Search for a Standard Model Higgs Boson in the $H\to ZZ\to t\bar{t}\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

DOI
10.1103/PhysRevLett.107.221802

Publication date
2011

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for a Standard Model Higgs Boson in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 15 September 2011; published 22 November 2011)

A search for a heavy standard model Higgs boson decaying via $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$, where $\ell = e, \mu$, is presented. It is based on proton-proton collision data at $\sqrt{s} = 7$ TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb$^{-1}$. The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region $340 < m_H < 450$ GeV at the 95% confidence level.

The search for the standard model (SM) Higgs boson [1–3] is one of the most important aspects of the Large Hadron Collider (LHC) physics program. Direct searches at the CERN LEP e^+e^- collider have set a lower limit of 114.4 GeV on the Higgs boson mass, m_H, at 95% confidence level [4]. Searches by the CDF and D0 experiments at the Fermilab Tevatron $p\bar{p}$ collider have explored the mass range up to 200 GeV and exclude the additional region $156 < m_H < 177$ GeV [5]. For m_H greater than twice the Z boson mass, m_Z, a significant fraction of Higgs bosons decay to two Z bosons. The $ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ decay channel offers a substantial branching fraction in combination with a good separation from potential background processes owing to the high transverse momentum, p_T, of the electron or muon pair from the leptonic Z decay and the high missing transverse momentum, E_T^{miss}, from the Z decaying to neutrinos.

The first cross section limits for a SM Higgs boson in the mass region $200 < m_H < 600$ GeV were set by the ATLAS and CMS collaborations in Refs. [6,7]. This letter extends the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ results therein, with a 30-fold increase in the integrated luminosity, as well as a significant improvement in the event reconstruction and background rejection.

The data sample considered in this search was recorded by the ATLAS experiment during the first half of the 2011 LHC run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 1.04 fb$^{-1}$.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The cross sections for Higgs boson production, the associated branching fractions [24], as well as their uncertainties, are compiled in Ref. [25]. They correspond to next-to-next-to-leading order in QCD for the gluon fusion [26–31] and the vector-boson fusion [32] processes. In addition, QCD soft-gluon resummations up to next-to-next-to-leading logarithms are available for the gluon fusion process [33], while next-to-leading order electro-weak corrections are applied to both the gluon fusion [34,35] and the vector-boson fusion [36,37] processes. These cross section calculations do not account for the width of the Higgs boson, which is implemented through an ad hoc Breit-Wigner line shape applied at the event generator level. Recent studies [25,38] have indicated that effects due to off-shell Higgs boson production and interference with other SM processes may become sizeable at the highest available precision calculations for the relevant process. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, the dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, \(\vec{p}_T^{miss} \), and the leading jet in the event satisfies \(\Delta \phi (\vec{p}_T^{miss}, \vec{p}_T^{jet}) < 0.3 \). To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single

Jets are used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake E_T^{miss} due to mismeasured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-k_t algorithm [42] with a radius parameter R = 0.4. Only jets with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.5\) are considered.

To remove leptons associated with jets, such as those originating from semileptonic decays of b hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone \(\Delta R < 0.2 \) around the lepton direction is greater than 10% of the \(p_T \) of the lepton itself or if the lepton is within a distance \(\Delta R < 0.4 \) of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within \(|\eta| < 4.5\) and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged electrons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, \(m_{\ell \ell} \), is required to satisfy \(|m_Z - m_{\ell \ell}| < 15 \text{ GeV} \).

To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, \(\vec{p}_T^{miss} \), and the leading jet in the event satisfies \(\Delta \phi (\vec{p}_T^{miss}, \vec{p}_T^{jet}) < 0.3 \). To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single
discriminating combining information from both the impact parameter with respect to the primary vertex of tracks associated to the jet and the presence of displaced secondary vertices associated to the jet’s tracks. The chosen cut achieves an efficiency of about 70% for identifying real b jets, with a light-quark jet rejection of about 80% [43].

To exploit the mass dependent kinematic features of $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ production, the search is subdivided into a low Higgs boson mass ($m_H < 280$ GeV) and a high Higgs boson mass ($m_H \approx 280$ GeV) search region, where dedicated cuts are applied to two important discriminating variables used to reduce the background contributions: E_T^{miss} and the azimuthal angle between the two leptons, $\Delta \phi(\ell, \ell)$. Figure 2 shows the distributions of these variables after the application of the $m_{\ell\ell}$ window cut. Since inclusive Z production gives rise to a steeply falling E_T^{miss} distribution, systematic uncertainties on the E_T^{miss} reconstruction are particularly important to estimate this background correctly. The dominant contributions to the E_T^{miss} uncertainty come from the knowledge of the jet energy scale and the modelling of inclusive Z production. Figure 2 shows that a good agreement within systematic uncertainties is observed between data and the combined background expectation. In the low m_H region, events are required to satisfy $E_T^{\text{miss}} > 66$ GeV, while in the high m_H region the requirement is $E_T^{\text{miss}} > 82$ GeV. These cuts reduce significantly the backgrounds from processes with no or modest genuine missing transverse momentum originating from unobserved neutrinos.

The boost of the Z bosons originating from a Higgs boson decay increases with m_H, thus reducing the expected opening angle between the leptons. In the low m_H region this boost is expected to be modest and a cut $1 < \Delta \phi(\ell, \ell) < 2.64$ is applied. In the high m_H region an upper limit $\Delta \phi(\ell, \ell) < 2.25$ is required.

Finally, in the high m_H region, events are also rejected if the azimuthal angle between the missing transverse momentum vector and the direction of the $Z \rightarrow \ell \ell$ boson candidate is $\Delta \phi(p_T^{\text{miss}}, \vec{p}_T^{\ell\ell}) < 1$. The efficiency of the event selection is very similar in the electron and muon channels, ranging from 3% for $m_H = 200$ GeV to about 48% for $m_H = 600$ GeV.

SM pair production of Z bosons has a final state identical to the signal, and is therefore expected to survive most of the applied selection criteria and form a continuum in the transverse mass distribution (defined below). The normalization for this background is obtained from a calculation including next-to-leading order terms [44] with an additional 6% term to account for missing quark-box diagrams (gg → ZZ) [45]. A 11% normalization uncertainty is assigned to this background, estimated from scale, PDF and model uncertainties. WW and WZ backgrounds are normalized in a similar way.

The background from inclusive Z production is derived from MC, after checking that the simulation describes well the data in samples selected by requiring the presence of a lepton pair. The background from top events is also taken from the MC prediction. This prediction is verified to agree with data, within systematic uncertainties, in two independent control samples: the first one requires at least one identified b-jet, while the second selects events containing electron-muon pairs.

Additional backgrounds can arise from QCD multijet events or inclusive W production due to heavy flavour decays or jets faking leptons. The normalization of the W background is obtained from the ratio between data and MC in control samples of like-sign electron-electron and electron-muon events with high E_T^{miss}. The QCD multijet background in the electron channel is determined using a data sample based on a loosened electron selection, thus dominated by jets; this sample is scaled to describe the tails of the $m_{\ell\ell}$ distribution. In the muon channel, the background from heavy flavour decays is studied using simulation, whereas other muon sources from multijet events are constrained using a sample of like-sign muon pairs in data. In both cases the background is found to be negligible.

The signal efficiencies and overall background expectations are similar in the electron and the muon channels.

FIG. 2 (color online). The E_T^{miss} (left) and $\Delta \phi(\ell, \ell)$ (right) distributions for events with exactly two oppositely charged electrons or muons inside the Z mass window. The insets at the bottom show the ratio between data and the combined background expectations as well as a band corresponding to the combined systematic uncertainties of the analysis.
therefore only combined results are presented. The numbers of candidate $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ events selected in data and the expected yields from signal and background processes are shown in Table I.

The systematic uncertainties include experimental uncertainties related to the selection and calibration of electrons, muons, jets and b jets, which are also explicitly propagated to the E_T^{miss} calculation. Shape uncertainties for the signal and for the single Z and ZZ backgrounds are estimated using PYTHIA as an alternative MC generator.

Normalization uncertainties for signal (gluon fusion $+14\%$ and VBF -10%) and diboson backgrounds (11%) are obtained from theory [25]; uncertainties for the inclusive Z boson production (2.5%), top quark production (9%), inclusive W boson production (100%) and QCD multijet production in the electron channel (50%) are estimated from data. A 3.7% luminosity uncertainty [46] is included for those processes for which the normalization is not obtained from the data. The dominant systematic uncertainties in the analysis are the E_T^{miss} uncertainties for the Z background, the b-tagging uncertainty for the top background and the normalization uncertainties for the signal and the W and diboson backgrounds.

After the event selection, the Higgs boson search is performed by looking for an excess of data over the SM background expectation in the transverse mass distribution of the selected $ee\nu\nu$ and $\mu\mu\nu\nu$ events. The transverse mass is calculated from the lepton pair and the p_T^{miss} vector as

$$m_T^2 = \left[\sqrt{m_Z^2 + \left| p_T^{miss} \right|^2} + \sqrt{m_Z^2 + \left| p_T^{miss} \right|^2} \right]^2 - \left| p_T^{miss} + \vec{p}_T^{miss} \right|^2.$$

Table I. The expected number of background and signal events for the Higgs boson search in the $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ channel, along with the observed numbers of candidates in data, for an integrated luminosity of 1.04 fb^{-1}. The quoted uncertainties are statistical and systematic, respectively. Signal to background ratios are also given for various masses (see text).

<table>
<thead>
<tr>
<th>Source</th>
<th>low m_H search</th>
<th>high m_H search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>$19.1 \pm 2.6 \pm 0.9$</td>
<td>$6.0 \pm 1.4 \pm 1.8$</td>
</tr>
<tr>
<td>W</td>
<td>$8.5 \pm 2.3 \pm 8.5$</td>
<td>$3.1 \pm 1.0 \pm 3.1$</td>
</tr>
<tr>
<td>top</td>
<td>$29.9 \pm 1.3 \pm 6.0$</td>
<td>$14.9 \pm 0.8 \pm 3.1$</td>
</tr>
<tr>
<td>multijet</td>
<td>$0.4 \pm 0.4 \pm 0.2$</td>
<td>$0.0 \pm 0.0 \pm 0.0$</td>
</tr>
<tr>
<td>ZZ</td>
<td>$17.6 \pm 0.4 \pm 2.1$</td>
<td>$14.7 \pm 0.4 \pm 1.7$</td>
</tr>
<tr>
<td>WZ</td>
<td>$16.7 \pm 0.6 \pm 2.0$</td>
<td>$12.1 \pm 0.5 \pm 1.4$</td>
</tr>
<tr>
<td>WW</td>
<td>$12.4 \pm 0.4 \pm 1.5$</td>
<td>$4.6 \pm 0.3 \pm 0.5$</td>
</tr>
<tr>
<td>Total</td>
<td>$104.6 \pm 3.8 \pm 16.0$</td>
<td>$55.3 \pm 2.0 \pm 7.8$</td>
</tr>
</tbody>
</table>

μ-decay channels are combined. Figure 3 shows the m_T distribution in the high m_H search region. Signal to background ratios for different m_H values, determined in a m_T window defined to enclose 95% of the corresponding signal events, are listed in Table I.

The number and distribution of candidate $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of m_H. The limits are extracted from a maximum likelihood fit to the m_T distribution following the CL_s modified frequentist formalism with the profile likelihood test statistic [47,48]. All systematic uncertainties are taken into account.

Figure 4 shows the expected and observed limits at the 95% confidence level. The expected limit is lowest around $m_H = 380 \text{ GeV}$ where it is 1.1 times the SM Higgs boson cross section. Fluctuations in the background can lead to better or worse expected limits. Over the entire mass range the observed limits agree with the expectations within the $\pm 2\sigma$ band. A SM Higgs boson in the range $340 \text{ GeV} < m_H < 450 \text{ GeV}$ is excluded at the 95% confidence level.

In summary, results of a search for a heavy SM Higgs boson with a mass in the range $200 < m_H < 600 \text{ GeV}$ decaying to $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ have been presented. These results are based on a data sample corresponding to an integrated luminosity of 1.04 fb^{-1}, recorded with the ATLAS detector at the LHC. No evidence for a signal is observed and cross section limits are placed over the entire mass range, excluding the production of a SM Higgs boson in the region $340 < m_H < 450 \text{ GeV}$ at the 95% confidence level.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina;...
The limits are based on facilities worldwide. (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Canada), NDGF (Denmark, Norway, Sweden), CC-CERN and the ATLAS Tier-1 facilities at TRIUMF partners is acknowledged gratefully, in particular, from America. The crucial computing support from all WLCG Trust, United Kingdom; DOE and NSF, United States of TAEK, Turkey; STFC, the Royal Society and Leverhulme Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; SERATOM, Russian Federation; JINR; MSTD, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Czech Republic; DNRF, DNSRC and COLCIENCIAS, Colombia; CAS, MOST and NSFC, China; Brazil; NSERC, NRC and CFI, Canada; CERN; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI SW, Poland; GRICES and FCT, Portugal; MORIES (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 4 (color online). Observed and expected 95% confidence level upper limits on the Higgs boson production cross section divided by the SM prediction. The green and yellow bands indicate the divided by the SM prediction. The green and yellow bands indicate the ±1σ and ±2σ fluctuations, respectively, around the median sensitivity. The limits are based on 1.04 fb⁻¹ of data at √s = 7 TeV.

YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI SW, Poland; GRICES and FCT, Portugal; MORIES (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington Indiana, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City Iowa, USA

Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce, Italy

Dipartimento di Fisica, Università del Salento, Lecce, Italy

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

Department of Physics, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst Massachusetts, USA

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts, USA

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P. N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science, Nagoya University, Nagoya, Japan

INFN Sezione di Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb Illinois, USA

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

Department of Physics, New York University, New York New York, USA

Ohio State University, Columbus Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway
162Department of Physics and Astronomy, University of California Irvine, Irvine California, USA
163aINFN Gruppo Collegato di Udine, Italy
163bICTP, Trieste, Italy
163cDipartimento di Fisica, Università di Udine, Udine, Italy
164Department of Physics, University of Illinois, Urbana, Illinois, USA
165Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
166Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
167Department of Physics, University of British Columbia, Vancouver BC, Canada
168Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
169Waseda University, Tokyo, Japan
170Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
171Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
172Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
173Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
174Department of Physics, Yale University, New Haven, Connecticut, USA
175Yerevan Physics Institute, Yerevan, Armenia
176Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

aAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal.
bAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
cAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
dAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
eDeceased.
fAlso at TRIUMF, Vancouver BC, Canada.
gAlso at Department of Physics, California State University, Fresno CA, USA.
hAlso at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.
iAlso at Fermilab, Batavia IL, USA.
jAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.
kAlso at Università di Napoli Parthenope, Napoli, Italy.
lAlso at Institute of Particle Physics (IPP), Canada.
mAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.
nAlso at Louisiana Tech University, Ruston LA, USA.
oAlso at Group of Particle Physics, University of Montreal, Montreal QC, Canada.
pAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
qAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
rAlso at Manhattan College, New York NY, USA.
sAlso at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
tAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.	uAlso at High Energy Physics Group, Shandong University, Shandong, China.	vAlso at Section de Physique, Université de Genève, Geneva, Switzerland.
wAlso at Departamento de Física, Universidade de Minho, Braga, Portugal.
xAlso at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
yAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
zAlso at California Institute of Technology, Pasadena CA, USA.
aaAlso at Institute of Physics, Jagiellonian University, Krakow, Poland.
bbAlso at Department of Physics, Oxford University, Oxford, United Kingdom.
cAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.
ddAlso at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
eeAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
fAlso at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
gAlso at Department of Physics, Nanjing University, Jiangsu, China.