Search for a Standard Model Higgs Boson in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

DOI
10.1103/PhysRevLett.107.221802

Publication date
2011

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Search for a Standard Model Higgs Boson in the $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 15 September 2011; published 22 November 2011)

A search for a heavy standard model Higgs boson decaying via $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$, where $\ell = e$, μ, is presented. It is based on proton-proton collision data at $\sqrt{s} = 7$ TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb$^{-1}$. The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region $340 < m_H < 450$ GeV at the 95% confidence level.

DOI: 10.1103/PhysRevLett.107.221802

PACS numbers: 14.80.Bn, 13.85.Rm

The search for the standard model (SM) Higgs boson [1–3] is one of the most important aspects of the Large Hadron Collider (LHC) physics program. Direct searches at the CERN LEP e^+e^- collider have set a lower limit of 114.4 GeV on the Higgs boson mass, m_H, at 95% confidence level [4]. Searches by the CDF and D0 experiments at the Fermilab Tevatron $p\bar{p}$ collider have explored the mass range up to 200 GeV and exclude the additional region $156 < m_H < 177$ GeV [5]. For m_H greater than twice the Z boson mass, m_Z, a significant fraction of Higgs bosons decay to two Z bosons. The $ZZ \to \ell^+\ell^-\nu\bar{\nu}$ decay channel offers a substantial branching fraction in combination with a good separation from potential background processes owing to the high transverse momentum, p_T, of the electron or muon pair from the leptonic Z decay and the high missing transverse momentum, E_T^{miss}, from the Z decaying to neutrinos.

The first cross section limits for a SM Higgs boson in the mass region $200 < m_H < 600$ GeV were set by the ATLAS and CMS collaborations in Refs. [6,7]. This letter extends the $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ results therein, with a 30-fold increase in the integrated luminosity, as well as a significant improvement in the event reconstruction and background rejection.

The data sample considered in this search was recorded by the ATLAS experiment during the first half of the 2011 LHC run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 1.04 fb$^{-1}$.

The ATLAS detector has been described elsewhere [8]. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4 [9] simulation of the ATLAS detector [10] and reconstructed with the same reconstruction software as the data.

$H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ ($\ell = e$, μ, τ) events are modeled using the POWHEG [11,12] event generator, which includes matrix elements for the gluon fusion and the vector-boson fusion production mechanisms of the Higgs boson up to next-to-leading order. POWHEG is interfaced to PYTHIA [13] for the modelling of parton showers. The Higgs boson p_T spectrum is reweighted to the calculation of Ref. [14], which provides QCD corrections up to next-to-leading order and QCD soft-gluon resummations up to next-to-next-to-leading logarithms. An alternative sample of signal events is produced using the PYTHIA event generator, which includes only leading order matrix elements. In both cases PHOTOS [15] is used to model final-state radiation and TAUOLA [16] for the simulation of τ decays.

$H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ and $H \to ZZ \to \ell^+\ell^-q\bar{q}$ samples are also simulated using the same generators as for the $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ samples, while $H \to W^+W^- \to \ell^+\ell^-\nu\bar{\nu}$ events are produced using the MC@NLO generator [17], interfaced to HERWIG [18] and JIMMY [19] in the gluon fusion channel and the SHERPA [20] generator in the vector-boson fusion channel. These channels contribute to the signal yield and are considered as part of the signal. In particular, $H \to W^+W^- \to \ell^+\ell^-\nu\bar{\nu}$ decays contribute as much as 77% to the signal expectation after the full selection for $m_H = 200$ GeV decreasing to 13% at $m_H = 300$ GeV. Independence of the analysis with respect to other ATLAS Higgs boson searches [21–23] is ensured through mutually exclusive selection requirements on the dilepton invariant mass, the number of leptons or the event missing transverse momentum.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The cross sections for Higgs boson production, the associated branching fractions [24], as well as their uncertainties, are compiled in Ref. [25]. They correspond to next-to-next-to-leading order in QCD for the gluon fusion [26–31] and the vector-boson fusion [32] processes. In addition, QCD soft-gluon resummations up to next-to-next-to-leading logarithms are available for the gluon fusion process [33], while next-to-leading order electroweak corrections are applied to both the gluon fusion [34,35] and the vector-boson fusion [36,37] processes. These cross section calculations do not account for the width of the Higgs boson, which is implemented through an ad hoc Breit-Wigner line shape applied at the event generator level. Recent studies [25,38] have indicated that effects due to off-shell Higgs boson production and interferences between the standard ATLAS “medium” selection criteria and have

jets used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake E_T^{miss} due to mismeasured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-k_t algorithm [42] with a radius parameter $R = 0.4$. Only jets with $p_T > 25$ GeV and $|\eta| < 2.5$ are considered.

To remove leptons associated with jets, such as those originating from semileptonic decays of b hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone $\Delta R < 0.2$ around the lepton direction is greater than 10% of the p_T of the lepton itself or if the lepton is within a distance $\Delta R < 0.4$ of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within $|\eta| < 4.5$ and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged leptons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, $m_{\ell\ell}$, is required to satisfy $|m_Z - m_{\ell\ell}| < 15$ GeV.

To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, \vec{P}_T^{miss}, and the leading jet in the event satisfies $\Delta \phi(\vec{P}_T^{\text{miss}}, \vec{P}_T^{\text{jet}}) < 0.3$. To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single

Electron candidates are reconstructed from electromagnetic calorimeter clusters, with shapes consistent with those expected from electromagnetic showers, matched to tracks reconstructed in the inner detector. Details of the electron reconstruction and identification can be found in Ref. [41]. The electron candidates are required to pass the standard ATLAS “medium” selection criteria and have $p_T > 20$ GeV and pseudorapidity $|\eta| < 2.47$.

Muons are identified by reconstructing tracks in the muon spectrometer. These tracks are then extrapolated back to the beam line to find a matching inner detector track. Details of muon reconstruction and identification can be found in Ref. [41]. Only muons with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered.

Jets are used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake E_T^{miss} due to mismeasured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-k_t algorithm [42] with a radius parameter $R = 0.4$. Only jets with $p_T > 25$ GeV and $|\eta| < 2.5$ are considered.

To remove leptons associated with jets, such as those originating from semileptonic decays of b hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone $\Delta R < 0.2$ around the lepton direction is greater than 10% of the p_T of the lepton itself or if the lepton is within a distance $\Delta R < 0.4$ of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within $|\eta| < 4.5$ and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged electrons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, $m_{\ell\ell}$, is required to satisfy $|m_Z - m_{\ell\ell}| < 15$ GeV.

To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, \vec{P}_T^{miss}, and the leading jet in the event satisfies $\Delta \phi(\vec{P}_T^{\text{miss}}, \vec{P}_T^{\text{jet}}) < 0.3$. To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single

Electron candidates are reconstructed from electromagnetic calorimeter clusters, with shapes consistent with those expected from electromagnetic showers, matched to tracks reconstructed in the inner detector. Details of the electron reconstruction and identification can be found in Ref. [41]. The electron candidates are required to pass the standard ATLAS “medium” selection criteria and have $p_T > 20$ GeV and pseudorapidity $|\eta| < 2.47$.

Muons are identified by reconstructing tracks in the muon spectrometer. These tracks are then extrapolated back to the beam line to find a matching inner detector track. Details of muon reconstruction and identification can be found in Ref. [41]. Only muons with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered.
To exploit the mass dependent kinematic features of $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ production, the search is subdivided into a low Higgs boson mass ($m_H < 280$ GeV) and a high Higgs boson mass ($m_H \geq 280$ GeV) search region, where dedicated cuts are applied to two important discriminating variables used to reduce the background contributions: E_T^{miss} and the azimuthal angle between the two leptons, $\Delta \phi(\ell, \ell)$. Figure 2 shows the distributions of these variables after the application of the $m_{\ell\ell}$ window cut. Since inclusive Z production gives rise to a steeply falling E_T^{miss} distribution, systematic uncertainties on the E_T^{miss} reconstruction are particularly important to estimate this background correctly. The dominant contributions to the E_T^{miss} uncertainty come from the knowledge of the jet energy scale and the modelling of inclusive Z production. Figure 2 shows that a good agreement within systematic uncertainties is observed between data and the combined background expectation. In the low m_H region, events are required to satisfy $E_T^{\text{miss}} > 66$ GeV, while in the high m_H region the requirement is $E_T^{\text{miss}} > 82$ GeV. These cuts reduce significantly the backgrounds from processes with no or modest genuine missing transverse momentum originating from unobserved neutrinos.

The boost of the Z bosons originating from a Higgs boson decay increases with m_H, thus reducing the expected opening angle between the leptons. In the low m_H region this boost is expected to be modest and a cut $1 < \Delta \phi(\ell, \ell) < 2.64$ is applied. In the high m_H region an upper limit $\Delta \phi(\ell, \ell) < 2.25$ is required.

Finally, in the high m_H region, events are also rejected if the azimuthal angle between the missing transverse momentum vector and the direction of the $Z \rightarrow \ell\ell$ boson candidate is $\Delta \phi(p_T^{\text{miss}}, \vec{p}_T^{\ell\ell}) < 1$. The efficiency of the event selection is very similar in the electron and muon channels, ranging from 3% for $m_H = 200$ GeV to about 48% for $m_H = 600$ GeV.

SM pair production of Z bosons has a final state identical to the signal, and is therefore expected to survive most of the applied selection criteria and form a continuum in the transverse mass distribution (defined below). The normalization for this background is obtained from a calculation including next-to-leading order terms [44] with an additional 6% term to account for missing quark-box diagrams ($gg \rightarrow ZZ$) [45]. A 11% normalization uncertainty is assigned to this background, estimated from scale, PDF and model uncertainties. WW and WZ backgrounds are normalized in a similar way.

The background from inclusive Z production is derived from MC, after checking that the simulation describes well the data in samples selected by requiring the presence of a lepton pair. The background from top events is also taken from the MC prediction. This prediction is verified to agree with data, within systematic uncertainties, in two independent control samples: the first one requires at least one identified b-jet, while the second selects events containing electron-muon pairs.

Additional backgrounds can arise from QCD multijet events or inclusive W production due to heavy flavour decays or jets faking leptons. The normalization of the W background is obtained from the ratio between data and MC in control samples of like-sign electron-electron and electron-muon events with high E_T^{miss}. The QCD multijet background in the electron channel is determined using a data sample based on a loosened electron selection, thus dominated by jets; this sample is scaled to describe the tails of the $m_{\ell\ell}$ distribution. In the muon channel, the background from heavy flavour decays is studied using simulation, whereas other muon sources from multijet events are constrained using a sample of like-sign muon pairs in data. In both cases the background is found to be negligible.

The signal efficiencies and overall background expectations are similar in the electron and the muon channels,

FIG. 2 (color online). The E_T^{miss} (left) and $\Delta \phi(\ell, \ell)$ (right) distributions for events with exactly two oppositely charged electrons or muons inside the Z mass window. The insets at the bottom show the ratio between data and the combined background expectations as well as a band corresponding to the combined systematic uncertainties of the analysis.

221802-3
therefore only combined results are presented. The numbers of candidate \(H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}\) events selected in data and the expected yields from signal and background processes are shown in Table I.

The systematic uncertainties include experimental uncertainties related to the selection and calibration of electrons, muons, jets and \(b\) jets, which are also explicitly propagated to the \(E_T^{miss}\) calculation. Shape uncertainties for the signal and for the single \(Z\) and \(ZZ\) backgrounds are estimated using PYTHIA as an alternative MC generator.

Normalization uncertainties for signal (gluon fusion \(+14\%\) and VBF \(4\%)\) and diboson backgrounds (\(11\%)\) are obtained from theory \([25]\); uncertainties for the inclusive \(Z\) boson production (\(2.5\%)\), top quark production (\(9\%)\), inclusive \(W\) boson production (\(100\%)\) and QCD multijet production in the electron channel (\(50\%)\) are estimated from data. A 3.7\% luminosity uncertainty \([46]\) is included for an integrated luminosity of \(100 \pm 5\) fb\(^{-1}\). The number and distribution of candidate \(\ell^+ \ell^- \nu \bar{\nu}\) events for the Higgs boson search in the \(WZ\) and \(ZZ\) channels, along with the observed numbers of candidates in data, are listed in Table I. Signal to background ratios for different \(m_H\) values, determined in a \(m_T\) window defined to enclose 95\% of the corresponding signal events, are listed in Table I.

The number and distribution of candidate \(H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}\) events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of \(m_H\). The limits are extracted from a maximum likelihood fit to the \(m_T\) distribution following the \(CL_s\) modified frequentist formalism with the profile likelihood test statistic \([47,48]\). All systematic uncertainties are taken into account.

Figure 4 shows the expected and observed limits at the 95\% confidence level. The expected limit is lowest around \(m_H = 380\) GeV where it is 1.1 times the SM Higgs boson cross section. Fluctuations in the background can lead to better or worse expected limits. Over the entire mass range the observed limits agree with the expectations within the \(\pm 2\sigma\) band. A SM Higgs boson in the range \(340 < m_H < 450\) GeV is excluded at the 95\% confidence level.

In summary, results of a search for a heavy SM Higgs boson with a mass in the range \(200 < m_H < 600\) GeV decaying to \(ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}\) have been presented. These results are based on a data sample corresponding to an integrated luminosity of 1.04 fb\(^{-1}\), recorded with the ATLAS detector at the LHC. No evidence for a signal is observed and cross section limits are placed over the entire mass range, excluding the production of a SM Higgs boson in the region \(340 < m_H < 450\) GeV at the 95\% confidence level.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina;
The limits are based on facilities worldwide. (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Canada), NDGF (Denmark, Norway, Sweden), CC-CERN and the ATLAS Tier-1 facilities at TRIUMF partners is acknowledged gratefully, in particular, from America. The crucial computing support from all WLCG Trust, United Kingdom; DOE and NSF, United States of TAEK, Turkey; STFC, the Royal Society and Leverhulme Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; Wallenberg Foundation, Sweden; SER, SNSF and Serbia; MSSR, Slovakia; ATRS and MVZT, Slovenia; and ROSATOM, Russian Federation; JINR; MSTD, Portugal; MERYS (MECTs), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ATRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 4 (color online). Observed and expected 95% confidence level upper limits on the Higgs boson production cross section divided by the SM prediction. The green and yellow bands indicate the divided by the SM prediction. The green and yellow bands indicate the divided by the SM prediction. The green and yellow bands indicate the divided by the SM prediction. The green and yellow bands indicate the divided by the SM prediction.

117 Department of Physics, Oxford University, Oxford, United Kingdom
118 INFN Sezione di Pavia, Italy
119 Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
121a INFN Sezione di Pisa, Italy
121b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
123 Laboratorio de Instrumentación y Física Experimental de Partículas-LIP, Lisboa, Portugal
123a Dipartimento di Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
123b Instituto di Fisica, Academy of Sciences of the Czech Republic, Praha, Czech Republic
123c Czech Technical University in Prague, Praha, Czech Republic
124 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
124a Physics Department, University of Regina, Regina SK, Canada
124b Ritsumeikan University, Kusatsu, Shiga, Japan
124c INFN Sezione di Roma I, Italy
124d Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
124e INFN Sezione di Roma Tor Vergata, Italy
124f Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
125 INFN Sezione di Roma Tre, Italy
125a Dipartimento di Fisica, Università Roma Tre, Roma, Italy
126 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
126a Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
126b Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B. P. 2390 Marrakech 40000, Morocco
126c Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
126d Faculté des Sciences, Université Mohammed V, Rabat, Morocco
127 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
127a Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
127b Department of Physics, University of Washington, Seattle, Washington, USA
127c Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
127d Department of Physics, Shinshu University, Nagano, Japan
127e Fachbereich Physik, Universität Siegen, Siegen, Germany
127f Department of Physics, Simon Fraser University, Burnaby BC, Canada
127g SLAC National Accelerator Laboratory, Stanford, California, USA
127h Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
128 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
128a Department of Physics, University of Johannesburg, Johannesburg, South Africa
128b School of Physics, University of the Witwatersrand, Johannesburg, South Africa
128c Department of Physics, Stockholm University, Sweden
128d The Oskar Klein Centre, Stockholm, Sweden
129 Physics Department, Royal Institute of Technology, Stockholm, Sweden
130 Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
130a Department of Physics, Simon Fraser University, Burnaby BC, Canada
130b School of Physics, University of Sydney, Sydney, Australia
130c Institute of Physics, Academia Sinica, Taipei, Taiwan
131 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
132 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
133 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
134 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
135 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
135a Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
135b Department of Physics, University of Toronto, Toronto ON, Canada
135c TRIUMF, Vancouver BC, Canada
136 Physics Department, York University, Toronto ON, Canada
137 Department of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
138 Science and Technology Center, Tufts University, Medford, Massachusetts, USA
139 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine California, USA

INFN Gruppo Collegato di Udine, Italy

ICTP, Trieste, Italy

Dipartimento di Fisica, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana, Illinois, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMT, University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

*Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal.

*bAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

*cAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

*dAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

*eDeceased.

*fAlso at TRIUMF, Vancouver BC, Canada.

*gAlso at Department of Physics, California State University, Fresno CA, USA.

*hAlso at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.

*iAlso at Fermilab, Batavia IL, USA.

*jAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.

*kAlso at Università di Napoli Parthenope, Napoli, Italy.

*lAlso at Institute of Particle Physics (IPP), Canada.

*mAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.

*nAlso at Louisiana Tech University, Ruston LA, USA.

,oAlso at Group of Particle Physics, University of Montréal, Montréal QC, Canada.

*pAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

*qAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

*rAlso at Manhattan College, New York NY, USA.

*sAlso at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

*tAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

*uAlso at High Energy Physics Group, Shandong University, Shandong, China.

*vAlso at Section de Physique, Université de Genève, Geneva, Switzerland.

*wAlso at Departamento de Física, Universidade de Minho, Braga, Portugal.

*xAlso at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

*yAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

*zAlso at California Institute of Technology, Pasadena CA, USA.

**Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

*bbAlso at Department of Physics, Oxford University, Oxford, United Kingdom.

*ccAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.

*ddAlso at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

*eeAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

*ffAlso at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

*ggAlso at Department of Physics, Nanjing University, Jiangsu, China.