Search for the Standard Model Higgs boson in the decay channel $H\rightarrow ZZ(*)\rightarrow 4\ell$ with the ATLAS detector

DOI 10.1016/j.physletb.2011.10.034

Publication date 2011

Document Version Final published version

Published in Physics Letters B

Citation for published version (APA):
Search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(\ast) \rightarrow 4\ell$ with the ATLAS detector

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 27 September 2011
Received in revised form 17 October 2011
Accepted 17 October 2011
Available online 19 October 2011
Editor: H. Weerts

Keywords:
LHC
ATLAS
Higgs
Leptons

A B S T R A C T

A search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ(\ast) \rightarrow \ell^+\ell^-\ell'^+\ell'^-$, where $\ell = e, \mu$, is presented. Proton-proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1 fb$^{-1}$ are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600 GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, is 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191–197, 199–200 and 214–224 GeV.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is a major goal of the Large Hadron Collider (LHC) programme. Direct searches at the CERN LEP e^+e^- collider led to a lower limit on the Higgs boson mass, m_H, of 114.4 GeV at 95% confidence level (CL) [4]. The searches at the Fermilab Tevatron $p\bar{p}$ collider have excluded at 95% CL the region 156 GeV < m_H < 177 GeV [5]. Results from the 2010 LHC run extended the search in the region 200 GeV < m_H < 600 GeV by excluding a Higgs boson with cross section larger than 5–20 times the SM prediction [6,7].

This Letter presents a search for the SM Higgs boson in the mass range from 110 to 600 GeV in the channel $H \rightarrow ZZ(\ast) \rightarrow \ell^+\ell^-\ell'^+\ell'^-$, where $\ell, \ell' = e, \mu$. Three distinct final states, $\mu\mu\mu\mu$ (4μ), $ee\mu\mu$ (2$e\mu$), and $eee\mu$ (4$e\mu$), are selected. The largest background to this search comes from continuum $ZZ(\ast)$ production. For m_H < 180 GeV, contributions from $Z +$ jets and tt processes, where the additional charged leptons arise either from semi-leptonic decays of heavy flavour or from light flavour jets misidentified as leptons, are important. The pp collision data were recorded with the ATLAS detector at the LHC at $\sqrt{s} = 7$ TeV and correspond to an average integrated luminosity of 2.1 fb$^{-1}$ [8].

2. The ATLAS detector

The ATLAS detector [9] is a multi-purpose particle physics apparatus with forward–backward symmetric cylindrical geometry.1 The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field. A high-granularity lead-liquid argon (LAr) sampling calorimeter measures the energy and the position of electromagnetic showers. An iron–scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end-cap and forward rapidity regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer (MS) surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering. A three-level trigger system selects events to be recorded for offline analysis.

3. Data and simulation samples

The accumulated data are subjected to quality requirements ensuring that the relevant detector components were operating

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point. The z-axis is along the beam pipe, the x-axis points to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined as $\eta = -\ln(\tan(\theta/2))$ where θ is the polar angle.
The number of pp interactions in the same bunch crossing (pileup) is included in the simulation. The MC samples are reweighted to reproduce the observed distribution in the data.

4. Physics object identification and event selection

The data considered in this analysis were selected using single-lepton triggers. For electrons the threshold on the transverse energy, E_T, was 20–22 GeV depending on the LHC instantaneous luminosity and for muons the threshold on p_T was 18 GeV. Both triggers are more than 99.5% efficient for events passing the offline selection described below.

Electron candidates consist of clusters of energy deposited in the electromagnetic calorimeter associated to ID tracks. The electrons must satisfy the “medium” electron criteria [43], which require the shower profiles to be consistent with those expected for electromagnetic showers and a well reconstructed ID track pointing to the corresponding cluster. The electron transverse momentum is computed from the cluster energy and the track direction.

Muons candidates are reconstructed by matching ID tracks with either full or partial tracks in the MS [43]. For the former case, the two independent momentum measurements are combined, whereas for the latter case the momentum is measured using the ID information only, with the MS providing muon identification. To reject cosmic rays, tracks are required to be consistent with having originated from the primary vertex, defined as the reconstructed vertex with the highest $\sum p_T^2$ of associated tracks.

Leptons from Higgs boson decays are expected to be isolated and to originate from a common vertex. Track and calorimeter isolation as well as transverse impact parameter significance requirements are therefore applied to further reduce the $Z+jets$ and $t\bar{t}$ contributions. The sum of p_T of tracks within $\Delta R < 0.2$ of the lepton divided by the lepton p_T is required to be less than 0.15, while the sum E_T of the calorimeter cells within $\Delta R < 0.2$ around the lepton divided by the lepton p_T is required to be less than 0.3. In the case of electrons, the calorimeter cells corresponding to the electromagnetic shower are subtracted. The transverse impact parameter significance, defined as the transverse impact parameter of the lepton with respect to the primary vertex divided by its uncertainty, for the two lowest p_T leptons of the quadruplet in events with $m_{4\ell} < 190$ GeV is required to be less than 3.5 and 6 for muons and electrons respectively. The selection efficiency of the isolation and impact parameter requirements has been studied using data both for isolated leptons, with $Z \rightarrow \ell\ell$ decays and non-isolated leptons from semi-leptonic b- and c-quark decays in a heavy-flavour enriched dijet sample. Good agreement is observed between data and simulation.

Higgs boson candidates are searched by selecting two-flavour, opposite-sign isolated lepton pairs in an event. Each lepton must satisfy $p_T > 7$ GeV and be measured in the pseudorapidity range $|\eta| < 2.47$ for electrons and $|\eta| < 2.5$ for muons. The electron p_T threshold is increased to 15 GeV in the transition region between the barrel and end-cap calorimeters (1.37 < $|\eta| < 1.52$). At least two leptons must have $p_T > 20$ GeV. The leptons are required to be well separated from each other with $\Delta R > 0.1$. The invariant mass of the lepton pair closest to the nominal Z boson mass (m_Z) is denoted by m_{12} and it is required that $m_{12} < m_{Z} < 15$ GeV. The invariant mass of the remaining lepton pair, m_{34}, is required to be lower than 115 GeV and greater than a threshold depending on the reconstructed four lepton mass, $m_{4\ell}$ as summarized in Table 2. The final discriminative variable is $m_{4\ell}$, where the Higgs boson production would appear as a clustering of events. The width of the reconstructed Higgs boson mass distribution is dominated by experimental resolution at low $m_{4\ell}$ values.

<table>
<thead>
<tr>
<th>m_H [GeV]</th>
<th>$\sigma(gg \rightarrow H)$ [pb]</th>
<th>$\sigma(\tilde{q}\tilde{q} \rightarrow H)$ [pb]</th>
<th>BR($H \rightarrow 4\ell$) $\cdot 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>14.1 $^{+2.7}_{-2.0}$</td>
<td>1.154 $^{+0.032}_{-0.028}$</td>
<td>0.19</td>
</tr>
<tr>
<td>150</td>
<td>10.5 $^{+2.7}_{-2.0}$</td>
<td>0.962 $^{+0.028}_{-0.023}$</td>
<td>0.38</td>
</tr>
<tr>
<td>200</td>
<td>5.2 $^{+3.4}_{-2.0}$</td>
<td>0.637 $^{+0.022}_{-0.022}$</td>
<td>1.15</td>
</tr>
<tr>
<td>240</td>
<td>3.6 $^{+0.9}_{-0.6}$</td>
<td>0.464 $^{+0.018}_{-0.012}$</td>
<td>1.32</td>
</tr>
<tr>
<td>300</td>
<td>2.4 $^{+0.3}_{-0.4}$</td>
<td>0.301 $^{+0.014}_{-0.008}$</td>
<td>1.38</td>
</tr>
<tr>
<td>400</td>
<td>2.0 $^{+0.3}_{-0.4}$</td>
<td>0.162 $^{+0.010}_{-0.006}$</td>
<td>1.21</td>
</tr>
<tr>
<td>600</td>
<td>0.33 $^{+0.06}_{-0.05}$</td>
<td>0.058 $^{+0.005}_{-0.002}$</td>
<td>1.23</td>
</tr>
</tbody>
</table>
with a full-width at half-maximum (FWHM) which varies according to decay mode and is between 4.5 (4μ) and 6.5 (4e) GeV for m_H = 130 GeV. At high m_H the reconstructed width is dominated by the natural width of the Higgs boson with a FWHM of approximately 35 GeV at m_H = 400 GeV.

5. Background estimation

The dominant ZZ(*) background is estimated using MC simulation. Generated events are required to pass the complete analysis selection and the final yield is normalized to the integrated luminosity.

The tf background is also estimated using MC simulation. Comparison of data to MC predictions, in a control sample of events with opposite sign electron–muon pairs consistent with the Z boson mass and with one or two additional charged leptons, are used to verify that the tf background is small with respect to the dominant ZZ(*) process and in agreement with expectation.

The Z + jets background is normalized using data. The control sample is formed by selecting events with a pair of same-flavour, opposite-sign isolated leptons consistent with the Z boson mass, |m_Z − m_Z| < 15 GeV, and a second same-flavour, opposite-sign lepton pair where only kinematic, but no isolation or impact parameter requirements are applied. At this stage, the dominant background source depends on the flavour of the second lepton pair: Z + light flavour jets dominates the final states with a second electron pair, while Zbb production dominates the final states with a second muon pair after the contributions from t tf, ZZ(*), and muons from in-flight π and K decays which correspond to 44% of the event yield are subtracted. The observed background, which is found to be in good agreement with expectation, is extrapolated to the signal region by means of the MC simulation.

6. Systematic uncertainties

Uncertainties on lepton reconstruction and identification efficiency, and on the momentum resolution and momentum scale are determined using samples of W, Z and J/ψ decays. The muon efficiency uncertainty results in an acceptance uncertainty on the signal and the irreducible background which is uniform over the mass range of interest and amounts to 1.7% (1.2%) for the 4μ (2e2μ) channel. The uncertainty on the electron efficiency results in an acceptance uncertainty of 3% (2%) for the 4e (2e2μ) channel at m_A = 600 GeV reaching 15% (6%) at m_A = 110 GeV.

A conservative theoretical uncertainty of 15% is assigned to the ZZ(*) background contribution [44]. The Z + light flavour jets and Zbb backgrounds are evaluated using data. A systematic uncertainty between 20% and 40% is assigned on their normalization to account for the statistical uncertainty in the control sample and the MC-based extrapolation to the signal region. The uncertainty on the tf cross section is found to be 10% by adding linearly the contributions from variations of the renormalization and factorization scales to those of the parton distribution functions.

The theoretical uncertainties on the Higgs boson production cross section are 15–20% for the gluon fusion process and 3–9% for the vector-boson fusion process [17], depending on the Higgs boson mass. They include uncertainties on the QCD scale and on the parton distribution functions [46–49]. An additional 2% uncertainty is added to the signal selection efficiency due to the modelling of the signal kinematics. This is evaluated by comparing signal samples generated with PYTHIA and the default POWHEG samples.

The overall uncertainty on the total integrated luminosity is 3.7% [8].

7. Results

The number of events observed in each final state, separately for m_A < 180 GeV and m_A > 180 GeV, are compared with the expectations based on on-shell Higgs boson production and decay and use MC generators with an ad hoc Breit–Wigner Higgs line shape. Recently potentially important effects related to off-shell Higgs boson production and interference effects between the Higgs boson signal and backgrounds have been discussed [17,45]. The inclusion of such effects may affect limits at high Higgs masses (m_A > 400 GeV).
Fig. 1. Invariant mass distributions (a) m_{12}, (b) m_{34}, and (c) $m_{4\ell}$ for the selected candidates. The data (dots) are compared to the background expectations from the dominant $ZZ^{(*)}$ process and the sum of $t\bar{t}$, $Zb\bar{b}$ and Z + light flavour jets processes. Error bars represent 68.3% central confidence intervals.

Fig. 2. $m_{4\ell}$ distribution of the selected candidates, compared to the background expectation. Error bars represent 68.3% central confidence intervals. The signal expectation for three m_H hypotheses is also shown.

Expectations for background and signal for various m_H hypotheses in Table 3. In total 27 candidate events are selected by the analysis: 12 4μ, 9 $2e2\mu$, and 6 $4e$ events, while in the same mass range 24 ± 4 events are expected from the background processes. The m_{12}, m_{34}, and $m_{4\ell}$ mass spectra are shown in Fig. 1. The $m_{4\ell}$ distribution for the total background and several signal hypotheses is compared to the data in Fig. 2. The selected events have been examined visually and no evidence for reconstruction problems was identified.

Upper limits are set on the Higgs boson cross section at 95% CL, using the CL_s modified frequentist formalism [50] with the profile likelihood test statistic [51]. The test statistic is evaluated with a maximum likelihood fit of signal and background models to the observed $m_{4\ell}$ distribution. Fig. 3 shows the expected and observed 95% CL cross section upper limits as a function of the Higgs boson mass, divided by the expected SM Higgs boson cross section. The green and yellow bands indicate the expected sensitivity with ±1σ and ±2σ fluctuations, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Table 4

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>3.29</td>
<td>4.11</td>
</tr>
<tr>
<td>150</td>
<td>1.39</td>
<td>1.47</td>
</tr>
<tr>
<td>200</td>
<td>1.03</td>
<td>0.96</td>
</tr>
<tr>
<td>240</td>
<td>1.28</td>
<td>2.03</td>
</tr>
<tr>
<td>300</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>400</td>
<td>1.91</td>
<td>1.77</td>
</tr>
<tr>
<td>600</td>
<td>8.40</td>
<td>12.34</td>
</tr>
</tbody>
</table>

8. Summary

A search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ based on 2.1 fb$^{-1}$ of data recorded by the
ATLAS detector at $\sqrt{s} = 7$ TeV during the 2011 run, has been presented. No significant excess of candidates is observed in the mass range between 110 and 600 GeV with respect to the expected SM background. The observed (expected) 95% CL upper limit on the Higgs boson production cross section, in units of the SM cross section, is 0.99 (1.01) for $m_H = 194$ GeV, the region with the best expected sensitivity for this search. The SM Higgs boson is excluded at 95% CL in the mass ranges 191–197, 199–200 and 214–224 GeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAEPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3–CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVRA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; TAEK, Turkey; STFC, the Royal Society; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; SWIP, Sweden; SRC and Wallenberg (MECTS), Sweden; DST/NRF, South Africa; IN2P3–CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVRA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERVY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg (MECTS), Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at scienceDirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Anadolu University, Kütahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TÜBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
4 AIP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, Arizona State University, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Fisica d’Altes Energies and Departament de Fisica de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 Institute of Physics, University of Belgrade, Belgrade; (a) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Bogazici University, Istanbul
19 (a) Department of Physics, Istanbul Technical University, Istanbul, Turkey; (b) INFN Sezione di Bologna; (c) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
23 (a) Universidad Federal do Rio De Janeiro COPPE/EIEF; Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF); Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
34 Nevis Laboratory, Columbia University, Irvington, NY, United States
35 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
36 (a) INFN Gruppo Collegato di Casale; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland
38 (a) Institute of Nuclear Physics, Warsaw University, Warsaw, Poland; (b) Institute of Medical Physics, Warsaw University, Warsaw, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Facultad de Matemática y Física, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
59 (a) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Science, Hiroshima University, Hiroshima, Japan
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
62 Department of Physics, Indiana University, Bloomington, IN, United States
63 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
64 University of Iowa, Iowa City, IA, United States
65 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
66 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
67 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
68 Graduate School of Science, Kobe University, Kobe, Japan

Also at Laboratorio de Instrumentación e Física Experimental de Partículas – LIP, Lisboa, Portugal.

Also at Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at TRUMP, Vancouver, BC, Canada.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Kraków, Poland.

Also at Fermilab, Batavia, IL, United States.

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at NKFI HU Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Department of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.

Deceased.