Search for a Standard Model Higgs Boson in the $H \rightarrow ZZ \rightarrow t\bar{t}v\bar{v}$ Decay Channel with the ATLAS Detector

DOI

10.1103/PhysRevLett.107.221802

Publication date

2011

Document Version

Final published version

Published in

Physical Review Letters

Citation for published version (APA):

https://doi.org/10.1103/PhysRevLett.107.221802

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library, https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for a Standard Model Higgs Boson in the $H \rightarrow ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 15 September 2011; published 22 November 2011)

A search for a heavy standard model Higgs boson decaying via $H \rightarrow ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$, where $\ell = e, \mu$, is presented. It is based on proton-proton collision data at $\sqrt{s} = 7$ TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb$^{-1}$. The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region $340 < m_H < 450$ GeV at the 95% confidence level.

DOI: 10.1103/PhysRevLett.107.221802

PACS numbers: 14.80.Bn, 13.85.Rm

The search for the standard model (SM) Higgs boson [1–3] is one of the most important aspects of the Large Hadron Collider (LHC) physics program. Direct searches at the CERN LEP $e^+e^−$ collider have set a lower limit of 114.4 GeV on the Higgs boson mass, m_H, at 95% confidence level [4]. Searches by the CDF and D0 experiments at the Fermilab Tevatron $p\bar{p}$ collider have explored the mass range up to 200 GeV and exclude the additional region $156 < m_H < 177$ GeV [5]. For m_H greater than twice the Z boson mass, m_Z, a significant fraction of Higgs bosons decay to two Z bosons. The $ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$ decay channel offers a substantial branching fraction in combination with a good separation from potential background processes owing to the high transverse momentum, p_T, of the electron or muon pair from the leptonic Z decay and the high missing transverse momentum, E_T^{miss}, from the Z decaying to neutrinos.

The first cross section limits for a SM Higgs boson in the mass region $200 < m_H < 600$ GeV were set by the ATLAS and CMS collaborations in Refs. [6,7]. This letter extends the $H \rightarrow ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$ results therein, with a 30-fold increase in the integrated luminosity, as well as a significant improvement in the event reconstruction and background rejection.

The data sample considered in this search was recorded by the ATLAS experiment during the first half of the 2011 LHC run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 1.04 fb$^{-1}$.

The ATLAS detector has been described elsewhere [8]. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4 [9] simulation of the ATLAS detector [10] and reconstructed with the same reconstruction software as the data.

$H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ ($\ell = e, \mu, \tau$) events are modeled using the POWHEG [11,12] event generator, which includes matrix elements for the gluon fusion and the vector-boson fusion production mechanisms of the Higgs boson up to next-to-leading order. POWHEG is interfaced to PYTHIA [13] for the modelling of parton showers. The Higgs boson p_T spectrum is reweighted to the calculation of Ref. [14], which provides QCD corrections up to next-to-leading order and QCD soft-gluon resummations up to next-to-next-to-leading logarithms. An alternative sample of signal events is produced using the PYTHIA event generator, which includes only leading order matrix elements. In both cases PHOTOS [15] is used to model final-state radiation and TAUOLA [16] for the simulation of τ decays.

$H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ and $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$ samples are also simulated using the same generators as for the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ samples, while $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$ events are produced using the MC@NLO generator [17], interfaced to HERWIG [18] and JIMMY [19] in the gluon fusion channel and the SHERPA [20] generator in the vector-boson fusion channel. These channels contribute to the signal yield and are considered as part of the signal. In particular, $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$ decays contribute as much as 77% to the signal expectation after the full selection for $m_H = 200$ GeV decreasing to 13% at $m_H = 300$ GeV. Independence of the analysis with respect to other ATLAS Higgs boson searches [21–23] is ensured through mutually exclusive selection requirements on the dilepton invariant mass, the number of lepton or the event missing transverse momentum.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The cross sections for Higgs boson production, the associated branching fractions [24], as well as their uncertainties, are compiled in Ref. [25]. They correspond to next-to-next-to-leading order in QCD for the gluon fusion [26–31] and the vector-boson fusion [32] processes. In addition, QCD soft-gluon resummations up to next-to-next-to-leading logarithms are available for the gluon fusion process [33], while next-to-leading order electromagnetic weak corrections are applied to both the gluon fusion [34,35] and the vector-boson fusion [36,37] processes. These cross section calculations do not account for the impact on the obtained limits in this channel was found to be less than 2% for $m_H = 400$ GeV growing to about 25% at $m_H = 600$ GeV.

Different event generators are chosen to model a range of important background processes. The ALPGEN generator [39] interfaced with HERWIG for parton showers and hadronisation is used to simulate $W/Z + J$ + jets backgrounds. MC@NLO, interfaced to HERWIG and IMMY, is used for the production of top-pair, single top and diboson (WW, WZ and ZZ) backgrounds. PYTHIA is used to simulate bb and cc samples as well as alternative samples for the Z and ZZ backgrounds. All simulated background samples are scaled to the highest available precision calculations for the relevant process. An overview of the used predictions and their uncertainties is given in Ref. [40].

Data used for the search in the electron and muon channels were collected primarily using single lepton triggers with p_T thresholds of 20 and 18 GeV, respectively. The expected trigger efficiency is close to 100% in the electron channel and about 95% in the muon channel for signal events passing all the selection criteria described below.

Electron candidates are reconstructed from electromagnetic calorimeter clusters, with shapes consistent with those expected from electromagnetic showers, matched to tracks reconstructed in the inner detector. Details of the electron reconstruction and identification can be found in Ref. [41]. The electron candidates are required to pass the standard ATLAS “medium” selection criteria and have $p_T > 20$ GeV and pseudorapidity $|\eta| < 2.47$.

Muons are identified by reconstructing tracks in the muon spectrometer. These tracks are then extrapolated back to the beam line to find a matching inner detector track. Details of muon reconstruction and identification can be found in Ref. [41]. Only muons with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered.

Jets are used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake E_T^{miss} due to mismeasured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-k_t algorithm [42] with a radius parameter $R = 0.4$. Only jets with $p_T > 25$ GeV and $|\eta| < 2.5$ are considered.

To remove leptons associated with jets, such as those originating from semileptonic decays of b hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone $\Delta R < 0.2$ around the lepton direction is greater than 10% of the p_T of the lepton itself or if the lepton is within a distance $\Delta R < 0.4$ of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within $|\eta| < 4.5$ and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged electrons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, $m_{\ell\ell}$, is required to satisfy $|m_Z - m_{\ell\ell}| < 15$ GeV.

To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, $\mathbf{p}_T^{\text{miss}}$, and the leading jet in the event satisfies $\Delta \phi(\mathbf{p}_T^{\text{miss}}, \mathbf{p}_T^{\text{jet}}) < 0.3$. To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single

![FIG. 1 (color online). The dilepton invariant mass distribution for events with exactly two oppositely charged electrons or muons. The inset at the bottom of the figure shows the ratio between the data and the combined background expectations as well as a band corresponding to the combined systematic uncertainties of the analysis.](221802-2)
discriminating combining information from both the impact parameter with respect to the primary vertex of tracks associated to the jet and the presence of displaced secondary vertices associated to the jet’s tracks. The chosen cut achieves an efficiency of about 70% for identifying real b jets, with a light-quark jet rejection of about 80% [43].

To exploit the mass dependent kinematic features of $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ production, the search is subdivided into a low Higgs boson mass ($m_H < 280$ GeV) and a high Higgs boson mass ($m_H \geq 280$ GeV) search region, where dedicated cuts are applied to two important discriminating variables used to reduce the background contributions: E_T^{miss} and the azimuthal angle between the two leptons, $\Delta \phi(\ell, \ell')$. Figure 2 shows the distributions of these variables after the application of the $m_{\ell\ell}$ window cut. Since inclusive Z production gives rise to a steeply falling E_T^{miss} distribution, systematic uncertainties on the E_T^{miss} reconstruction are particularly important to estimate this background correctly. The dominant contributions to the E_T^{miss} uncertainty come from the knowledge of the jet energy scale and the modelling of inclusive Z production. Figure 2 shows that a good agreement within systematic uncertainties is observed between data and the combined background expectation. In the low m_H region, events are required to satisfy $E_T^{\text{miss}} > 66$ GeV, while in the high m_H region the requirement is $E_T^{\text{miss}} > 82$ GeV. These cuts reduce significantly the backgrounds from processes with no or modest genuine missing transverse momentum originating from unobserved neutrinos.

The boost of the Z bosons originating from a Higgs boson decay increases with m_H, thus reducing the expected opening angle between the leptons. In the low m_H region this boost is expected to be modest and a cut $1 < \Delta \phi(\ell, \ell') < 2.64$ is applied. In the high m_H region an upper limit $\Delta \phi(\ell, \ell') < 2.25$ is required.

Finally, in the high m_H region, events are also rejected if the azimuthal angle between the missing transverse momentum vector and the direction of the $Z \rightarrow \ell \ell$ boson candidate is $\Delta \phi(p_T^{\text{miss}}, \vec{p}_T^{\ell \ell}) < 1$. The efficiency of the event selection is very similar in the electron and muon channels, ranging from 3% for $m_H = 200$ GeV to about 48% for $m_H = 600$ GeV.

SM pair production of Z bosons has a final state identical to the signal, and is therefore expected to survive most of the applied selection criteria and form a continuum in the transverse mass distribution (defined below). The normalization for this background is obtained from a calculation including next-to-leading order terms [44] with an additional 6% term to account for missing quark-box diagrams ($gg \rightarrow ZZ$) [45]. A 11% normalization uncertainty is assigned to this background, estimated from scale, PDF and model uncertainties. W and WZ backgrounds are normalized in a similar way.

The background from inclusive Z production is derived from MC, after checking that the simulation describes well the data in samples selected by requiring the presence of a lepton pair. The background from top events is also taken from the MC prediction. This prediction is verified to agree with data, within systematic uncertainties, in two independent control samples: the first one requires at least one identified b-jet, while the second selects events containing electron-muon pairs.

Additional backgrounds can arise from QCD multijet events or inclusive W production due to heavy flavour decays or jets faking leptons. The normalization of the W background is obtained from the ratio between data and MC in control samples of like-sign electron-electron and electron-muon events with high E_T^{miss}. The QCD multijet background in the electron channel is determined using a data sample based on a loosened electron selection, thus dominated by jets; this sample is scaled to describe the tails of the $m_{\ell\ell}$ distribution. In the muon channel, the background from heavy flavour decays is studied using simulation, whereas other muon sources from multijet events are constrained using a sample of like-sign muon pairs in data. In both cases the background is found to be negligible.

The signal efficiencies and overall background expectations are similar in the electron and the muon channels,
therefore only combined results are presented. The numbers of candidate $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ events selected in data and the expected yields from signal and background processes are shown in Table I.

The systematic uncertainties include experimental uncertainties related to the selection and calibration of electrons, muons, jets and b jets, which are also explicitly propagated to the E_T^{miss} calculation. Shape uncertainties for the signal and for the single Z and ZZ backgrounds are estimated using PYTHIA as an alternative MC generator.

Normalization uncertainties for signal (gluon fusion $+14\%/-10\%$ and VBF 4%) and diboson backgrounds (11%) are obtained from theory [25]; uncertainties for the inclusive Z boson production (2.5%), top quark production (9%), inclusive W boson production (100%) and QCD multijet production in the electron channel (50%) are estimated from data. A 3.7% luminosity uncertainty [46] is included for those processes for which the normalization is not obtained from the data. The dominant systematic uncertainties in the analysis are the E_T^{miss} uncertainties for the Z background, the b-tagging uncertainty for the top background and the normalization uncertainties for the signal and the W and diboson backgrounds.

After the event selection, the Higgs boson search is performed by looking for an excess of data over the SM background expectation in the transverse mass distribution of the selected $ee\nu\nu$ and $\mu\mu\nu\nu$ events. The transverse mass is calculated from the lepton pair and the \vec{p}_T^{miss} vector as

$$m_T^2 = [\sqrt{m_Z^2 + |\vec{p}_T^{\ell}|^2} + \sqrt{m_Z^2 + |\vec{p}_T^{\text{miss}}|^2}] - [\vec{p}_T^{\ell} + \vec{p}_T^{\text{miss}}]^2.$$

Table I

<table>
<thead>
<tr>
<th>Source</th>
<th>low m_H search</th>
<th>high m_H search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>$19.1 \pm 2.6 \pm 0.9$</td>
<td>$6.0 \pm 1.4 \pm 1.8$</td>
</tr>
<tr>
<td>W</td>
<td>$8.5 \pm 2.3 \pm 8.5$</td>
<td>$3.1 \pm 1.0 \pm 3.1$</td>
</tr>
<tr>
<td>top</td>
<td>$29.9 \pm 1.3 \pm 6.0$</td>
<td>$14.9 \pm 0.8 \pm 3.1$</td>
</tr>
<tr>
<td>multijet</td>
<td>$0.4 \pm 0.4 \pm 0.2$</td>
<td>$0.0 \pm 0.0 \pm 0.0$</td>
</tr>
<tr>
<td>ZZ</td>
<td>$17.6 \pm 0.4 \pm 2.1$</td>
<td>$14.7 \pm 0.4 \pm 1.7$</td>
</tr>
<tr>
<td>WZ</td>
<td>$16.7 \pm 0.6 \pm 2.0$</td>
<td>$12.1 \pm 0.5 \pm 1.4$</td>
</tr>
<tr>
<td>WW</td>
<td>$12.4 \pm 0.4 \pm 1.5$</td>
<td>$4.6 \pm 0.3 \pm 0.5$</td>
</tr>
<tr>
<td>Total</td>
<td>$104.6 \pm 3.8 \pm 16.0$</td>
<td>$55.3 \pm 2.0 \pm 7.8$</td>
</tr>
<tr>
<td>Data</td>
<td>85</td>
<td>47</td>
</tr>
</tbody>
</table>

m_H (GeV) | Signal expectation | s/b |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>$5.0 \pm 0.1 \pm 0.9$</td>
<td>7%</td>
</tr>
<tr>
<td>300</td>
<td>$10.2 \pm 0.2 \pm 1.8$</td>
<td>22%</td>
</tr>
<tr>
<td>400</td>
<td>$10.0 \pm 0.2 \pm 1.7$</td>
<td>52%</td>
</tr>
<tr>
<td>500</td>
<td>$4.5 \pm 0.1 \pm 0.8$</td>
<td>57%</td>
</tr>
<tr>
<td>600</td>
<td>$1.8 \pm 0.0 \pm 0.3$</td>
<td>60%</td>
</tr>
</tbody>
</table>

Figure 3 shows the $m_T^{}$ distribution in the high m_H search region. Signal to background ratios for different m_H values, determined in a $m_T^{}$ window defined to enclose 95% of the corresponding signal events, are listed in Table I.

The number and distribution of candidate $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of m_H. The limits are extracted from a maximum likelihood fit to the $m_T^{}$ distribution following the CL_s modified frequentist formalism with the profile likelihood test statistic [47,48]. All systematic uncertainties are taken into account.

Figure 4 shows the expected and observed limits at the 95% confidence level. The expected limit is lowest around $m_H = 380$ GeV where it is 1.1 times the SM Higgs boson cross section. Fluctuations in the background can lead to better or worse expected limits. Over the entire mass range the observed limits agree with the expectations within the $\pm 2\sigma$ band. A SM Higgs boson in the range $340 < m_H < 450$ GeV is excluded at the 95% confidence level.

In summary, results of a search for a heavy SM Higgs boson with a mass in the range $200 < m_H < 600$ GeV decaying to $ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$ have been presented. These results are based on a data sample corresponding to an integrated luminosity of 1.04 fb$^{-1}$, recorded with the ATLAS detector at the LHC. No evidence for a signal is observed and cross section limits are placed over the entire mass range, excluding the production of a SM Higgs boson in the region $340 < m_H < 450$ GeV at the 95% confidence level.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina;
FIG. 4 (color online). Observed and expected 95% confidence level upper limits on the Higgs boson production cross section divided by the SM prediction. The green and yellow bands indicate the ±1σ and ±2σ fluctuations, respectively, around the median sensitivity. The limits are based on 1.04 fb⁻¹ of data at √s = 7 TeV.

YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNRS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

117 Department of Physics, Oxford University, Oxford, United Kingdom
118 INFN Sezione di Pavia, Italy
119 Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
121a INFN Sezione di Pisa, Italy
121b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
123a Laboratorio de Instrumentacion e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
123b Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
124 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
124a INFN Sezione di Pisa, Italy
124b Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
125a INFN Sezione di Roma I, Italy
125b Dipartimento di Fisica, Università Sapienza, Roma, Italy
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 INFN Sezione di Roma, Italy
131a INFN Sezione di Roma I, Italy
131b Dipartimento di Fisica, Università di Roma Tor Vergata, Italy
131c Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
131d INFN Sezione di Roma Tre, Italy
131e Dipartimento di Fisica, Università Roma Tre, Roma, Italy
132a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
132b Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
132c Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B. P. 2390 Marrakech 40000, Morocco
132d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
132e Faculté des Sciences, Université Mohammed V, Rabat, Morocco
133a DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
133b Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
134a Department of Physics, University of Washington, Seattle, Washington, USA
134b Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
134c Department of Physics, Shinshu University, Nagano, Japan
134d Fachbereich Physik, Universität Siegen, Siegen, Germany
134e Department of Physics, Simon Fraser University, Burnaby BC, Canada
134f SLAC National Accelerator Laboratory, Stanford, California, USA
134g Department of Physics, University of Johannesburg, Johannesburg, South Africa
134h School of Physics, University of the Witwatersrand, Johannesburg, South Africa
134i Department of Physics, Stockholm University, Sweden
134j The Oskar Klein Centre, Stockholm, Sweden
134k Physics Department, Royal Institute of Technology, Stockholm, Sweden
134l Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
134m Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
134n School of Physics, University of Sydney, Sydney, Australia
134o Institute of Physics, Academia Sinica, Taipei, Taiwan
134p Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
134q Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
134r Department of Physics, Aristotle University Thessaloniki, Thessaloniki, Greece
134s International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
134t Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
134u Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
134v Department of Physics, University of Toronto, Toronto ON, Canada
134w TRIUMF, Vancouver BC, Canada
134x Department of Physics and Astronomy, York University, Toronto ON, Canada
134y Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
134z Science and Technology Center, Tufts University, Medford, Massachusetts, USA
134aa Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine California, USA

INFN Gruppo Collegato di Udine, Italy

Dipartimento di Fisica, Università di Udine, Udine, Italy

ICTP, Trieste, Italy

Department of Physics, University of Illinois, Urbana, Illinois, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelec ALIGNMENT_ERROR

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Technische Universität München, Zentrum für Theoretische Physik, Munich, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Also at Laboratorio de Instrumentação e Física Experimental de Partículas-LIP, Lisboa, Portugal.

Also at Faculdade de Ciências and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Deceased.

Also at TRIUMF, Vancouver BC, Canada.

Also at Department of Physics, California State University, Fresno CA, USA.

Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.

Also at Fermilab, Batavia IL, USA.

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

Also at Louisiana Tech University, Ruston LA, USA.

Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York NY, USA.

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena CA, USA.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.