesis is quantified using the \(p\)-value, the probability that a background-only experiment fluctuates more than the observation. The most significant deviation from the background-only hypothesis is observed for \(m_H = 242\) GeV with a \(p\)-value of 4.9\%. These results do not account for the so-called “look-elsewhere” effect [52]. The SM Higgs boson is excluded at 95\% CL in the mass ranges 191–197, 199–200 and 214–224 GeV.

8. Summary

A search for the Standard Model Higgs boson in the decay channel \(H \rightarrow ZZ(\ast) \rightarrow 4\ell\) based on 2.1 fb\(^{-1}\) of data recorded by the
ATLAS detector at $\sqrt{s} = 7$ TeV during the 2011 run, has been presented. No significant excess of candidates is observed in the mass range between 110 and 600 GeV with respect to the expected SM background. The observed (expected) 95% CL upper limit on the Higgs boson production cross section, in units of the SM cross section, is 0.99 (1.01) for $m_H = 194$ GeV, the region with the best expected sensitivity for this search. The SM Higgs boson is excluded at 95% CL in the mass ranges 191–197, 199–200 and 214–224 GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MECTS, Romania; MES of Russia and ROSATOM, Russian Federation; RIIAP, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States; MINECO, Korea; MES of Russia and ROSATOM, Russian Federation; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; RIIAP, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at scienceDirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara, (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara;
4 (i) Division of Physics, TOBB University of Economics and Technology, Ankara; (ii) Turkish Atomic Energy Authority, Ankara, Turkey
5 INFN-CNRIN2P3 and Università de Savoie, Annecy-le-Vieux, France
6 Higher Education Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Physics Department, University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Fisica de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Bogazici University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;
20 (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
21 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
22 Physikalisches Institut, University of Bonn, Bonn, Germany
23 Institute of Physics, University of Bonn, Bonn, Germany
24 Physics Department, Boston University, Boston, MA, United States
25 Department of Physics, Brandeis University, Waltham, MA, United States
26 (a) Universidad Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao do Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
28 National Institute of Physics and Nuclear Engineering, Bucharest;
29 University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
32 Department of Physics, Carleton University, Ottawa, ON, Canada
33 CERN, Geneva, Switzerland
34 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
35 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
36 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui;
37 (a) Institute of Physics, Nanjing University, Jiangsu; (b) High Energy Physics Group, Shandong University, Shandong, China
38 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
39 Nevis Laboratory, Columbia University, Irvington, NY, United States
40 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
41 (a) INFN Gruppo Collegato di Casaccia; (b) Dipartimento di Fisica, Universita della Calabria, Arcavata di Rende, Italy
42 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland
43 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
44 Physics Department, Southern Methodist University, Dallas, TX, United States
45 Physics Department, University of Texas at Dallas, Richardson, TX, United States
46 DESY, Hamburg and Zeuthen, Germany
47 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
49 Department of Physics, Duke University, Durham, NC, United States
50 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
52 INFN Laboratori Nazionali di Frascati, Frascati, Italy
53 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.B., Germany
54 Section de Physique, Université de Genève, Geneva, Switzerland
55 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
56 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
57 Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
58 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59 Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
60 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
61 Department of Physics, Hampton University, Hampton, VA, United States
62 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
63 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
64 (a) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
65 Faculty of Science, Hiroshima University, Hiroshima, Japan
66 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
67 Department of Physics, Indiana University, Bloomington, IN, United States
68 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
69 University of Iowa, Iowa City, IA, United States
70 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
71 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
72 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
73 Graduate School of Science, Kobe University, Kobe, Japan