Dynamic changes in gene expression of the cyanobacterium Synechocystis sp. PCC 6803 in response to nitrogen starvation

Krasikov, V.

Citation for published version (APA):
Appendices*

*Note:
Supporting information for Chapter 5 is available for download from the website of the journal: http://www.plantphysiol.org/content/155/3/1445/suppl/DC1

Appendix 2A. List of up-regulated ORFs.
Numbers represent the log ratio of gene expression, which is defined as $2\log(I_{\text{treatment}}/I_{\text{control}})$. Up-regulations are highlighted in dark gray, and down-regulations in light gray. The column ‘Category’ is the functional category number assigned as in Table 3. Columns ‘S’, ‘N’, and ‘P’ represent ‘salt stress’, ‘nitrogen starvation’, and ‘phosphorus starvation’, respectively. The column ‘other studies’ indicates regulation of the corresponding ORF in other *Synechocystis* microarray studies; reference list is as in Table 2.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>sll1685</td>
<td>ycfl0 light-induced Na+-dependent proton extrusion</td>
<td>2.09</td>
<td>-0.06</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slr1908</td>
<td>probable porin; major outer membrane protein</td>
<td>1.70</td>
<td>0.13</td>
<td>-1.16</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>slr1028</td>
<td>ftsH cell division protein FtsH</td>
<td>1.17</td>
<td>0.61</td>
<td>0.12</td>
<td>8,10,11b,15</td>
</tr>
<tr>
<td>6</td>
<td>slr0370</td>
<td>succinate-semialdehyde dehydrogenase (NADP+)</td>
<td>1.07</td>
<td>0.07</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>slr1051</td>
<td>enoyl-[acyl-carrier-protein] reductase</td>
<td>0.96</td>
<td>0.09</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1031</td>
<td>ccmM CO2 concentrating mech. protein CcmM</td>
<td>1.33</td>
<td>-0.36</td>
<td>-0.21</td>
<td>8a,11a,11b,15</td>
</tr>
<tr>
<td>8</td>
<td>slr1564</td>
<td>ferredoxin like protein</td>
<td>1.12</td>
<td>-0.11</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0199</td>
<td>petE plastocyanin</td>
<td>1.30</td>
<td>0.26</td>
<td>0.15</td>
<td>11b,15</td>
</tr>
<tr>
<td>8</td>
<td>slr2007</td>
<td>ndhD5 NADH dehydrogenase subunit 4</td>
<td>0.83</td>
<td>0.02</td>
<td>0.02</td>
<td>11a</td>
</tr>
<tr>
<td>8</td>
<td>slr1655</td>
<td>psaL photosystem l subunit XI</td>
<td>0.82</td>
<td>-1.17</td>
<td>-0.21</td>
<td>7,10,11ab</td>
</tr>
<tr>
<td>8</td>
<td>smr0004</td>
<td>psal photosystem l subunit VIII</td>
<td>0.88</td>
<td>-1.32</td>
<td>-0.60</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>slr1042</td>
<td>two-component response regulator CheY subfamily</td>
<td>0.99</td>
<td>-0.19</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0724</td>
<td>HtaR suppressor protein hom.</td>
<td>1.30</td>
<td>-0.42</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1037</td>
<td>two-component response regulator CheY subfamily</td>
<td>1.08</td>
<td>0.02</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1771</td>
<td>phpA protein serin-threonin phosphatase</td>
<td>2.40</td>
<td>0.39</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1353</td>
<td>two-component sensor histidine kinase</td>
<td>1.43</td>
<td>0.28</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1871</td>
<td>transcriptional regulator</td>
<td>1.37</td>
<td>-0.16</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0612</td>
<td>putative helicase</td>
<td>0.97</td>
<td>0.04</td>
<td>-1.17</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>slr1564</td>
<td>sigF group III RNA polymerase sigma factor SigF</td>
<td>1.09</td>
<td>-0.37</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0653</td>
<td>sigA principal RNA polymerase sigma factor SigA</td>
<td>1.06</td>
<td>-0.31</td>
<td>-0.24</td>
<td>15,2ab</td>
</tr>
<tr>
<td>11</td>
<td>slr0612</td>
<td>prob. pseudouridine synthase</td>
<td>2.00</td>
<td>-0.53</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1204</td>
<td>protease</td>
<td>1.78</td>
<td>0.05</td>
<td>0.35</td>
<td>1,2ab,4,5a,6,8b,15</td>
</tr>
<tr>
<td>13</td>
<td>slr0195</td>
<td>probable ATP-dependent protease</td>
<td>2.65</td>
<td>0.26</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0120</td>
<td>probable trnA/rRNA methyltransferase</td>
<td>1.00</td>
<td>-0.07</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0535</td>
<td>protease</td>
<td>2.12</td>
<td>-0.21</td>
<td>-1.53</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1592</td>
<td>probable pseudouridine synthase</td>
<td>0.84</td>
<td>0.16</td>
<td>-2.71</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1967</td>
<td>probable RNA methyltransferase</td>
<td>1.56</td>
<td>0.17</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0542</td>
<td>clpP ATP-dependent protease ClpP</td>
<td>0.83</td>
<td>0.06</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1404</td>
<td>biopolymer transport ExbB protein hom.</td>
<td>1.61</td>
<td>0.28</td>
<td>-0.56</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>slr1768</td>
<td>prob. Oligopeptide ABC transporter permease protein</td>
<td>0.89</td>
<td>-0.25</td>
<td>-0.65</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0273</td>
<td>nhaS2 Na+/H+ antiporter</td>
<td>0.80</td>
<td>-0.14</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0484</td>
<td>ATP-binding protein of ABC transp.</td>
<td>1.35</td>
<td>-0.04</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0993</td>
<td>potassium channel</td>
<td>1.15</td>
<td>0.08</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1302</td>
<td>cupB protein involved in constitutive low affinity CO2 uptake</td>
<td>1.88</td>
<td>0.44</td>
<td>-0.60</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2135</td>
<td>hydrogenase accessory protein</td>
<td>1.12</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1263</td>
<td>similar to stage II sporulation protein D</td>
<td>1.11</td>
<td>0.15</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1968</td>
<td>pmgA photomixotrophic growth related protein, PmgA</td>
<td>1.43</td>
<td>0.17</td>
<td>-0.29</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1308</td>
<td>probable oxireductase</td>
<td>1.48</td>
<td>0.31</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>sll1734</td>
<td>cupA</td>
<td>prot. inv. in low CO2-induc., high affinity CO2 uptake</td>
<td>1.28</td>
<td>-0.03</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0613</td>
<td>hypothetical protein</td>
<td></td>
<td>1.61</td>
<td>-0.41</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0558</td>
<td>ycf53</td>
<td>hypothetical protein YCF53</td>
<td>1.90</td>
<td>-0.63</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0983</td>
<td>hypothetical protein</td>
<td></td>
<td>1.09</td>
<td>-0.44</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1699</td>
<td>hypothetical protein</td>
<td></td>
<td>1.95</td>
<td>-0.24</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll1737</td>
<td>ycf60</td>
<td>hypothetical protein YCF60</td>
<td>1.50</td>
<td>-0.05</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0261</td>
<td>hypothetical protein</td>
<td></td>
<td>0.83</td>
<td>0.23</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0878</td>
<td>hypothetical protein</td>
<td></td>
<td>1.81</td>
<td>0.33</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1935</td>
<td>hypothetical protein</td>
<td></td>
<td>0.99</td>
<td>-0.27</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0039</td>
<td>hypothetical protein</td>
<td></td>
<td>1.23</td>
<td>0.43</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0554</td>
<td>hypothetical protein</td>
<td></td>
<td>0.83</td>
<td>-0.04</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1593</td>
<td>hypothetical protein</td>
<td></td>
<td>1.22</td>
<td>-0.02</td>
<td>-2.75</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1417</td>
<td>ycf57</td>
<td>hypothetical protein YCF57</td>
<td>1.66</td>
<td>0.12</td>
<td>-1.30</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1917</td>
<td>hypothetical protein</td>
<td></td>
<td>1.41</td>
<td>0.17</td>
<td>-0.28</td>
<td>1,11b</td>
</tr>
<tr>
<td>16</td>
<td>ssl0867</td>
<td>hypothetical protein</td>
<td></td>
<td>1.71</td>
<td>0.30</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ssa2016</td>
<td>hypothetical protein</td>
<td></td>
<td>1.26</td>
<td>-0.05</td>
<td>0.19</td>
<td>2ab,4,6,8ab, 10,11b</td>
</tr>
<tr>
<td>17</td>
<td>sll1061</td>
<td>unknown protein</td>
<td></td>
<td>1.33</td>
<td>-0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1396</td>
<td>unknown protein</td>
<td></td>
<td>1.11</td>
<td>0.31</td>
<td>-0.33</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>slr1397</td>
<td>unknown protein</td>
<td></td>
<td>0.86</td>
<td>-0.17</td>
<td>-0.20</td>
<td>11b</td>
</tr>
<tr>
<td>17</td>
<td>slr0226</td>
<td>unknown protein</td>
<td></td>
<td>1.21</td>
<td>-0.54</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1344</td>
<td>unknown protein</td>
<td></td>
<td>1.44</td>
<td>0.46</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0943</td>
<td>unknown protein</td>
<td></td>
<td>1.13</td>
<td>-0.05</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1028</td>
<td>unknown protein</td>
<td></td>
<td>1.09</td>
<td>-0.03</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0644</td>
<td>nitrogen regulation protein NifR3 homolog</td>
<td></td>
<td>-0.58</td>
<td>1.07</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0898</td>
<td>nirA</td>
<td>ferredoxin-nitrite reductase</td>
<td>0.46</td>
<td>1.43</td>
<td>0.50</td>
<td>3b,16</td>
</tr>
<tr>
<td>1</td>
<td>sll1499</td>
<td>gisF</td>
<td>ferredoxin-dependent glutamate synthase</td>
<td>-0.10</td>
<td>1.25</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sll0057</td>
<td>grpE</td>
<td>heat shock protein GrpE</td>
<td>-0.23</td>
<td>0.88</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr0063</td>
<td>general secretion pathway protein E</td>
<td>-0.14</td>
<td>1.03</td>
<td>-0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr0662</td>
<td>arginine decarboxylase</td>
<td>-0.22</td>
<td>0.99</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll1136</td>
<td>ctaC</td>
<td>cytochrome c oxidase subunit II</td>
<td>-0.26</td>
<td>1.49</td>
<td>0.61</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>sll1137</td>
<td>ctaD</td>
<td>cytochrome c oxidase subunit I</td>
<td>-0.25</td>
<td>1.19</td>
<td>0.42</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>sll1138</td>
<td>ctaE</td>
<td>cytochrome c oxidase subunit III</td>
<td>-1.11</td>
<td>0.80</td>
<td>-0.06</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>sll1631</td>
<td>putative cytidine and deoxycoxytidylate deaminase</td>
<td>-1.55</td>
<td>0.88</td>
<td>-0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1225</td>
<td>serine/threonine kinase</td>
<td>-2.64</td>
<td>1.21</td>
<td>-0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll1708</td>
<td>two-component response regulator NarL subfamily</td>
<td>-2.40</td>
<td>1.11</td>
<td>-0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1805</td>
<td>two-component sensor histidine kinase</td>
<td>-0.16</td>
<td>1.43</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll1624</td>
<td>two-component response regulator</td>
<td>-3.41</td>
<td>1.24</td>
<td>-1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0449</td>
<td>Probable transcriptional regulator</td>
<td>0.62</td>
<td>0.88</td>
<td>-0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1623</td>
<td>ABC transp. ATP-binding protein</td>
<td>-2.09</td>
<td>1.24</td>
<td>-1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0067</td>
<td>MRP protein hom.</td>
<td>0.69</td>
<td>1.38</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0723</td>
<td>hypothetical protein</td>
<td>0.09</td>
<td>0.83</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr2070</td>
<td>hypothetical protein</td>
<td>0.07</td>
<td>1.20</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0514</td>
<td>hypothetical protein</td>
<td>-0.01</td>
<td>0.96</td>
<td>-0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1942</td>
<td>unknown protein</td>
<td>0.22</td>
<td>1.08</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1939</td>
<td>unknown protein</td>
<td>-0.13</td>
<td>1.22</td>
<td>-0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0991</td>
<td>unknown protein</td>
<td>0.67</td>
<td>1.54</td>
<td>-0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0069</td>
<td>unknown protein</td>
<td>0.11</td>
<td>0.82</td>
<td>-0.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>slr0723</td>
<td>unknown protein</td>
<td>0.31 1.82 -0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>sll1363</td>
<td>ilvC</td>
<td>-1.11 -1.03 0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>srr0917</td>
<td>bioF 7-keto-8-aminopelargonic acid synthetase</td>
<td>-0.40 -0.13 1.81</td>
<td></td>
<td></td>
<td></td>
<td>1,2ab,4,5a, 6,8b,11b,13</td>
</tr>
<tr>
<td>4</td>
<td>sll0170</td>
<td>dnaK Dnak protein</td>
<td>0.12 0.13 0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr1622</td>
<td>ppa soluble inorganic pyrophosphatase</td>
<td>-0.74 -1.56 1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1525</td>
<td>prk phosphoribulokinase</td>
<td>0.04 -0.49 1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1387</td>
<td>pppA serine/threonine protein phosphatase PppA</td>
<td>-2.32 0.15 1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll0789</td>
<td>two-component response regulator OmpR subfamily</td>
<td>-0.62 0.25 1.17</td>
<td>2ab,5a,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1334</td>
<td>two-component sensor histidine kinase</td>
<td>0.40 -0.02 2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0915</td>
<td>putative endonuclease</td>
<td>-0.86 -1.07 1.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0164</td>
<td>clpP ATP-dependent Clp protease proteolytic subunit</td>
<td>0.12 -0.32 1.70</td>
<td>13,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1247</td>
<td>phosphate-binding periplasmic protein precursor</td>
<td>-0.40 0.19 1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1248</td>
<td>phosphate transport system permease protein PstC hom.</td>
<td>0.24 0.27 1.18</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1249</td>
<td>phosphate transport system permease protein PstA hom.</td>
<td>0.15 -0.01 0.94</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1250</td>
<td>phosphate transport ATP-binding protein PstB hom.</td>
<td>0.04 0.03 1.05</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1870</td>
<td>ATP-binding protein of ABC transp.</td>
<td>-0.51 0.49 2.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0574</td>
<td>prob. Permease prot. of lipopolysaccharide ABC transp.</td>
<td>0.02 0.08 2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0540</td>
<td>P-binding protein PetS hom.</td>
<td>0.33 -0.75 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0378</td>
<td>cobA uroporphyrin-III C-methyltransferase</td>
<td>-0.11 -1.69 1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0799</td>
<td>putative transposase [ISY802_c]</td>
<td>-0.28 0.49 1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0800</td>
<td>putative transposase [ISY802_c]</td>
<td>0.13 0.22 0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0431</td>
<td>putative transposase [ISY100_h]</td>
<td>-0.42 -0.10 1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1682</td>
<td>putative transposase [ISY391_b1]</td>
<td>0.50 0.05 1.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1560</td>
<td>putative transposase [ISY203_c]</td>
<td>-0.33 -0.15 1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1203</td>
<td>hypothetical protein</td>
<td>-1.65 -0.58 1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1191</td>
<td>hypothetical protein</td>
<td>-0.53 -0.47 1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0788</td>
<td>hypothetical protein</td>
<td>-0.42 0.28 1.81</td>
<td>2ab,8b,10,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0651</td>
<td>hypothetical protein</td>
<td>-0.90 0.00 2.01</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1429</td>
<td>hypothetical protein</td>
<td>0.40 0.19 2.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1557</td>
<td>hypothetical protein</td>
<td>0.10 0.10 1.43</td>
<td>11b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1257</td>
<td>unknown protein</td>
<td>-0.94 -1.24 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0914</td>
<td>unknown protein</td>
<td>-1.42 -1.03 1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0479</td>
<td>unknown protein</td>
<td>0.14 0.15 1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1333</td>
<td>unknown protein</td>
<td>-0.36 0.33 1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0402</td>
<td>aspC aspartate aminotransferase</td>
<td>1.07 1.13 -0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0450</td>
<td>probable nitric oxide reductase</td>
<td>1.04 1.05 -0.53</td>
<td>11a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0036</td>
<td>aspC aspartate aminotransferase</td>
<td>1.21 1.79 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr0526</td>
<td>panB 3-methyl-2-oxobutanoate hydroxymethyltransferase</td>
<td>1.64 2.17 0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slr1024</td>
<td>fibrillin</td>
<td>1.95 1.85 -0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slr0191</td>
<td>similar to amidase enhancer</td>
<td>1.55 1.15 -0.42</td>
<td>5a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr1724</td>
<td>probable glycosyltransferase</td>
<td>1.66 0.97 -1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr0416</td>
<td>groEL2 60kD chaperonin 2</td>
<td>1.61 2.53 0.46</td>
<td>2ab,4,5a,6, 8b,10,11ab</td>
<td></td>
<td></td>
<td>13,15</td>
</tr>
<tr>
<td>4</td>
<td>slr1463</td>
<td>ftsH cell division protein FtsH</td>
<td>2.88 1.76 -0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr0041</td>
<td>probable methyl-accepting chemotaxis protein</td>
<td>1.62 1.50 -0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr0533</td>
<td>trigger factor</td>
<td>1.12 1.02 0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr0897</td>
<td>probable endoglucanase</td>
<td>2.28 1.24 -0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr1899</td>
<td>ureF urease accessory protein F</td>
<td>1.15 1.04 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>slr0091</td>
<td>aldehyde dehydrogenase</td>
<td></td>
<td>1.87</td>
<td>2.12</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr1448</td>
<td>fructokinase</td>
<td></td>
<td>1.40</td>
<td>1.29</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>sll1479</td>
<td>6-phosphogluconolactonase</td>
<td></td>
<td>1.57</td>
<td>2.20</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll0522</td>
<td>ndhE</td>
<td>NADH dehydrogenase subunit 4L</td>
<td>1.18</td>
<td>1.25</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll0521</td>
<td>ndhG</td>
<td>NADH dehydrogenase subunit 6</td>
<td>2.68</td>
<td>1.59</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll0520</td>
<td>ndhI</td>
<td>NADH dehydrogenase subunit NdhI</td>
<td>2.96</td>
<td>1.86</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll0519</td>
<td>ndhA</td>
<td>NADH dehydrogenase subunit 1</td>
<td>2.61</td>
<td>1.65</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0342</td>
<td>petB</td>
<td>cytochrome b6</td>
<td>1.56</td>
<td>2.12</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0343</td>
<td>petD</td>
<td>cytochrome b6-f complex subunit 4</td>
<td>1.23</td>
<td>1.51</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0927</td>
<td>psbD2</td>
<td>photosystem II reaction center D2 protein</td>
<td>1.22</td>
<td>1.61</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll1317</td>
<td>petA</td>
<td>apocytochrome f, comp. of cyt. b6/f complex</td>
<td>3.10</td>
<td>2.45</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll1732</td>
<td>ndhD3</td>
<td>NADH dehydrogenase subunit 4</td>
<td>1.56</td>
<td>1.15</td>
<td>0.14</td>
<td>5a, 10, 11a</td>
</tr>
<tr>
<td>8</td>
<td>sll1733</td>
<td>ndhF3</td>
<td>NADH dehydrogenase subunit 5</td>
<td>1.26</td>
<td>1.19</td>
<td>-0.04</td>
<td>10, 11a</td>
</tr>
<tr>
<td>10</td>
<td>sll0094</td>
<td>two-component sensor histidine kinase</td>
<td></td>
<td>1.89</td>
<td>2.12</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0527</td>
<td>transcription regulator ExsB homolog</td>
<td></td>
<td>2.32</td>
<td>2.64</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0533</td>
<td>two-component sensor histidine kinase</td>
<td></td>
<td>2.86</td>
<td>2.04</td>
<td>-1.01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll0865</td>
<td>uvrC</td>
<td>excinuclease ABC subunit C</td>
<td>1.76</td>
<td>1.47</td>
<td>-0.17</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>sll1772</td>
<td>mutS</td>
<td>DNA mismatch repair protein MutS</td>
<td>1.96</td>
<td>0.91</td>
<td>-1.18</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>sll1043</td>
<td>polyribonucleotide nucleotidyltransferase</td>
<td></td>
<td>1.48</td>
<td>1.44</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0927</td>
<td>psbD2</td>
<td>photosystem II reaction center D2 protein</td>
<td>1.22</td>
<td>1.61</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1276</td>
<td>ATP-binding protein of ABC transp.</td>
<td></td>
<td>1.78</td>
<td>1.40</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1751</td>
<td>carboxyl-terminal protease</td>
<td></td>
<td>1.83</td>
<td>2.50</td>
<td>0.59</td>
<td>2a, 11a, 13</td>
</tr>
<tr>
<td>14</td>
<td>sll1276</td>
<td>ATP-binding protein of ABC transp.</td>
<td></td>
<td>1.43</td>
<td>1.26</td>
<td>-0.46</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0507</td>
<td>probable cation transp.</td>
<td></td>
<td>1.74</td>
<td>1.73</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>sll1723</td>
<td>probable glycosyltransferase</td>
<td></td>
<td>2.56</td>
<td>1.64</td>
<td>-1.53</td>
<td>2a</td>
</tr>
<tr>
<td>15</td>
<td>sll0506</td>
<td>undecaprenyl pyrophosphate synthetase</td>
<td></td>
<td>1.24</td>
<td>1.51</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>sll0034</td>
<td>putative carboxypeptidase</td>
<td></td>
<td>1.79</td>
<td>1.91</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>sll0580</td>
<td>aluminum resistance protein homolog</td>
<td></td>
<td>1.68</td>
<td>1.26</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0192</td>
<td>hypothetical protein</td>
<td></td>
<td>1.10</td>
<td>1.34</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0304</td>
<td>hypothetical protein</td>
<td></td>
<td>1.69</td>
<td>1.72</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0898</td>
<td>hypothetical protein</td>
<td></td>
<td>2.08</td>
<td>1.45</td>
<td>-0.87</td>
<td>11b</td>
</tr>
<tr>
<td>16</td>
<td>sll0051</td>
<td>hypothetical protein</td>
<td></td>
<td>1.15</td>
<td>1.34</td>
<td>0.36</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>slr1464</td>
<td>hypothetical protein</td>
<td></td>
<td>2.40</td>
<td>1.72</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll1770</td>
<td>hypothetical protein</td>
<td></td>
<td>2.09</td>
<td>1.27</td>
<td>-0.40</td>
<td>11ab</td>
</tr>
<tr>
<td>16</td>
<td>slr1449</td>
<td>hypothetical protein</td>
<td></td>
<td>2.88</td>
<td>1.46</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1477</td>
<td>hypothetical protein</td>
<td></td>
<td>1.96</td>
<td>2.30</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0031</td>
<td>hypothetical protein</td>
<td></td>
<td>0.81</td>
<td>0.88</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll1265</td>
<td>unknown protein</td>
<td></td>
<td>1.25</td>
<td>1.47</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1032</td>
<td>unknown protein</td>
<td></td>
<td>2.30</td>
<td>1.12</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll1761</td>
<td>unknown protein</td>
<td></td>
<td>2.05</td>
<td>1.40</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0581</td>
<td>unknown protein</td>
<td></td>
<td>1.39</td>
<td>0.95</td>
<td>0.73</td>
<td>2ab, 6, 13</td>
</tr>
<tr>
<td>1</td>
<td>ssl0707</td>
<td>glnB</td>
<td>nitrogen regulatory protein P-II</td>
<td>1.53</td>
<td>0.48</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr0623</td>
<td>trxA</td>
<td>thioredoxin</td>
<td>1.15</td>
<td>0.21</td>
<td>1.35</td>
<td>11b</td>
</tr>
<tr>
<td>3</td>
<td>sll0657</td>
<td>desD</td>
<td>delta-6 desaturase</td>
<td>1.75</td>
<td>0.55</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>sll0262</td>
<td>desD</td>
<td>delta-6 desaturase</td>
<td>1.19</td>
<td>0.42</td>
<td>1.12</td>
<td>2a</td>
</tr>
<tr>
<td>10</td>
<td>slr1305</td>
<td>Two-component response regulator</td>
<td></td>
<td>2.43</td>
<td>-0.33</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr0322</td>
<td>Two-component hybrid sensor and regulator</td>
<td></td>
<td>1.07</td>
<td>0.63</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0469</td>
<td>rps4</td>
<td>30S ribosomal protein S4</td>
<td>1.22</td>
<td>0.28</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>slr0765</td>
<td>hypothetical protein</td>
<td>1.60</td>
<td>0.11</td>
<td>1.33</td>
<td></td>
<td>3b</td>
</tr>
<tr>
<td>16</td>
<td>slr0499</td>
<td>hypothetical protein</td>
<td>1.78</td>
<td>0.26</td>
<td>2.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr0633</td>
<td>thig</td>
<td>thiamine biosynthesis protein ThiG</td>
<td>0.52</td>
<td>2.44</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr1070</td>
<td>transketolase</td>
<td>0.19</td>
<td>2.52</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1427</td>
<td>protease</td>
<td>-0.36</td>
<td>3.50</td>
<td>2.98</td>
<td></td>
<td>11ab</td>
</tr>
<tr>
<td>13</td>
<td>slr1331</td>
<td>processing protease</td>
<td>-0.42</td>
<td>2.09</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1920</td>
<td>pacS</td>
<td>copper transporting CPx-type ATPase PacS</td>
<td>-0.57</td>
<td>1.42</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0794</td>
<td>Cation efflux system protein</td>
<td>0.52</td>
<td>2.13</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1740</td>
<td>oligopeptide-binding protein of ABC transp.</td>
<td>-0.67</td>
<td>1.96</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1331</td>
<td>processing protease</td>
<td>-0.42</td>
<td>2.09</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1070</td>
<td>transketolase</td>
<td>0.19</td>
<td>2.52</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1427</td>
<td>protease</td>
<td>-0.36</td>
<td>3.50</td>
<td>2.98</td>
<td></td>
<td>11ab</td>
</tr>
<tr>
<td>14</td>
<td>slr1331</td>
<td>processing protease</td>
<td>-0.42</td>
<td>2.09</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1070</td>
<td>transketolase</td>
<td>0.19</td>
<td>2.52</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1427</td>
<td>protease</td>
<td>-0.36</td>
<td>3.50</td>
<td>2.98</td>
<td></td>
<td>11ab</td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>slr0081</td>
<td>two-component response regulator OmpR subfamily</td>
<td>2.53 2.78 2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll0474</td>
<td>two-component hybrid sensor and regulator</td>
<td>2.73 2.51 2.53 3a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll0594</td>
<td>transcripional regulatory protein</td>
<td>1.83 2.09 1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1005</td>
<td>MazG protein hom.</td>
<td>1.56 2.48 2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>sll1266</td>
<td>transcripional regulator</td>
<td>1.38 1.80 1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll0835</td>
<td>MoxR protein homolog</td>
<td>1.32 2.12 2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>sll1543</td>
<td>DNA-damage-inducible protein F</td>
<td>2.33 1.51 1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0417</td>
<td>gyrA DNA gyrase A subunit</td>
<td>1.98 1.65 1.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sll1426</td>
<td>recR recombination protein RecR</td>
<td>1.88 1.41 1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>sll0184</td>
<td>sigC group 2 RNA polymerase sigma factor SigC</td>
<td>1.23 1.10 0.86 11ab, 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1746</td>
<td>rpl12 50S ribosomal protein L12</td>
<td>0.95 1.04 0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1745</td>
<td>rpl10 50S ribosomal protein L10</td>
<td>2.25 1.39 2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1744</td>
<td>rpl1 50S ribosomal protein L1</td>
<td>2.23 1.97 2.36 10 11b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1743</td>
<td>rpl11 50S ribosomal protein L11</td>
<td>1.50 1.77 2.02 5b 11b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1362</td>
<td>ileS isoleucyl-tRNA synthetase</td>
<td>1.63 1.03 1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1362</td>
<td>rpl4 50S ribosomal protein L4</td>
<td>2.11 2.16 2.50 5b,7,8ab,10 11b,13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1749</td>
<td>rpl3 50S ribosomal protein L3</td>
<td>1.93 1.82 1.53 2a,7,8a,10 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0982</td>
<td>prob. polysaccharide ABC transp. ATP binding subunit</td>
<td>1.87 2.30 1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>sll0680</td>
<td>pnp phosphate-binding periplasmic protein precursor</td>
<td>0.81 1.11 0.87 5a,10,14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1076</td>
<td>cation-transporting ATPase PaeC hom.</td>
<td>1.84 2.26 1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1452</td>
<td>nrtC nitrate/nitrite transport system ATP-binding protein</td>
<td>1.72 1.14 0.93 13, 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1453</td>
<td>nrtD nitrate/nitrite transport system ATP-binding protein</td>
<td>1.12 1.05 1.23 13, 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0664</td>
<td>binding protein of ABC transp. component</td>
<td>2.07 3.53 1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0661</td>
<td>phosphate transport system permease protein PstC hom.</td>
<td>1.92 2.14 1.72 5a, 10, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0662</td>
<td>phosphate transport system permease protein PstA hom.</td>
<td>1.07 2.17 1.43 5a, 10, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0663</td>
<td>phosphate transport ATP-binding protein PstB hom.</td>
<td>1.73 2.17 1.94 10, 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0684</td>
<td>phosphate transport ATP-binding protein PstB hom.</td>
<td>1.50 1.99 1.65 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0679</td>
<td>periplasmic phosphate-phosphate-binding protein of ABC transp.</td>
<td>1.16 1.27 1.23 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0415</td>
<td>nhaS5 Na(+)/H(+) antiporter</td>
<td>1.16 1.34 0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0374</td>
<td>prob. branched chain ABC transp. ATP-binding protein</td>
<td>2.50 2.18 2.20 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ssr1789</td>
<td>hldH CAB/ELIP/HLIP-related protein HldH</td>
<td>4.06 2.54 1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1208</td>
<td>probable oxidoreductase</td>
<td>2.02 1.99 1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1297</td>
<td>probable dioxygenase, Rieske iron-sulfur component</td>
<td>2.64 2.19 1.24 11b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2053</td>
<td>putative hydrolase</td>
<td>2.27 2.67 1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2010</td>
<td>heterodisulfide reductase subunit B</td>
<td>1.12 1.31 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2113</td>
<td>putative transposase [ISY100_c]</td>
<td>1.46 2.01 2.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0816</td>
<td>probable oxidoreductase</td>
<td>2.91 2.42 1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1303</td>
<td>hypothetical protein</td>
<td>1.89 1.21 2.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1934</td>
<td>hypothetical protein</td>
<td>2.15 2.20 1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1911</td>
<td>hypothetical protein</td>
<td>1.99 1.75 1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1394</td>
<td>hypothetical protein</td>
<td>1.80 1.50 1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A (continued). List of up-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>ssr1425</td>
<td>ycf34</td>
<td>hypothetical protein YCF34</td>
<td>1.67</td>
<td>2.07</td>
<td>1.58</td>
<td>11b</td>
</tr>
<tr>
<td>16</td>
<td>slr1566</td>
<td>hypothetical protein</td>
<td>1.87</td>
<td>0.81</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll1500</td>
<td>hypothetical protein</td>
<td>2.01</td>
<td>1.49</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1925</td>
<td>hypothetical protein</td>
<td>1.82</td>
<td>0.80</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0882</td>
<td>ycf84</td>
<td>hypothetical protein YCF84</td>
<td>3.34</td>
<td>1.30</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0871</td>
<td>hypothetical protein</td>
<td>2.16</td>
<td>1.81</td>
<td>1.89</td>
<td>3a</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0643</td>
<td>hypothetical protein</td>
<td>2.20</td>
<td>2.61</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0606</td>
<td>hypothetical protein</td>
<td>2.04</td>
<td>2.80</td>
<td>2.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0372</td>
<td>hypothetical protein</td>
<td>1.38</td>
<td>1.73</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0185</td>
<td>hypothetical protein</td>
<td>1.13</td>
<td>1.60</td>
<td>1.48</td>
<td>2b,8b,10,11ab</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0199</td>
<td>hypothetical protein</td>
<td>1.18</td>
<td>0.76</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0544</td>
<td>hypothetical protein</td>
<td>1.71</td>
<td>1.64</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0082</td>
<td>hypothetical protein</td>
<td>2.36</td>
<td>2.82</td>
<td>1.88</td>
<td>1,7,8a</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0092</td>
<td>hypothetical protein</td>
<td>2.24</td>
<td>2.39</td>
<td>2.06</td>
<td>8b,10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0103</td>
<td>hypothetical protein</td>
<td>2.04</td>
<td>2.28</td>
<td>2.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0095</td>
<td>hypothetical protein</td>
<td>2.42</td>
<td>2.44</td>
<td>2.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll1254</td>
<td>hypothetical protein</td>
<td>2.15</td>
<td>1.43</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0303</td>
<td>hypothetical protein</td>
<td>2.30</td>
<td>1.94</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>sll0047</td>
<td>ycf12</td>
<td>hypothetical protein YCF12</td>
<td>1.52</td>
<td>2.17</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1998</td>
<td>hypothetical protein</td>
<td>2.38</td>
<td>1.42</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1184</td>
<td>hypothetical protein</td>
<td>1.99</td>
<td>3.13</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0104</td>
<td>hypothetical protein</td>
<td>1.24</td>
<td>1.34</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr2037</td>
<td>unknown protein</td>
<td>1.76</td>
<td>1.88</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0416</td>
<td>unknown protein</td>
<td>1.70</td>
<td>1.70</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1891</td>
<td>unknown protein</td>
<td>2.72</td>
<td>2.37</td>
<td>1.54</td>
<td>11b</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll0473</td>
<td>unknown protein</td>
<td>2.29</td>
<td>2.31</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll0595</td>
<td>unknown protein</td>
<td>2.41</td>
<td>2.04</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll0048</td>
<td>unknown protein</td>
<td>2.34</td>
<td>2.95</td>
<td>2.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll1338</td>
<td>unknown protein</td>
<td>2.74</td>
<td>1.82</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll1784</td>
<td>unknown protein</td>
<td>2.39</td>
<td>2.00</td>
<td>2.02</td>
<td>2ab,7,10,11ab</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1837</td>
<td>unknown protein</td>
<td>1.89</td>
<td>1.82</td>
<td>2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1023</td>
<td>unknown protein</td>
<td>1.71</td>
<td>2.00</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sll1785</td>
<td>unknown protein</td>
<td>3.25</td>
<td>2.46</td>
<td>1.68</td>
<td>2ab,7</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B. List of down-regulated ORFs.
Numbers represent the log ratio of gene expression, which is defined as $2^{\log(I_{\text{treatment}}/I_{\text{control}})}$. Up-regulations are highlighted in dark gray, and down-regulations in light gray. The column ‘Category’ is the functional category number assigned as in Table 3. Columns ‘S’, ‘N’, and ‘P’ represent ‘salt stress’, ‘nitrogen starvation’, and ‘phosphorus starvation’, respectively. The column ‘other studies’ indicates regulation of the corresponding ORF in other *Synechocystis* microarray studies; reference list is as in Table 2.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene Description</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>slr0963</td>
<td>sir ferredoxin-sulfite reductase</td>
<td>-2.48</td>
<td>-0.27</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr0268</td>
<td>glmN glutamate-ammonia ligase</td>
<td>-1.28</td>
<td>0.16</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>slr1979</td>
<td>tpE anthranilate synthase component I</td>
<td>-1.92</td>
<td>-0.65</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>sll1165</td>
<td>hemF coproporphyrinogen III oxidase</td>
<td>-1.48</td>
<td>-0.14</td>
<td>0.02</td>
<td>7,11ab,13</td>
</tr>
<tr>
<td>3</td>
<td>slr1227</td>
<td>chloroplastic outer envelope membr protein homolog</td>
<td>-2.42</td>
<td>0.29</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slr1744</td>
<td>N-acetylmuramoyl-L-alanine amidase</td>
<td>-2.52</td>
<td>0.00</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sll1814</td>
<td>secY preprotein translocase SecY subunit</td>
<td>-1.85</td>
<td>-0.15</td>
<td>-0.16</td>
<td>11a</td>
</tr>
<tr>
<td>4</td>
<td>slr1747</td>
<td>cell death suppressor protein Lis1 homolog</td>
<td>-1.25</td>
<td>0.28</td>
<td>-0.08</td>
<td>11ab</td>
</tr>
<tr>
<td>4</td>
<td>slr1267</td>
<td>ftsW cell division protein FtsW</td>
<td>-2.15</td>
<td>-0.39</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>sll0158</td>
<td>glnA 1,4-alpha-glucan branching enzyme</td>
<td>-1.97</td>
<td>-0.51</td>
<td>-0.71</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>sll1185</td>
<td>hemF coproporphyrinogen III oxidase</td>
<td>-1.48</td>
<td>-0.14</td>
<td>0.02</td>
<td>7,11ab,13</td>
</tr>
<tr>
<td>6</td>
<td>sll1077</td>
<td>agmatinase</td>
<td>-2.36</td>
<td>-0.43</td>
<td>-0.54</td>
<td>11ab,13</td>
</tr>
<tr>
<td>6</td>
<td>sll1709</td>
<td>3-ketoacyl-acyl carrier protein reductase</td>
<td>-1.16</td>
<td>0.11</td>
<td>-0.32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr1734</td>
<td>opcA putative OxyPPCycle protein OpnA</td>
<td>-2.29</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0261</td>
<td>ndhH NADH dehydrogenase subunit 7</td>
<td>-1.18</td>
<td>-0.43</td>
<td>-0.72</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1292</td>
<td>atpB ATP synthase beta subunit</td>
<td>-1.30</td>
<td>0.19</td>
<td>0.40</td>
<td>11a,13</td>
</tr>
<tr>
<td>8</td>
<td>slr1280</td>
<td>ndhK NADH dehydrogenase subunit NdhK</td>
<td>-2.28</td>
<td>0.03</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0427</td>
<td>pabO photosystem II manganese-stabilizing polypeptide</td>
<td>-0.96</td>
<td>-0.06</td>
<td>0.07</td>
<td>2ab,11ab,15</td>
</tr>
<tr>
<td>8</td>
<td>slr0771</td>
<td>ycf37 photosystem I assembly related protein Ycf37</td>
<td>-1.91</td>
<td>-0.10</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1471</td>
<td>opcG2 phycobilisome rod-core linker polypeptide</td>
<td>-1.06</td>
<td>0.12</td>
<td>-0.11</td>
<td>13,15</td>
</tr>
<tr>
<td>8</td>
<td>slr0335</td>
<td>apcE phycobilisome core-membrane linker polypeptide</td>
<td>-1.43</td>
<td>-0.09</td>
<td>-0.44</td>
<td>2ab,7,10, 11ab,15</td>
</tr>
<tr>
<td>8</td>
<td>slr1138</td>
<td>ctaE cytochrome c oxidase subunit III</td>
<td>-1.11</td>
<td>0.80</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr1226</td>
<td>purC phosphoribosyl amidonucleotide succinocarboxamide</td>
<td>-1.85</td>
<td>0.18</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr1815</td>
<td>adenylate kinase</td>
<td>-1.88</td>
<td>0.01</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr1631</td>
<td>putative cytidine and deoxycytidylate deaminase</td>
<td>-1.55</td>
<td>0.86</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr0838</td>
<td>pyrF orotidine 5’ monophosphate decarboxylase</td>
<td>-1.10</td>
<td>0.25</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr0213</td>
<td>guaA GMP synthetase</td>
<td>-1.04</td>
<td>-0.24</td>
<td>-0.02</td>
<td>2a</td>
</tr>
<tr>
<td>10</td>
<td>slr1708</td>
<td>two-component response regulator NarL subfamily</td>
<td>-2.40</td>
<td>1.11</td>
<td>-0.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1325</td>
<td>GTP pyrophosphokinase</td>
<td>-1.99</td>
<td>0.09</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1228</td>
<td>two-component hybrid sensor and regulator</td>
<td>-3.20</td>
<td>-0.43</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1225</td>
<td>serine/threonine kinase</td>
<td>-2.64</td>
<td>1.21</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1969</td>
<td>two-component sensor histidine kinase</td>
<td>-2.33</td>
<td>-0.52</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1888</td>
<td>two-component sensor histidine kinase</td>
<td>-3.01</td>
<td>-0.65</td>
<td>-0.66</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1387</td>
<td>serine/threonine protein phosphatase PppA</td>
<td>-2.32</td>
<td>0.15</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1803</td>
<td>adenine-specific DNA methylase</td>
<td>-1.43</td>
<td>0.44</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1822</td>
<td>endonuclease III</td>
<td>-1.59</td>
<td>0.37</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1165</td>
<td>DNA mismatch repair protein</td>
<td>-1.59</td>
<td>-0.92</td>
<td>-0.26</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>slr1265</td>
<td>rpoC1 RNA polymerase gamma-subunit</td>
<td>-1.58</td>
<td>-0.59</td>
<td>-0.66</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1818</td>
<td>rpoA RNA polymerase alpha subunit</td>
<td>-1.55</td>
<td>-0.21</td>
<td>-0.21</td>
<td>5b,7,11a,15</td>
</tr>
<tr>
<td>12</td>
<td>slr1789</td>
<td>rpoC2 RNA polymerase beta prime subunit</td>
<td>-1.75</td>
<td>0.21</td>
<td>-1.00</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>ssl3445</td>
<td>rpL31</td>
<td>50S ribosomal protein L31</td>
<td>-1.73</td>
<td>-0.17</td>
<td>-0.16</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1822</td>
<td>rps9</td>
<td>30S ribosomal protein S9</td>
<td>-1.51</td>
<td>-0.25</td>
<td>-0.05</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1821</td>
<td>rpL13</td>
<td>50S ribosomal protein L13</td>
<td>-1.52</td>
<td>-0.26</td>
<td>-0.26</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1820</td>
<td>tRNA pseudouridine synthase 1</td>
<td>-1.30</td>
<td>-0.37</td>
<td>-0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1819</td>
<td>rpl17</td>
<td>50S ribosomal protein L17</td>
<td>-1.23</td>
<td>-0.13</td>
<td>-0.24</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1817</td>
<td>rps11</td>
<td>30S ribosomal protein S11</td>
<td>-1.78</td>
<td>0.01</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1816</td>
<td>rps13</td>
<td>30S ribosomal protein S13</td>
<td>-1.70</td>
<td>0.17</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>smi0006</td>
<td>rpL36</td>
<td>ABC transporter ATP binding protein</td>
<td>-1.38</td>
<td>-0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1813</td>
<td>rpl15</td>
<td>50S ribosomal protein L15</td>
<td>-2.19</td>
<td>-0.33</td>
<td>-0.28</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1812</td>
<td>rps5</td>
<td>30S ribosomal protein S5</td>
<td>-2.23</td>
<td>-0.34</td>
<td>-0.27</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>sll1811</td>
<td>rpl18</td>
<td>50S ribosomal protein L18</td>
<td>-1.83</td>
<td>-0.34</td>
<td>-0.26</td>
<td>11a</td>
</tr>
<tr>
<td>13</td>
<td>slr1228</td>
<td>peptide-chain-release factor 3</td>
<td>-3.01</td>
<td>-0.12</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1703</td>
<td>protease IV</td>
<td>-1.79</td>
<td>-0.08</td>
<td>-0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1462</td>
<td>fus</td>
<td>elongation factor EF-G</td>
<td>-1.79</td>
<td>-0.20</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1735</td>
<td>bgIA</td>
<td>ATP-binding subunit of the ABC-type Bgl permease</td>
<td>-2.40</td>
<td>0.41</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0864</td>
<td>ATP-binding protein of ABC transporter</td>
<td>-3.01</td>
<td>-0.64</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr2057</td>
<td>water channel protein</td>
<td>-2.94</td>
<td>0.04</td>
<td>-0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0240</td>
<td>ABC transporter ATP-binding protein</td>
<td>-2.80</td>
<td>0.53</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr0817</td>
<td>salicylate biosynthesis isochorismate synthase</td>
<td>-1.38</td>
<td>-0.27</td>
<td>-0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1374</td>
<td>probable sugar transporter</td>
<td>-3.22</td>
<td>-0.27</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0912</td>
<td>ABC transporter ATP binding protein</td>
<td>-1.32</td>
<td>0.42</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1864</td>
<td>probable chloride channel protein</td>
<td>-1.73</td>
<td>-0.28</td>
<td>-0.08</td>
<td>2a,12,13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0074</td>
<td>ycf24</td>
<td>ABC transporter subunit</td>
<td>-1.48</td>
<td>-0.22</td>
<td>-0.20</td>
<td>11b,12,13,15</td>
</tr>
<tr>
<td>15</td>
<td>slr0075</td>
<td>ycf16</td>
<td>ABC transporter ATP-binding protein</td>
<td>-1.49</td>
<td>0.06</td>
<td>0.13</td>
<td>10,12,13</td>
</tr>
<tr>
<td>15</td>
<td>slr0672</td>
<td>cation-transporting ATPase PacL homolog</td>
<td>-1.65</td>
<td>0.08</td>
<td>-0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1575</td>
<td>probable potassium efflux system</td>
<td>-1.74</td>
<td>-0.03</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2107</td>
<td>probable polysaccharide ABC transp permease protein</td>
<td>-1.49</td>
<td>-0.35</td>
<td>-0.85</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr2108</td>
<td>prob polysaccharide ABC transp ATP bind subunit</td>
<td>-2.33</td>
<td>-0.57</td>
<td>-0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1575</td>
<td>similar to menaquinone biosynth methyltransferase</td>
<td>-1.86</td>
<td>0.22</td>
<td>-0.83</td>
<td>1,3ab,4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1079</td>
<td>hypB</td>
<td>hydrogenase expression/formation protein HypB</td>
<td>-2.22</td>
<td>-0.78</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1078</td>
<td>hypA</td>
<td>hydrogenase expression/formation protein HypA</td>
<td>-2.45</td>
<td>-0.46</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1710</td>
<td>putative transposase [SYS525_5]</td>
<td>-2.18</td>
<td>0.22</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1704</td>
<td>putative short chain dehydrogenase</td>
<td>-2.00</td>
<td>0.41</td>
<td>-0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1369</td>
<td>putative peptidase</td>
<td>-2.55</td>
<td>0.20</td>
<td>-0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0322</td>
<td>hypF</td>
<td>hydrogenase maturation protein HypF</td>
<td>-1.54</td>
<td>-0.13</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0230</td>
<td>putative transposase [SYS100_f]</td>
<td>-1.31</td>
<td>-0.35</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0626</td>
<td>putative neutral invertase</td>
<td>-1.55</td>
<td>-0.20</td>
<td>-0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1501</td>
<td>probable acetyltransferase</td>
<td>-1.49</td>
<td>0.09</td>
<td>0.25</td>
<td>4,6,8b</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1736</td>
<td>homogentisate phytyltransferase</td>
<td>-3.66</td>
<td>0.21</td>
<td>-0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1399</td>
<td>hypothetical protein</td>
<td>-1.17</td>
<td>-0.11</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1203</td>
<td>hypothetical protein</td>
<td>-1.65</td>
<td>-0.58</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1659</td>
<td>hypothetical protein</td>
<td>-2.79</td>
<td>-0.07</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1658</td>
<td>hypothetical protein</td>
<td>-2.73</td>
<td>-0.17</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1652</td>
<td>hypothetical protein</td>
<td>-2.31</td>
<td>0.46</td>
<td>0.15</td>
<td>1,3a,4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1186</td>
<td>hypothetical protein</td>
<td>-1.38</td>
<td>-0.21</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1220</td>
<td>hypothetical protein</td>
<td>-2.07</td>
<td>0.20</td>
<td>-0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1138</td>
<td>hypothetical protein</td>
<td>-1.84</td>
<td>0.13</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>sll1702</td>
<td>ycf51</td>
<td>hypothetical protein YCF51</td>
<td>-1.96</td>
<td>-0.48</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1732</td>
<td>hypothetical protein</td>
<td>-1.46</td>
<td>0.21</td>
<td>-0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1737</td>
<td>hypothetical protein</td>
<td>-2.32</td>
<td>-0.35</td>
<td>0.22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0865</td>
<td>hypothetical protein</td>
<td>-3.36</td>
<td>-0.46</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0839</td>
<td>hypothetical protein</td>
<td>-1.23</td>
<td>-0.18</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1897</td>
<td>hypothetical protein</td>
<td>-2.18</td>
<td>-0.66</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1978</td>
<td>hypothetical protein</td>
<td>-1.84</td>
<td>0.11</td>
<td>-0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1278</td>
<td>hypothetical protein YCF62</td>
<td>-2.79</td>
<td>-0.16</td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1687</td>
<td>hypothetical protein</td>
<td>-1.68</td>
<td>-0.07</td>
<td>0.17</td>
<td>1,2ab,3ab,4, 8ab,11a,13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0337</td>
<td>hypothetical protein</td>
<td>-2.44</td>
<td>-0.09</td>
<td>-0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0169</td>
<td>hypothetical protein</td>
<td>-1.22</td>
<td>0.01</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0412</td>
<td>hypothetical protein</td>
<td>-1.47</td>
<td>-0.45</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0049</td>
<td>hypothetical protein</td>
<td>-0.94</td>
<td>0.36</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0549</td>
<td>hypothetical protein</td>
<td>-1.96</td>
<td>-0.24</td>
<td>-0.37</td>
<td>8b,11a,13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ssr2047</td>
<td>hypothetical protein</td>
<td>-1.65</td>
<td>0.10</td>
<td>-0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1471</td>
<td>hypothetical protein</td>
<td>-3.24</td>
<td>0.44</td>
<td>-1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1697</td>
<td>hypothetical protein</td>
<td>-2.98</td>
<td>-0.17</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1807</td>
<td>hypothetical protein</td>
<td>-1.84</td>
<td>-0.01</td>
<td>-0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0157</td>
<td>hypothetical protein</td>
<td>-1.21</td>
<td>0.15</td>
<td>-0.27</td>
<td>11b</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0362</td>
<td>hypothetical protein</td>
<td>-1.21</td>
<td>0.28</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0380</td>
<td>hypothetical protein</td>
<td>-1.02</td>
<td>0.07</td>
<td>-0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0740</td>
<td>hypothetical protein</td>
<td>-2.48</td>
<td>-0.24</td>
<td>-0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1807</td>
<td>hypothetical protein</td>
<td>-1.84</td>
<td>-0.01</td>
<td>-0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1114</td>
<td>hypothetical protein</td>
<td>-2.51</td>
<td>-0.66</td>
<td>-0.19</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1222</td>
<td>unknown protein</td>
<td>-2.42</td>
<td>0.27</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1267</td>
<td>unknown protein</td>
<td>-0.96</td>
<td>-0.32</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0667</td>
<td>unknown protein</td>
<td>-2.90</td>
<td>0.33</td>
<td>-0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0262</td>
<td>unknown protein</td>
<td>-1.21</td>
<td>-0.84</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0241</td>
<td>unknown protein</td>
<td>-2.28</td>
<td>0.11</td>
<td>-0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1528</td>
<td>unknown protein</td>
<td>-1.10</td>
<td>-0.13</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1865</td>
<td>unknown protein</td>
<td>-2.01</td>
<td>-0.86</td>
<td>-0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1243</td>
<td>unknown protein</td>
<td>-2.70</td>
<td>-0.55</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0377</td>
<td>unknown protein</td>
<td>-1.12</td>
<td>0.13</td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1135</td>
<td>unknown protein</td>
<td>-2.92</td>
<td>-0.64</td>
<td>-1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sll1212</td>
<td>GDP-D-mannose dehydratase</td>
<td>-0.74</td>
<td>-1.07</td>
<td>-0.25</td>
<td>13,15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr1325</td>
<td>atpD</td>
<td>ATP synthase d subunit</td>
<td>0.56</td>
<td>-1.40</td>
<td>-0.27</td>
<td>11b,13,15</td>
</tr>
<tr>
<td>4</td>
<td>slr1028</td>
<td>ccmK</td>
<td>carbon dioxide concentr. mechanism protein CcmK</td>
<td>-0.37</td>
<td>-1.43</td>
<td>0.39</td>
<td>11a,11b,15</td>
</tr>
<tr>
<td>4</td>
<td>slr1298</td>
<td>putative carboxymethylenebutenolidase</td>
<td>-0.46</td>
<td>-1.42</td>
<td>0.34</td>
<td>11b</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr1688</td>
<td>threonine synthase</td>
<td>-0.83</td>
<td>-1.35</td>
<td>-0.21</td>
<td>11b</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr1982</td>
<td>putative transposase [ISY352_c2]</td>
<td>0.04</td>
<td>-1.30</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>slr1622</td>
<td>ppa</td>
<td>soluble inorganic pyrophosphatase</td>
<td>-0.84</td>
<td>-1.56</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr1983</td>
<td>putative transposase [ISY100_n]</td>
<td>-0.62</td>
<td>-1.01</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1056</td>
<td>purL</td>
<td>phosphoribosylformylglycinamidine synthetase II</td>
<td>0.57</td>
<td>-1.26</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0698</td>
<td>dfr</td>
<td>drug sensory protein A</td>
<td>0.09</td>
<td>-1.06</td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1327</td>
<td>atpC</td>
<td>ATP synthase g subunit</td>
<td>0.12</td>
<td>-1.43</td>
<td>0.12</td>
<td>11b</td>
</tr>
<tr>
<td>8</td>
<td>ssl2615</td>
<td>atpH</td>
<td>ATP synthase subunit c</td>
<td>0.01</td>
<td>-1.50</td>
<td>-0.52</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>slr1322</td>
<td>atpI</td>
<td>ATP synthase subunit a</td>
<td>-1.03</td>
<td>-1.36</td>
<td>-0.83</td>
<td>11b,15</td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>slr1075</td>
<td>putative transposase [ISY100_b]</td>
<td>-0.22</td>
<td>-1.03</td>
<td>0.71</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1604</td>
<td>cell division protein FtsH</td>
<td>0.40</td>
<td>-1.34</td>
<td>-0.30</td>
<td>2a,10,11,13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>smr0004</td>
<td>psal</td>
<td>photosystem I subunit VIII</td>
<td>0.06</td>
<td>-1.32</td>
<td>-0.60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1254</td>
<td>pds</td>
<td>phytolene dehydrogenase (phytolene desaturase)</td>
<td>-0.24</td>
<td>-0.88</td>
<td>-0.07</td>
<td>11ab</td>
</tr>
<tr>
<td>8</td>
<td>slr0500</td>
<td>hisB</td>
<td>imidazoleglycerol-phosphate dehydratase</td>
<td>-0.03</td>
<td>-1.38</td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr0118</td>
<td>thNC</td>
<td>thiamine biosynthesis protein ThNC</td>
<td>-0.07</td>
<td>-1.39</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1380</td>
<td>cydB</td>
<td>cytochrome oxidase d subunit II</td>
<td>0.10</td>
<td>-1.69</td>
<td>-0.76</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr2063</td>
<td>ctaEI</td>
<td>cytochrome c oxidase subunit III</td>
<td>-0.81</td>
<td>-1.92</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr1965</td>
<td>putative transposase [ISY352_c1]</td>
<td>-0.74</td>
<td>-2.26</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr0103</td>
<td>probable protein phosphatase</td>
<td>0.20</td>
<td>-1.70</td>
<td>-0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>slr0915</td>
<td>putative endonuclease</td>
<td>-0.76</td>
<td>-1.07</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>slr1323</td>
<td>atpG</td>
<td>ATP synthase subunit b'</td>
<td>0.23</td>
<td>-1.34</td>
<td>-0.22</td>
<td>11b,13,15</td>
</tr>
<tr>
<td>11</td>
<td>slr1655</td>
<td>psaL</td>
<td>photosystem I subunit XI</td>
<td>0.82</td>
<td>-1.17</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1326</td>
<td>atpA</td>
<td>ATP synthase a subunit</td>
<td>0.00</td>
<td>-1.24</td>
<td>-0.83</td>
<td>11b,13,15</td>
</tr>
<tr>
<td>11</td>
<td>slr1030</td>
<td>ccmL</td>
<td>carbon dioxide concentr. mechanism protein CcmL</td>
<td>-0.50</td>
<td>-1.13</td>
<td>0.01</td>
<td>11a</td>
</tr>
<tr>
<td>11</td>
<td>slr1907</td>
<td>putative transposase [ISY100_n]</td>
<td>-0.64</td>
<td>-1.61</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0759</td>
<td>ABC transporter ATP-binding protein</td>
<td>-0.28</td>
<td>-1.57</td>
<td>-0.19</td>
<td>11ab</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1407</td>
<td>probable methyltransferase</td>
<td>-0.49</td>
<td>-1.18</td>
<td>-0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1676</td>
<td>4-alpha-glucanotransferase</td>
<td>-0.55</td>
<td>-1.49</td>
<td>-0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0378</td>
<td>cobA</td>
<td>uroporphyrin-III C-methyltransferase</td>
<td>-0.11</td>
<td>-1.69</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0377</td>
<td>transcription-repair coupling factor</td>
<td>-0.26</td>
<td>-1.05</td>
<td>-0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1767</td>
<td>thiamine-monophosphate kinase</td>
<td>-0.56</td>
<td>-1.75</td>
<td>-0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0272</td>
<td>unknown protein</td>
<td>-0.81</td>
<td>-1.18</td>
<td>-0.02</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0072</td>
<td>hypothetical protein</td>
<td>0.04</td>
<td>-1.35</td>
<td>-0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0590</td>
<td>unknown protein</td>
<td>0.04</td>
<td>-1.66</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0316</td>
<td>hypothetical protein</td>
<td>-0.75</td>
<td>-1.43</td>
<td>-0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0031</td>
<td>hypothetical protein</td>
<td>0.25</td>
<td>-1.25</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0659</td>
<td>hypothetical protein</td>
<td>-0.27</td>
<td>-1.83</td>
<td>-0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0625</td>
<td>hypothetical protein</td>
<td>-0.77</td>
<td>-1.17</td>
<td>-0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0729</td>
<td>hypothetical protein</td>
<td>-0.33</td>
<td>-1.10</td>
<td>-0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0729</td>
<td>hypothetical protein</td>
<td>-0.72</td>
<td>-1.35</td>
<td>-0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0635</td>
<td>hypothetical protein</td>
<td>-0.11</td>
<td>-1.22</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0436</td>
<td>hypothetical protein</td>
<td>-0.05</td>
<td>-1.04</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1151</td>
<td>unknown protein</td>
<td>0.15</td>
<td>-1.20</td>
<td>-0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1484</td>
<td>unknown protein</td>
<td>0.82</td>
<td>-1.46</td>
<td>-0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr0100</td>
<td>N-acyl-L-amino acid amidohydrolase</td>
<td>0.35</td>
<td>0.33</td>
<td>-2.20</td>
<td>8b</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1093</td>
<td>2-amino-4-OH-6-hydroxymethyl dihydropteridine pk</td>
<td>0.36</td>
<td>-0.38</td>
<td>-1.23</td>
<td>5b</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1907</td>
<td>probable porin; major outer membrane protein</td>
<td>1.70</td>
<td>0.13</td>
<td>-1.16</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1724</td>
<td>probable glycosyltransferase</td>
<td>1.66</td>
<td>0.97</td>
<td>-1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr0716</td>
<td>signal peptidase I</td>
<td>0.82</td>
<td>-0.43</td>
<td>-1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr0244</td>
<td>UDP-glucose 4-epimerase</td>
<td>-0.76</td>
<td>-0.88</td>
<td>-1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr0226</td>
<td>ycfN</td>
<td>photosystem I assembly related protein</td>
<td>-0.84</td>
<td>-0.84</td>
<td>-1.24</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1838</td>
<td>ccmK</td>
<td>carbon dioxide concentr. mechanism protein CcmK</td>
<td>0.05</td>
<td>-0.20</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr1839</td>
<td>ccmK</td>
<td>carbon dioxide concentr. mechanism protein CcmK</td>
<td>-0.42</td>
<td>-0.35</td>
<td>-1.51</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1871</td>
<td>transcriptional regulator</td>
<td>1.37</td>
<td>-0.16</td>
<td>-1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0451</td>
<td>putative helicase</td>
<td>0.97</td>
<td>0.04</td>
<td>-1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1772</td>
<td>mutS</td>
<td>DNA mismatch repair protein MutS</td>
<td>1.96</td>
<td>0.91</td>
<td>-1.18</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1592</td>
<td>probable pseudouridine synthase</td>
<td>0.84</td>
<td>0.16</td>
<td>-2.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>sll1967</td>
<td>probable RNA methyltransferase</td>
<td></td>
<td>1.56</td>
<td>0.17</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0535</td>
<td>Protease</td>
<td></td>
<td>1.75</td>
<td>-0.21</td>
<td>-1.53</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1595</td>
<td>Na+/H+ antiporter</td>
<td></td>
<td>-0.32</td>
<td>-0.85</td>
<td>-1.42</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1776</td>
<td>high affinity sulfate transp.</td>
<td></td>
<td>0.55</td>
<td>-0.64</td>
<td>-1.05</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0210</td>
<td>bacitracin resistance protein</td>
<td></td>
<td>0.28</td>
<td>-0.62</td>
<td>-1.43</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1723</td>
<td>probable glycosyltransferase</td>
<td></td>
<td>2.56</td>
<td>1.64</td>
<td>-1.53</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1593</td>
<td>hypothetical protein</td>
<td></td>
<td>1.22</td>
<td>-0.02</td>
<td>-2.75</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ssr2708</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.51</td>
<td>-0.52</td>
<td>-1.29</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ssr2711</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.37</td>
<td>-0.77</td>
<td>-1.65</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1900</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.26</td>
<td>-0.28</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1123</td>
<td>hypothetical protein</td>
<td></td>
<td>0.41</td>
<td>-0.10</td>
<td>-1.05</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0016</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.15</td>
<td>-0.38</td>
<td>-1.97</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0195</td>
<td>hypothetical protein</td>
<td></td>
<td>0.30</td>
<td>-0.11</td>
<td>-1.68</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0374</td>
<td>hypothetical protein</td>
<td></td>
<td>0.05</td>
<td>0.21</td>
<td>-1.17</td>
<td>13 10</td>
</tr>
<tr>
<td>16</td>
<td>sll1123</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.11</td>
<td>0.28</td>
<td>-2.08</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1147</td>
<td>hypothetical protein</td>
<td></td>
<td>1.66</td>
<td>0.12</td>
<td>-1.30</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0692</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.25</td>
<td>-0.69</td>
<td>-1.48</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1039</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.58</td>
<td>-0.82</td>
<td>-1.52</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0943</td>
<td>unknown protein</td>
<td></td>
<td>1.13</td>
<td>-0.05</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0656</td>
<td>unknown protein</td>
<td></td>
<td>-0.61</td>
<td>-0.38</td>
<td>-0.94</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>slr1028</td>
<td>unknown protein</td>
<td></td>
<td>1.00</td>
<td>-0.03</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0286</td>
<td>unknown protein</td>
<td></td>
<td>0.56</td>
<td>-0.47</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1363</td>
<td>ilvC</td>
<td>ketol-acid reductoisomerase</td>
<td>-1.11</td>
<td>-1.03</td>
<td>0.86</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>slr1777</td>
<td>chiD</td>
<td>magnesium-chelatase subunit ChlD</td>
<td>-1.18</td>
<td>-1.12</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr1055</td>
<td>chiH</td>
<td>magnesium-protoporphyrin methyltransferase</td>
<td>-1.66</td>
<td>-1.11</td>
<td>0.20</td>
<td>11b</td>
</tr>
<tr>
<td>2</td>
<td>slr1875</td>
<td>heme oxygenase</td>
<td></td>
<td>-1.72</td>
<td>-0.97</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr0600</td>
<td>NAPD-thioredoxin reductase</td>
<td></td>
<td>-2.32</td>
<td>-1.33</td>
<td>0.23</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>slr1271</td>
<td>prob. UDP-N-acetyl-D-mannosaminuronic acid trans.</td>
<td>-2.94</td>
<td>-1.20</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>slr1272</td>
<td>probable porin; major outer membrane protein</td>
<td>-3.09</td>
<td>-2.53</td>
<td>0.80</td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr1274</td>
<td>probable fimbrial assembly protein PilM</td>
<td>-2.45</td>
<td>-1.50</td>
<td>0.25</td>
<td>11b</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>slr0774</td>
<td>protein-export membrane protein SecD</td>
<td>-2.41</td>
<td>-1.60</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>sll1639</td>
<td>ureD</td>
<td>urease accessory protein D</td>
<td>-2.78</td>
<td>-1.35</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>slr0920</td>
<td>phosphoenolpyruvate carboxylase</td>
<td></td>
<td>-1.40</td>
<td>-1.82</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr2082</td>
<td>ctaDII</td>
<td>cytochrome c oxidase subunit I</td>
<td>-0.87</td>
<td>-0.92</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1261</td>
<td>ndhJ</td>
<td>NADH dehydrogenase subunit I</td>
<td>-2.32</td>
<td>-0.85</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>sll0813</td>
<td>ctaC</td>
<td>cytochrome c oxidase subunit II</td>
<td>-1.54</td>
<td>-1.20</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1300</td>
<td>putative methyltransferase</td>
<td></td>
<td>-1.41</td>
<td>-1.91</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1209</td>
<td>lig</td>
<td>DNA ligase</td>
<td>-1.53</td>
<td>-1.64</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1868</td>
<td>dnaG</td>
<td>DNA primase</td>
<td>-2.18</td>
<td>-2.05</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr0920</td>
<td>mutator MuT protein</td>
<td></td>
<td>-1.28</td>
<td>-1.02</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>slr1134</td>
<td>mutator MuT homolog</td>
<td></td>
<td>-1.58</td>
<td>-1.89</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr1984</td>
<td>rpsfb</td>
<td>nucl. acid-bind. protein, 30S ribosomal protein S1 hom.</td>
<td>-1.46</td>
<td>-0.99</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0786</td>
<td>methionine aminopeptidase</td>
<td></td>
<td>-1.81</td>
<td>-1.55</td>
<td>0.18</td>
<td>3b</td>
</tr>
<tr>
<td>13</td>
<td>slr1299</td>
<td>acetyl kinase</td>
<td></td>
<td>-0.89</td>
<td>-1.64</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1316</td>
<td>iron(III) dicitrate transport system permease protein</td>
<td>-1.08</td>
<td>-1.11</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1317</td>
<td>iron(II) dicitrate transport system permease protein</td>
<td>-1.42</td>
<td>-1.00</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1319</td>
<td>iron-uptake system ATP-binding protein</td>
<td>-1.72</td>
<td>-1.28</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>slr1200</td>
<td>permease prot of branched-chain a.a. ABC transp</td>
<td>-1.20 -1.62 -0.25</td>
<td>15</td>
<td>11a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1437</td>
<td>putative transposase [ISY100_q]</td>
<td>-1.16 -1.58 0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1436</td>
<td>putative transposase [ISY100_q]</td>
<td>-2.56 -1.19 0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1408</td>
<td>transcriptional regulator</td>
<td>-0.70 -1.44 0.77</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1019</td>
<td>phenazine biosynthetic protein PhzF homolog</td>
<td>-2.29 -2.35 0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr0298</td>
<td>Fraction H protein homolog</td>
<td>-1.14 -1.08 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1252</td>
<td>hypothetical protein</td>
<td>-2.53 -1.70 -0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1270</td>
<td>hypothetical protein</td>
<td>-3.15 -1.40 0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1273</td>
<td>hypothetical protein</td>
<td>-2.23 -1.49 -0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1152</td>
<td>hypothetical protein</td>
<td>-1.62 -1.38 -0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1677</td>
<td>hypothetical protein</td>
<td>-1.26 -1.05 -0.06</td>
<td>11ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0771</td>
<td>hypothetical protein</td>
<td>-0.98 -1.01 -1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1433</td>
<td>hypothetical protein</td>
<td>-1.78 -1.07 0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1532</td>
<td>hypothetical protein</td>
<td>-1.45 -1.96 0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1464</td>
<td>hypothetical protein</td>
<td>-1.73 -1.28 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1670</td>
<td>unknown protein</td>
<td>-1.99 -1.90 0.40</td>
<td>3ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0914</td>
<td>unknown protein</td>
<td>-1.42 -1.03 1.39</td>
<td>11b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1257</td>
<td>unknown protein</td>
<td>-0.94 -1.24 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr2017</td>
<td>unknown protein</td>
<td>-3.15 -1.70 0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr2018</td>
<td>unknown protein</td>
<td>-2.67 -1.64 -0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1167</td>
<td>hypothetical protein</td>
<td>-2.51 -1.31 -0.16</td>
<td>1,2a,4,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1163</td>
<td>unknown protein</td>
<td>-1.88 -1.21 0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0966</td>
<td>tryptophan synthase alpha chain</td>
<td>-2.78 -0.42 -1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1665</td>
<td>dphF</td>
<td>-1.27 -0.89 -2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1271</td>
<td>probable porin; major outer membrane protein</td>
<td>-1.69 -0.39 -0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1625</td>
<td>sdhB</td>
<td>-2.79 0.87 -1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0329</td>
<td>6-phosphogluconate dehydrogenase</td>
<td>-1.51 -0.02 -1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1068</td>
<td>acp</td>
<td>-2.79 0.07 -2.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1624</td>
<td>two-component response regulator</td>
<td>-3.41 1.24 -1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1285</td>
<td>two-component sensor histidine kinase</td>
<td>-0.81 0.21 -0.93</td>
<td>1,5a,6,11b,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr2058</td>
<td>topA</td>
<td>-1.77 0.58 -0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1623</td>
<td>ABC transporter ATP-binding protein</td>
<td>-2.09 1.24 -1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1623</td>
<td>ABC transporter ATP-binding protein</td>
<td>-2.09 1.24 -1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1647</td>
<td>probable phosphothricin N-acetyltransferase</td>
<td>-2.28 -0.47 -1.35</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1451</td>
<td>hypothetical protein</td>
<td>-1.23 -0.81 -1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1864</td>
<td>hypothetical protein</td>
<td>-2.75 0.01 -1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1927</td>
<td>hypothetical protein</td>
<td>-1.33 -0.14 -1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr1755</td>
<td>unknown protein</td>
<td>-3.21 -0.68 -1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1834</td>
<td>psaA</td>
<td>-0.32 -1.53 -1.90</td>
<td>10,11ab,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1835</td>
<td>psaB</td>
<td>-0.39 -0.98 -1.35</td>
<td>10,11ab,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1379</td>
<td>cycD</td>
<td>-0.81 -2.63 -1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1578</td>
<td>cpcA</td>
<td>-0.64 -2.19 -1.31</td>
<td>7,10,11ab,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>slr1051</td>
<td>cpcF</td>
<td>-0.72 -1.56 -1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>slr0743</td>
<td>similar to N utilization substance protein</td>
<td>-0.89 -1.39 -1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>slr0992</td>
<td>probable RNA/RNA methyltransferase</td>
<td>-0.25 -1.02 -1.25</td>
<td>5a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>slr1253</td>
<td>similar to polyA polymerase</td>
<td>-0.61 -1.78 -1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr2009</td>
<td>hypothetical protein</td>
<td>-0.82 -1.06 -1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr2009</td>
<td>hypothetical protein</td>
<td>0.46 -0.93 -1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2B (continued). List of down-regulated ORFs.

<table>
<thead>
<tr>
<th>Category</th>
<th>ORF</th>
<th>Gene</th>
<th>Product</th>
<th>S</th>
<th>N</th>
<th>P</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>slr0207</td>
<td>hypothetical protein</td>
<td></td>
<td>-0.52</td>
<td>-1.41</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>slr0358</td>
<td>unknown protein</td>
<td></td>
<td>-0.79</td>
<td>-1.33</td>
<td>-1.40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>slr1164</td>
<td>ho1 heme oxygenase</td>
<td></td>
<td>-1.46</td>
<td>-1.60</td>
<td>-1.12</td>
<td>2h,3b,5a,6,8b,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,11b</td>
</tr>
<tr>
<td>4</td>
<td>slr0430</td>
<td>htpG heat shock protein HtpG</td>
<td></td>
<td>-2.76</td>
<td>-2.37</td>
<td>-2.24</td>
<td>7,10,11ab</td>
</tr>
<tr>
<td>7</td>
<td>slr1755</td>
<td>NAD+ dependent glycerol-3-phosphate dehydrogenase</td>
<td></td>
<td>-1.80</td>
<td>-1.20</td>
<td>-2.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2b,3b,5a,6,8b,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,11b,13,15</td>
</tr>
<tr>
<td>8</td>
<td>sll1184</td>
<td>ho1 heme oxygenase</td>
<td></td>
<td>-1.46</td>
<td>-1.60</td>
<td>-1.12</td>
<td>2h,3b,5a,6,8b,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,11b</td>
</tr>
<tr>
<td>8</td>
<td>sll1580</td>
<td>cpcC1 phycobilisome rod linker polypeptide</td>
<td></td>
<td>-2.52</td>
<td>-3.44</td>
<td>-2.05</td>
<td>2ab,7,10,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,15</td>
</tr>
<tr>
<td>8</td>
<td>sll1579</td>
<td>cpcC2 phycobilisome rod linker polypeptide</td>
<td></td>
<td>-2.00</td>
<td>-3.12</td>
<td>-2.49</td>
<td>7,10,13,15</td>
</tr>
<tr>
<td>8</td>
<td>sll1577</td>
<td>cpcB phycocyanin beta subunit</td>
<td></td>
<td>-1.95</td>
<td>-2.60</td>
<td>-2.08</td>
<td>2ab,10,11ab,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,15</td>
</tr>
<tr>
<td>10</td>
<td>sll0640</td>
<td>two-component sensor histidine kinase</td>
<td></td>
<td>-1.31</td>
<td>-1.58</td>
<td>-1.87</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>sll0346</td>
<td>mc ribonuclease III</td>
<td></td>
<td>-0.97</td>
<td>-1.29</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>sll1703</td>
<td>serS seryl-tRNA synthetase</td>
<td></td>
<td>-0.91</td>
<td>-2.14</td>
<td>-1.61</td>
<td>11b</td>
</tr>
<tr>
<td>13</td>
<td>sll1098</td>
<td>fus elongation factor EF-G</td>
<td></td>
<td>-1.44</td>
<td>-1.57</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr2019</td>
<td>ATP-binding protein of ABC transporter</td>
<td></td>
<td>-4.29</td>
<td>-1.85</td>
<td>-1.54</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>slr1318</td>
<td>iron-uptake system ATP-binding protein</td>
<td></td>
<td>-2.65</td>
<td>-1.47</td>
<td>-1.02</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0788</td>
<td>similar to pre-B cell enhancing factor</td>
<td></td>
<td>-2.45</td>
<td>-1.31</td>
<td>-1.94</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr0348</td>
<td>hypothetical protein</td>
<td></td>
<td>-1.15</td>
<td>-1.11</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr2030</td>
<td>hypothetical protein</td>
<td></td>
<td>-2.11</td>
<td>-0.97</td>
<td>-1.35</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>slr1493</td>
<td>hypothetical protein</td>
<td></td>
<td>-1.53</td>
<td>-1.29</td>
<td>-1.20</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3.
R-script used to assess differential expression patterns
in the nitrogen starvation experiments

> "Command in R"
+ denotes commands longer than one string

Output of the command in R-shell is in italic

Comments

```r
>library(limma)  # Main library
>library(vsn)  # Library for vsn-normalization
>library(gplots)
# Library with advanced heatmap function used for data
# visualisation and clustering.
```

Data import:

```r
>loadPath <- "D:/R/Data/DataNNt"
# Path for the folder containing raw hybridization data
>savePath <- "D:/R/Data/Out"
# Path to the output folder
>targetsFile <- "ExpDescr.txt"
# Text file describing experiment; contains file names for all
# hybridizations and targets applied in red and green
# channels.
>targets <- readTargets(file=targetsFile, path=loadPath, sep="\t")
# targets – variable collecting information about two nitrogen
# starvation experiments: 12 hours starvation and time seria
# starvation-recovery experiment.
>targets.Nt <- targets[9:26,]
# variable selecting data related only to the time seria experiment
>show(targets.Nt)
```

<table>
<thead>
<tr>
<th></th>
<th>fileName</th>
<th>sampleID</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Nt_006_0003_A02.txt</td>
<td>N1.X</td>
<td>Nt.6</td>
<td>Nt.0</td>
</tr>
<tr>
<td>10</td>
<td>Nt_006_0005_A01.txt</td>
<td>N2.X</td>
<td>Nt.6</td>
<td>Nt.0</td>
</tr>
<tr>
<td>11</td>
<td>Nt_006_0002_A01.txt</td>
<td>N3.X</td>
<td>Nt.6</td>
<td>Nt.0</td>
</tr>
<tr>
<td>12</td>
<td>Nt_012_0002_A02.txt</td>
<td>N2.X</td>
<td>Nt.12</td>
<td>Nt.0</td>
</tr>
<tr>
<td>13</td>
<td>Nt_012_0003_A01.txt</td>
<td>N3.X</td>
<td>Nt.12</td>
<td>Nt.0</td>
</tr>
<tr>
<td>14</td>
<td>Nt_012_0007_A01.txt</td>
<td>N4.X</td>
<td>Nt.12</td>
<td>Nt.0</td>
</tr>
<tr>
<td>15</td>
<td>Nt_024_0001_A02.txt</td>
<td>N2.X</td>
<td>Nt.24</td>
<td>Nt.0</td>
</tr>
<tr>
<td>16</td>
<td>Nt_024_0004_A02.txt</td>
<td>N3.X</td>
<td>Nt.24</td>
<td>Nt.0</td>
</tr>
<tr>
<td>17</td>
<td>Nt_024_0007_A02.txt</td>
<td>N4.X</td>
<td>Nt.24</td>
<td>Nt.0</td>
</tr>
<tr>
<td>18</td>
<td>Nt_096_0004_A01.txt</td>
<td>N3.X</td>
<td>Nt.96</td>
<td>Nt.0</td>
</tr>
<tr>
<td>19</td>
<td>Nt_096_0008_A01.txt</td>
<td>N4.X</td>
<td>Nt.96</td>
<td>Nt.0</td>
</tr>
<tr>
<td>20</td>
<td>Nt_096_0009_A01.txt</td>
<td>N6.X</td>
<td>Nt.96</td>
<td>Nt.0</td>
</tr>
<tr>
<td>21</td>
<td>Nt_102_0008_A02.txt</td>
<td>N4.X</td>
<td>Nt.102</td>
<td>Nt.0</td>
</tr>
</tbody>
</table>
data.columns <- list(R="rMeanSignal", G="gMeanSignal",
+ Rb="rBGMedianSignal", Gb="gBGMedianSignal")

Variable specifying column names in raw data file;
this columns contains raw probe intensities and
background intensities in red and green channels

anno.columns <- c("ControlType", "ProbeName")

Variable specifying column names with annotation data

RG.Nt <- read.maimages(targets.Nt$fileName, path=loadPath,
+ source="generic", quote="", columns = data.columns,
+ annotation=anno.columns)

read.maimages - Generic function for data import

dim(RG.Nt)
[1] 8635 18

Dimensions of the imported data matrix; denotes number of
probes in each hybridization and number of loaded hybridizations

SpotTypes attachment:

spottypes <- readSpotTypes(file = "SpotTypeFile.txt", path = "D:/R/DataV")

Import of the text file describing types of probes spotted on
the microarray (e.g. positive and negative controls and probes)

show(spottypes)

SpotType ControlType color cex
1 Gene * black 0.2
2 PosContr 1 red 0.2
3 NegContr -1 blue 0.2

RG.Nt$genes$Status <- controlStatus(spottypes, RG.Nt)

Matching patterns for: ControlType
Found 8635 Gene
Found 465 PosContr
Found 79 NegContr

Setting attributes: values color cex

function attaching to each probe on the array its status:
whether it belongs to the control type or not

Removal from the data-set probes related to the control:

isGene.Nt <- RG.Nt$genes$Status == "Gene"

isGene.Nt – list of indexes of probes,
which are not of the control type

RG.Nt <- RG.Nt[isGene.Nt,]

dim(RG.Nt)
[1] 8091 18
Normalisation:

```r
> RG.non <- RG.Nt
  # not normalized intensity data set
> MA.non <- MA.RG(RG.non)
  # conversion of the intensities into the not normalized MA data set,
  # where M is the ratio of the intensities in red and green channels
  # in log-scale and A is the average intensity in both channels
> RG.b <- backgroundCorrect(RG.non, method="minimum")
  # Correction for the background;
  # option "method" selects method for background correction
> MA.lo <- normalizeWithinArrays(RG.b, method="loess")
  # Data normalized within each array with LOESS normalization
> MA.aq <- normalizeBetweenArrays(MA.lo, method="Aq")
  # MA normalized by “Aquantile” method between all arrays
> RG.aq <- RG.MA(MA.aq)
  # conversion of the normalized MA data into the normalized
  # intensity data set
```

Diagnostic plots:

```r
> arrayNo <- 3
  # array Number to plot
> plot(0:12, 0:12, xlab = "Green", ylab = "Red", type = "n")
> abline(0,1)
> points(log(RG.non[,arrayNo]$R), log(RG.non[,arrayNo]$G), cex = 0.3)
  # plot(…) function sets scale; abline(0,1) sets diagonal;
  # Intensity RG-plot of not normalized data of the array 3;
  # intensities are log-trasformed
> plot(0:12, 0:12, xlab = "Green", ylab = "Red", type = "n")
> abline(0,1)
> points(log(RG.aq[,arrayNo]$R), log(RG.aq[,arrayNo]$G), cex = 0.3)
  # plot(…) sets scale; abline(0,1) sets diagonal;
  # Intensity RG-plot of normalized data of the array 3;
  # intensities are log-trasformed
> plotMA(MA.non[,arrayNo])
> abline(0,0)
  # MA-plot of not normalized data of the array 3
> plotMA(MA.aq[,arrayNo])
> abline(0,0)
  # MA-plot of normalized data of the array 3
> plotDensities(MA.non)
  # Density-plot of not normalized complete data set
```
>plotDensities(MA.aq)
 # Density-plot of normalized complete data set
>boxplot(MA.non$M~col(MA.non$M), names=colnames(MA.non$M))
 # Box-plot of not normalized complete data set
>boxplot(MA.aq$M~col(MA.aq$M), names=colnames(MA.aq$M))
 # Box-plot of normalized complete data set

Cluster analysis and Intensity Heatmap of the complete data set:

>RG.R <- RG.aq$R
>RG.G <- RG.aq$G

 # Extraction of the separate R (Red) and G (Green) channel intensities
>colnames(RG.R) <- paste(colnames(RG.R), "R", sep=".")
>colnames(RG.G) <- paste(colnames(RG.G), "G", sep=".")

 # Assignment of the column names to separate channels
>RG.only <- cbind(RG.R, RG.G)

 # Combining separate Red and Green channels into one data matrix
>DataCol = colorpanel(256, 'green', 'black', 'red')

 # Sets up colour-range represented on the image varying from green to red
>heatmap.2(heatdata, col=DataCol, Rowv=NA, scale="non", dendrogram="col",
 + cexCol=0.7, mar=c(7,5), symkey=FALSE, trace="none", density.info="none")

 # heatmap.2() function performs visualisation and cluster analysis
 # in search for similarities and dissimilarities in the data;
 # Rowv=NA defines that there would be no clustering on rows
 # of the data matrix (representing 8091 probes);
 # Clustering is performed on columns which represent separate
 # normalized intensities in red and green channels of all
 # hybridizations; # heatmap.2() function utilises functions
dist() for calculation of distances between data columns with
“Euclidian” distance measure and hclust() to perform
“hierarchical” cluster analysis.

Ratio Heatmap:

>MA.M <- MA.aq$M

 # Extraction of M-values (Ratio) only from the data
>DataCol = colorpanel(256, 'green', 'black', 'red')

 # Sets up colour-range represented on the image varying from
 # green (down-regulation) to black (no-regulation) and to red (up-regulation)
>heatmap.2(heatdata, col=DataCol, Rowv=NA, scale="non", dendrogram="col",
 + cexCol=0.8, mar=c(7,5), symkey=FALSE, trace="none", density.info="none")

 # Here columns represents ratios of individual arrays,
so the cluster analysis highlights similarities between biological replicates and dissimilarities between time-points.

Fit linear model for each probe on the array, application of empirical Bayes statistics, band adjustment for multiple testing in search for differentially expressed genes.

```r
> design.Nt <- modelMatrix(targets.Nt, ref="Nt.0")
Found unique target names:
Nt.0 Nt.102 Nt.108 Nt.12 Nt.24 Nt.6 Nt.96
> show(design.Nt)
   Nt.102 Nt.108 Nt.12 Nt.24 Nt.6 Nt.96
      9      0      0     0    0   -1     0
     10      0      0     0    0   -1     0
     11      0      0     0    0   -1     0
     12      0     -1     0    0     0   -1
     13      0     -1     0    0     0   -1
     14      0     -1     0    0     0   -1
     15      0      0     0    0   -1     0
     16      0      0     0    0   -1     0
     17      0      0     0    0   -1     0
     18      0      0     0    0   -1     0
     19      0      0     0    0   -1     0
     20      0      0     0    0   -1     0
     21     -1      0     0    0     0   -1
     22     -1      0     0    0     0   -1
     23     -1      0     0    0     0   -1
     24      0     -1     0    0     0   -1
     25      0     -1     0    0     0   -1
     26      0     -1     0    0     0   -1

# Sets design matrix with zero time point as a reference
> fit.Nt <- lmFit(MA.aq, design.Nt)
# This function fits multiple linear models. It accepts data from
# a experiment involving a series of microarrays with the same set
# of probes. A linear model is fitted to the expression data
# for each probe. The coefficients of the fitted models describe
# the differences between the RNA sources hybridized to the arrays.
> cont.matrix.Nt <- makeContrasts(Nt.6, Nt.12, Nt.24, Nt.96, Nt.102, Nt.108,
+ Nt.6.rec=Nt.102-Nt.96, Nt.12.rec=Nt.108-Nt.96, levels=design.Nt)
# Construct the contrasts matrix; as contrasts we define here
# comparisons of interests, e.g. Nt.6 is the comparison of expression
# of Nt.6 (which is 6 hours time point) against reference (which is 0
# hours time point), Nt.6.rec is the 6 hours recovery time point
> fit.Nt <- contrasts.fit(fit.Nt, cont.matrix.Nt)
# Given a linear model fit to microarray data, compute estimated
# coefficients and standard errors for a given set of contrasts.
> fit.Nt <- eBayes(fit.Nt)
```
These functions are used to rank genes in order of evidence for differential expression. It uses an empirical Bayes method to shrink the gene-wise sample variances towards a common values and, in so doing, augmenting the degrees of freedom for the individual variances. It computes moderated t-statistics and log-odds of differential expression.

```r
>d.Nt <- decideTests(fit.Nt, method="separate", adjust.method="fdr", p.value=0.01)
```

Classify a series of related t-statistics as up, down or not significant. A number of different multiple testing schemes are offered which adjust for multiple testing down the genes as well as across contrasts for each gene. It produce essentially a numeric matrix with elements `-1`, `0` or `1` depending on whether each t-statistic is classified as significantly negative, not significant or significantly positive respectively.

```r
>summary(d.Nt)
```

<table>
<thead>
<tr>
<th>Nt.6</th>
<th>Nt.12</th>
<th>Nt.24</th>
<th>Nt.96</th>
<th>Nt.102</th>
<th>Nt.108</th>
<th>Nt.6.rec</th>
<th>Nt.12.rec</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1473</td>
<td>1902</td>
<td>1859</td>
<td>2186</td>
<td>1825</td>
<td>1855</td>
<td>2262</td>
</tr>
<tr>
<td>0</td>
<td>5131</td>
<td>4279</td>
<td>4421</td>
<td>3683</td>
<td>4476</td>
<td>4480</td>
<td>3951</td>
</tr>
<tr>
<td>1</td>
<td>1487</td>
<td>1910</td>
<td>1811</td>
<td>2222</td>
<td>1790</td>
<td>1756</td>
<td>1878</td>
</tr>
</tbody>
</table>

This function counts number of regulated genes in each specified contrast.

```r
>vennCounts(d.Nt[,1:3], include="up")
```

<table>
<thead>
<tr>
<th>Nt.6</th>
<th>Nt.12</th>
<th>Nt.24</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0</td>
<td>0</td>
<td>5490</td>
</tr>
<tr>
<td>[2,]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[3,]</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[4,]</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[5,]</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6,]</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[7,]</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[8,]</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This function produce classification counts for any number of contrasts specified; in this particular case it highlights up-regulated genes in 6, 12 and 24 hours of time-seria experiment, and calculates number of specifically or commonly regulated probes.

```r
>plotMA(fit.Nt, status=d.Nt[,1], cex=0.2, legend=TRUE)
```

plotMA() function graphically represents here up- and down-regulated probes for one of the contrasts; Here we used as example 6 hours time point.

```r
>vennDiagram(d.Nt[,1:3], include="up")
```
This function is analogous to the previous one, but it creates
Venn diagram; number of contrasts is limited to three
parameter include="down" will plot commonly down-regulated probes.

Export of the resulting matrix:
```r
> write.fit(fit.Nt, results=d.Nt, file="D:/R/Data/Out/fit.Nt.txt", digits=3, adjust="fdr", sep="\t")
```
Data exported as text tab-delimited file with Ratios for each
contrast specified by cont.matrix and with the decision whether
probe is differentially expressed or not in particular contrast.

Analysis of the expression behaviour of selected genes of interest
```r
> fit.Nt.File <- "D:/R/Data/Out/fit.Nt.txt"
# filename and the path to the file storing the results of the
# the specified contrasts and decisions about differential probe
# expression

> geneList.File <- "D:/R/Data/GeneList.PSI.txt"
# filename and the path to the file storing the list of probes
# corresponding to genes of interest; here we used as an example
# list of structural genes encoding subunits of Photosystem I (PSI)

> Nt.complete <- read.table(file=fit.Nt.File, header=TRUE, sep="\t", quote=""
# Import of the complete linear fit in text format

> g.list <- read.table(file = geneList.File, header = TRUE, sep = "\t", quote=""
# Import of the list of genes of interest

> g.Probe <- g.list$Probe.ID
# Extraction from the list of genes probe identifiers only

> g.Name <- g.list$GeneName
# Extraction from the list of genes gene names only

> i.names.Nt <- match(g.Probe, Nt.complete$Genes.ProbeName)
# Extracting indexes from complete fit table matching
# the identifiers from the list of genes of interest

> write.table(Nt.complete[i.names.Nt,], file="D:/R/Data/Out/fit.Nt.PSI.txt",
+ row.names = TRUE, sep="\t")
# Save of the fit information for the PSI genes only in text file

> M.list.fit <- as.matrix(Nt.complete[i.names.Nt,2:7])
# Extracting from the complete fit-object only ratios related to
# PSI genes and converting it into the matrix format

> min(M.list.fit)
> max(M.list.fit)
# Check for the min and max of the matrix

> rownames(M.list.fit) <- paste(g.Name,"-",g.Probe)
# Assignment of the row names for the PSI genes in form:# “gene name – probe ID”

> heatdata.fit <- M.list.fit
```

172
> heatmap.2(heatdata.fit, col=DataCol, Colv=FALSE, scale="non",
+ dendrogram="row", cexCol=0.7, cexRow=0.7, mar=c(8,9),
+ symkey=FALSE, trace="none", density.info="none", breaks=seq(-2,2,0.015625))
 # This function performs hierarchical clustering and visualisation of
 # the expression profile of the photosystem I related genes
Appendix 4A. List of functional categories of *Synechocystis* genes.
Category and subcategory annotation are as in Cyanobase (genome.kazusa.or.jp/cyanobase).
Category numbers are assigned in alphabetical order.

<table>
<thead>
<tr>
<th>Category</th>
<th>SubCategory</th>
</tr>
</thead>
</table>
| 1 - Amino acid biosynthesis | 1a - Aromatic amino acid family
1b - Aspartate family
1c - Branched chain family
1d - Glutamate family / Nitrogen assimilation
1e - Serine family / Sulfur assimilation |
| 2 - Biosynthesis of cofactors, prosthetic groups, and carriers | 2a - Carotenoid
2b - Cobalamin, heme, phycobilin and porphyrin
2c - Folic acid
2d - Menaquinone and ubiquinone
2e - Molybdenopterin
2f - Thiamin
2g - Thioredoxin, glutaredoxin, and glutathione |
| 3 - Cell envelope | 3a - Membranes, lipoproteins, and porins
3b - Murein sacculus and peptidoglycan
3c - Surface polysaccharides, lipopolysaccharides |
| 4 - Cellular processes | 4a - Chaperones
4b - Chemotaxis
4c - Detoxification
4d - Protein and peptide secretion
4e - Transformation |
| 5 - Central intermediary metabolism | 5a - Other
5b - Polysaccharides and glycoproteins |
| 6 - Energy metabolism | 6a - Amino acids and amines
6b - Glycolysis
6c - Pentose phosphate pathway
6d - Pyruvate and acetyl-CoA metabolism
6e - Pyruvate dehydrogenase
6f - Sugars
6g - TCA cycle |
| 7 - Fatty acid, phospholipid and sterol metabolism | |
| 8 - Photosynthesis and respiration | 8a - ATP synthase
8b - CO2 fixation
8c - Cytochrome b6f complex
8d - NADH dehydrogenase
8e - Photosystem I
8f - Photosystem II
8g - Phycobilisome
8h - Respiratory terminal oxidases
8i - Soluble electron carriers |
| 9 - Purines, pyrimidines, nucleosides, and nucleotides | 9a - Purine ribonucleotide biosynthesis
9b - Pyrimidine ribonucleotide biosynthesis |
| 10 - Regulatory functions | |
| 11 - DNA replication, restriction, modification, recombination, and repair | |
| 12 - Transcription | 12a - RNA synthesis, modification, and DNA transcription |
| 13 - Translation | 13a - Aminoacyl tRNA synthetases and tRNA modification
13b - Degradation of proteins, peptides, and glycopeptides |
Appendix 4A (continued). List of functional categories of *Synechocystis* genes.

<table>
<thead>
<tr>
<th>Category</th>
<th>SubCategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>13c - Nucleoproteins</td>
<td>13d - Protein modification and translation factors</td>
</tr>
<tr>
<td>13e - Ribosomal proteins: synthesis and modification</td>
<td></td>
</tr>
<tr>
<td>14 - Transport and binding proteins</td>
<td>15a - Adaptations and atypical conditions</td>
</tr>
<tr>
<td>15 - Other categories</td>
<td>15b - Drug and analog sensitivity</td>
</tr>
<tr>
<td></td>
<td>15c - Hydrogenase</td>
</tr>
<tr>
<td></td>
<td>15d - Other</td>
</tr>
<tr>
<td></td>
<td>15e - Transposon-related functions</td>
</tr>
<tr>
<td></td>
<td>15f - WD repeat proteins</td>
</tr>
<tr>
<td>16 - Hypothetical</td>
<td></td>
</tr>
<tr>
<td>17 - Unknown</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4B. List of significantly down-regulated genes.

ORF, gene, gene product, category and subcategory and functional annotation are as in Cyanobase (genome.kazusa.or.jp/cyanobase). Category numbers are assigned in alphabetical order. Categories description is listed in Appendix 4A. p-value - significance of differential expression, adjusted for multiple hypothesis testing using the false discovery rate; FC - fold change; only genes with p < 0.01 and FC > 1.5 are listed. Top 50 of most strongly down-regulated genes are highlighted in bold.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>slr0608</td>
<td>hisIE</td>
<td>6.10E-04</td>
<td>-1.78</td>
<td>histidine biosynthesis bifunctional protein HisIE</td>
<td>1a</td>
</tr>
<tr>
<td>slr0966</td>
<td>trpA</td>
<td>4.22E-03</td>
<td>-1.65</td>
<td>tryptophan synthase alpha chain</td>
<td>1a</td>
</tr>
<tr>
<td>slr1867</td>
<td>trpD</td>
<td>1.32E-03</td>
<td>-1.96</td>
<td>anthranilate phosphoribosyltransferase</td>
<td>1a</td>
</tr>
<tr>
<td>slr1662</td>
<td></td>
<td>1.92E-04</td>
<td>-2.01</td>
<td>probable prephenate dehydratase</td>
<td>1a</td>
</tr>
<tr>
<td>slr1058</td>
<td>dapB</td>
<td>1.70E-04</td>
<td>-2.13</td>
<td>dihydrodipicolinate reductase</td>
<td>1b</td>
</tr>
<tr>
<td>slr1172</td>
<td>thrC</td>
<td>3.75E-03</td>
<td>-1.74</td>
<td>threonine synthase</td>
<td>1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.01E-04</td>
<td>-2.26</td>
<td>putative aminotransferase</td>
<td>1b</td>
</tr>
<tr>
<td>slr2072</td>
<td>ilvA</td>
<td>5.29E-04</td>
<td>-2.61</td>
<td>L-threonine deaminase</td>
<td>1c</td>
</tr>
<tr>
<td>slr0452</td>
<td>ilvD</td>
<td>1.14E-03</td>
<td>-3.55</td>
<td>dihydroxyacid dehydratase</td>
<td>1c</td>
</tr>
<tr>
<td>slr0065</td>
<td>ilvN</td>
<td>2.17E-03</td>
<td>-2.02</td>
<td>acetolactate synthase small subunit</td>
<td>1c</td>
</tr>
<tr>
<td>slr1517</td>
<td></td>
<td>1.95E-03</td>
<td>-1.81</td>
<td>3-isopropylmalate dehydrogenase</td>
<td>1c</td>
</tr>
<tr>
<td>slr0504</td>
<td>lysA</td>
<td>6.06E-06</td>
<td>-2.20</td>
<td>diaminopimelate decarboxylase</td>
<td>1c</td>
</tr>
<tr>
<td>slr0710</td>
<td>gdhA</td>
<td>9.07E-05</td>
<td>-2.91</td>
<td>glutamate dehydrogenase (NADP+)</td>
<td>1d</td>
</tr>
<tr>
<td>slr0450</td>
<td>norB</td>
<td>8.43E-04</td>
<td>-1.65</td>
<td>cytochrome b subunit of nitric oxide reductase</td>
<td>1d</td>
</tr>
<tr>
<td>slr0461</td>
<td>proA</td>
<td>1.19E-03</td>
<td>-1.53</td>
<td>gamma-glutamyl phosphate reductase</td>
<td>1d</td>
</tr>
<tr>
<td>slr0601</td>
<td></td>
<td>9.15E-04</td>
<td>-1.99</td>
<td>nitrlase homolog</td>
<td>1d</td>
</tr>
<tr>
<td>slr0644</td>
<td></td>
<td>7.07E-03</td>
<td>-1.64</td>
<td>nitrogen regulation protein NifR3 homolog</td>
<td>1d</td>
</tr>
<tr>
<td>slr1931</td>
<td>glyA</td>
<td>4.13E-04</td>
<td>-2.11</td>
<td>serine hydroxymethyltransferase</td>
<td>1e</td>
</tr>
<tr>
<td>slr0739</td>
<td></td>
<td>5.99E-03</td>
<td>-1.52</td>
<td>geranylgeranyl pyrophosphate synthase</td>
<td>2a</td>
</tr>
<tr>
<td>slr0772</td>
<td>chlB</td>
<td>1.61E-04</td>
<td>-2.07</td>
<td>light-independent protoclorophyllide reductase subunit ChlB</td>
<td>2b</td>
</tr>
<tr>
<td>slr1777</td>
<td>chlD</td>
<td>5.09E-03</td>
<td>-1.66</td>
<td>magnesium protoporphyrin IX chelatase subunit D</td>
<td>2b</td>
</tr>
<tr>
<td>slr0749</td>
<td>chlL</td>
<td>5.52E-04</td>
<td>-4.56</td>
<td>light-independent protoclorophyllide reductase iron protein subunit ChlL</td>
<td>2b</td>
</tr>
<tr>
<td>slr0750</td>
<td>chlN</td>
<td>3.00E-05</td>
<td>-3.93</td>
<td>light-independent protoclorophyllide reductase subunit ChlN</td>
<td>2b</td>
</tr>
<tr>
<td>slr1091</td>
<td>chlP</td>
<td>1.28E-04</td>
<td>-1.65</td>
<td>geranylgeranyl hydrogenase</td>
<td>2b</td>
</tr>
<tr>
<td>slr1184</td>
<td>ho1</td>
<td>3.41E-03</td>
<td>-2.02</td>
<td>heme oxygenase</td>
<td>2b</td>
</tr>
<tr>
<td>slr0506</td>
<td>por</td>
<td>9.73E-04</td>
<td>-2.73</td>
<td>light-dependent NADPH-protoclorophyllide oxidoreductase</td>
<td>2b</td>
</tr>
<tr>
<td>slr1457</td>
<td></td>
<td>2.09E-04</td>
<td>-1.59</td>
<td>precorrin isomerase</td>
<td>2b</td>
</tr>
<tr>
<td>slr0426</td>
<td>fdlE</td>
<td>1.11E-03</td>
<td>-1.89</td>
<td>GTP cyclodrolase I</td>
<td>2c</td>
</tr>
<tr>
<td>slr1093</td>
<td>fdlK</td>
<td>2.39E-04</td>
<td>-1.50</td>
<td>2-amino-4-hydroxy-6-hydroxymethylidihydropyridine pyrophosphokinase</td>
<td>2c</td>
</tr>
<tr>
<td>slr0409</td>
<td></td>
<td>3.09E-03</td>
<td>-1.57</td>
<td>similar to O-succinylbenzoate-CoA synthase</td>
<td>2d</td>
</tr>
<tr>
<td>slr0635</td>
<td>thiE</td>
<td>2.77E-03</td>
<td>-1.70</td>
<td>probable thiamine-phosphate pyrophosphorylase</td>
<td>2f</td>
</tr>
<tr>
<td>slr1787</td>
<td></td>
<td>2.32E-04</td>
<td>-1.91</td>
<td>thiamine-monophosphate kinase</td>
<td>2f</td>
</tr>
<tr>
<td>slr0623</td>
<td>trxA</td>
<td>2.75E-05</td>
<td>-3.12</td>
<td>thioredoxin</td>
<td>2g</td>
</tr>
<tr>
<td>slr1057</td>
<td>trnM2</td>
<td>2.98E-04</td>
<td>-1.79</td>
<td>thioredoxin M</td>
<td>2g</td>
</tr>
<tr>
<td>slr2326</td>
<td></td>
<td>1.64E-03</td>
<td>-1.52</td>
<td>similar to glutathione S-transferase</td>
<td>2g</td>
</tr>
<tr>
<td>slr1423</td>
<td>murC</td>
<td>4.03E-03</td>
<td>-1.77</td>
<td>UDP-N-acetylglucosamine-alanine ligase</td>
<td>3b</td>
</tr>
<tr>
<td>slr2010</td>
<td>murD</td>
<td>4.33E-03</td>
<td>-1.50</td>
<td>UDP-N-acetylglucosaminolamine--D-glutamate ligase</td>
<td>3b</td>
</tr>
<tr>
<td>slr0379</td>
<td></td>
<td>1.42E-03</td>
<td>-2.21</td>
<td>acyl- [acyl-carrier-protein]--UDP-N-acetylg glucosamine o-acetyltransferase</td>
<td>3b</td>
</tr>
<tr>
<td>slr0015</td>
<td></td>
<td>1.65E-03</td>
<td>-1.67</td>
<td>lipid A disaccharide synthase</td>
<td>3c</td>
</tr>
<tr>
<td>slr1118</td>
<td></td>
<td>8.13E-03</td>
<td>-1.54</td>
<td>probable UDP-N-acetyl-D-mannosaminuronic acid transferase</td>
<td>3c</td>
</tr>
<tr>
<td>slr1213</td>
<td></td>
<td>2.17E-03</td>
<td>-1.50</td>
<td>GDP-fucose synthetase</td>
<td>3c</td>
</tr>
<tr>
<td>slr0170</td>
<td>dnaK2</td>
<td>8.85E-04</td>
<td>-1.56</td>
<td>DnaK protein 2, heat shock protein 70, molecular chaperone</td>
<td>4a</td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1533</td>
<td>pltT2</td>
<td>1.73E-03</td>
<td>-1.77</td>
<td>twitching mobility protein</td>
<td>4b</td>
</tr>
<tr>
<td>sll1987</td>
<td>cpx, katG</td>
<td>2.59E-04</td>
<td>-1.99</td>
<td>catalase peroxidase</td>
<td>4c</td>
</tr>
<tr>
<td>sll3335</td>
<td>secE</td>
<td>1.58E-04</td>
<td>-1.71</td>
<td>preprotein translocase SecE subunit</td>
<td>4d</td>
</tr>
<tr>
<td>sll1639</td>
<td>ureD</td>
<td>4.97E-05</td>
<td>-2.04</td>
<td>urease accessory protein D</td>
<td>5a</td>
</tr>
<tr>
<td>sir176</td>
<td></td>
<td>1.21E-04</td>
<td>-4.03</td>
<td>glucose-1-phosphate adenyltransferase</td>
<td>5b</td>
</tr>
<tr>
<td>sll0573</td>
<td></td>
<td>9.45E-03</td>
<td>-2.85</td>
<td>carbamate kinase</td>
<td>6a</td>
</tr>
<tr>
<td>sir0879</td>
<td>pgk</td>
<td>3.24E-03</td>
<td>-1.64</td>
<td>glycine decarboxylase complex H-protein</td>
<td>6a</td>
</tr>
<tr>
<td>sir0394</td>
<td></td>
<td>1.47E-04</td>
<td>-3.04</td>
<td>phosphoglycerate kinase</td>
<td>6b</td>
</tr>
<tr>
<td>sir1945</td>
<td></td>
<td>6.76E-04</td>
<td>-1.81</td>
<td>2,3-bisphosphoglycerate-independent phosphoglycerate mutase</td>
<td>6b</td>
</tr>
<tr>
<td>sll1070</td>
<td></td>
<td>7.35E-04</td>
<td>-1.85</td>
<td>transketolase</td>
<td>6c</td>
</tr>
<tr>
<td>sir0301</td>
<td></td>
<td>5.18E-05</td>
<td>-2.55</td>
<td>phosphoenolpyruvate synthase</td>
<td>6d</td>
</tr>
<tr>
<td>sll1841</td>
<td></td>
<td>3.77E-04</td>
<td>-2.00</td>
<td>pyruvate dehydrogenase dihydrolipoamide acetyltransferase comp. (E2)</td>
<td>6e</td>
</tr>
<tr>
<td>sll1721</td>
<td></td>
<td>2.30E-04</td>
<td>-1.98</td>
<td>pyruvate dehydrogenase E1 component, beta subunit</td>
<td>6e</td>
</tr>
<tr>
<td>slr1176</td>
<td></td>
<td>2.29E-05</td>
<td>-2.26</td>
<td>GDP-mannose 4,5-dehydratase</td>
<td>6f</td>
</tr>
<tr>
<td>sll0053</td>
<td>accC</td>
<td>4.25E-04</td>
<td>-2.94</td>
<td>biotin carboxylase</td>
<td>7</td>
</tr>
<tr>
<td>sll2084</td>
<td>acpP</td>
<td>1.03E-03</td>
<td>-2.30</td>
<td>acyl carrier protein</td>
<td>7</td>
</tr>
<tr>
<td>sir1369</td>
<td>cdsA</td>
<td>9.66E-03</td>
<td>-1.54</td>
<td>phosphatidate cytidylyltransferase</td>
<td>7</td>
</tr>
<tr>
<td>sir1510</td>
<td>plsX</td>
<td>3.15E-04</td>
<td>-2.04</td>
<td>fatty acid/phospholipid synthesis protein PlsX</td>
<td>7</td>
</tr>
<tr>
<td>sir1020</td>
<td>sqdB</td>
<td>6.81E-03</td>
<td>-1.80</td>
<td>sulfonlipid biosynthesis protein SsqB</td>
<td>7</td>
</tr>
<tr>
<td>sll1655</td>
<td></td>
<td>8.93E-04</td>
<td>-3.38</td>
<td>similar to biotin [acytly-CoA-carboxylase] ligase</td>
<td>7</td>
</tr>
<tr>
<td>sir1069</td>
<td></td>
<td>6.52E-03</td>
<td>-3.08</td>
<td>3-oxoacyl-[acyl-carrier-protein] synthase II</td>
<td>7</td>
</tr>
<tr>
<td>sir0776</td>
<td></td>
<td>2.70E-05</td>
<td>-2.46</td>
<td>UDP-3-0-[3-hydroxymyristoyl] glucosamine n-acyltransferase</td>
<td>7</td>
</tr>
<tr>
<td>sir1051</td>
<td></td>
<td>5.08E-03</td>
<td>-1.98</td>
<td>enoyl-[acyl-carrier-protein] reductase</td>
<td>7</td>
</tr>
<tr>
<td>sll1605</td>
<td></td>
<td>2.30E-03</td>
<td>-1.76</td>
<td>(3R)-hydroxymyristol acyl carrier protein dehydrase</td>
<td>7</td>
</tr>
<tr>
<td>slr1326</td>
<td>atpA</td>
<td>5.11E-04</td>
<td>-5.26</td>
<td>ATP synthase alpha chain</td>
<td>8a</td>
</tr>
<tr>
<td>slr1329</td>
<td>atpB</td>
<td>2.43E-03</td>
<td>-3.31</td>
<td>ATP synthase beta subunit</td>
<td>8a</td>
</tr>
<tr>
<td>slr1337</td>
<td>atpC</td>
<td>3.48E-05</td>
<td>-5.46</td>
<td>ATP synthase gamma chain</td>
<td>8a</td>
</tr>
<tr>
<td>sir1330</td>
<td>atpE</td>
<td>2.80E-03</td>
<td>-2.42</td>
<td>ATP synthase epsilon chain of CF(1)</td>
<td>8a</td>
</tr>
<tr>
<td>slr1323</td>
<td>atpG</td>
<td>1.11E-05</td>
<td>-4.39</td>
<td>ATP synthase subunit b’ of CF(0)</td>
<td>8a</td>
</tr>
<tr>
<td>slr2615</td>
<td>atpH</td>
<td>2.10E-04</td>
<td>-3.87</td>
<td>ATP synthase C chain of CF(0)</td>
<td>8a</td>
</tr>
<tr>
<td>slr1322</td>
<td>atpI</td>
<td>9.64E-06</td>
<td>-5.46</td>
<td>ATP synthase A chain of CF(0)</td>
<td>8a</td>
</tr>
<tr>
<td>slr1321</td>
<td></td>
<td>9.37E-05</td>
<td>-3.60</td>
<td>hypothetical protein</td>
<td>8a</td>
</tr>
<tr>
<td>slr1029</td>
<td>ccmK1</td>
<td>5.28E-05</td>
<td>-4.54</td>
<td>carbon dioxide concentrating mechanism protein CcmK</td>
<td>8b</td>
</tr>
<tr>
<td>slr1028</td>
<td>ccmK2</td>
<td>1.09E-04</td>
<td>-6.20</td>
<td>carbon dioxide concentrating mechanism protein CcmK</td>
<td>8b</td>
</tr>
<tr>
<td>slr1838</td>
<td>ccmK3</td>
<td>7.94E-05</td>
<td>-2.45</td>
<td>carbon dioxide concentrating mechanism protein CcmK homolog 3</td>
<td>8b</td>
</tr>
<tr>
<td>slr1839</td>
<td>ccmK4</td>
<td>1.67E-05</td>
<td>-3.75</td>
<td>carbon dioxide concentrating mechanism protein CcmK homolog 4</td>
<td>8b</td>
</tr>
<tr>
<td>slr1031</td>
<td>ccmM</td>
<td>1.58E-04</td>
<td>-4.15</td>
<td>carbon dioxide concentrating mechanism protein CcmM</td>
<td>8b</td>
</tr>
<tr>
<td>slr1342</td>
<td>gap2</td>
<td>1.18E-03</td>
<td>-1.90</td>
<td>NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase</td>
<td>8b</td>
</tr>
<tr>
<td>slr1525</td>
<td>prk</td>
<td>1.23E-03</td>
<td>-2.66</td>
<td>phosphoribulokinase</td>
<td>8b</td>
</tr>
<tr>
<td>sir0009</td>
<td>rbcL</td>
<td>2.21E-05</td>
<td>-8.73</td>
<td>ribulose bisphosphate carboxylase large subunit</td>
<td>8b</td>
</tr>
<tr>
<td>sir0012</td>
<td>rbcS</td>
<td>1.67E-04</td>
<td>-4.38</td>
<td>ribulose bisphosphate carboxylase small subunit</td>
<td>8b</td>
</tr>
<tr>
<td>slr1347</td>
<td></td>
<td>9.43E-04</td>
<td>-1.56</td>
<td>betA-type carbonic anhydrase localized in the carboxysome</td>
<td>8b</td>
</tr>
<tr>
<td>slr1317</td>
<td>petA</td>
<td>1.47E-04</td>
<td>-2.62</td>
<td>apocytochrome f, component of cytochrome b6/f complex</td>
<td>8c</td>
</tr>
<tr>
<td>slr1316</td>
<td>petC1</td>
<td>1.90E-04</td>
<td>-2.76</td>
<td>cytochrome b6-f complex iron-sulfur subunit (Rieske iron sulfur protein)</td>
<td>8c</td>
</tr>
<tr>
<td>smr0010</td>
<td>petG</td>
<td>3.80E-04</td>
<td>-1.50</td>
<td>cytochrome b6-f complex subunit 5</td>
<td>8c</td>
</tr>
<tr>
<td>smr0003</td>
<td>petM</td>
<td>6.12E-06</td>
<td>-5.58</td>
<td>cytochrome b6-f complex subunit PetM</td>
<td>8c</td>
</tr>
<tr>
<td>smr0004</td>
<td>petN</td>
<td>5.29E-05</td>
<td>-2.84</td>
<td>cytochrome b6-f complex subunit VIII</td>
<td>8c</td>
</tr>
<tr>
<td>sir2007</td>
<td>ndhD5</td>
<td>1.34E-03</td>
<td>-2.15</td>
<td>NADH dehydrogenase subunit 4</td>
<td>8d</td>
</tr>
<tr>
<td>sir2009</td>
<td>ndhD6</td>
<td>4.92E-03</td>
<td>-1.57</td>
<td>NADH dehydrogenase subunit 4</td>
<td>8d</td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl0563</td>
<td>psaC</td>
<td>8,14E-05</td>
<td>-3,50</td>
<td>photosystem I subunit VII</td>
<td>8e</td>
</tr>
<tr>
<td>sir0737</td>
<td>psaD</td>
<td>2,10E-04</td>
<td>-2,34</td>
<td>photosystem I subunit II</td>
<td>8e</td>
</tr>
<tr>
<td>sss2831</td>
<td>psaE</td>
<td>1,03E-05</td>
<td>-4,91</td>
<td>photosystem I subunit IV</td>
<td>8e</td>
</tr>
<tr>
<td>sli0819</td>
<td>psaF</td>
<td>2,35E-03</td>
<td>-1,89</td>
<td>photosystem I reaction center subunit III precursor (PSI-F)</td>
<td>8e</td>
</tr>
<tr>
<td>smr0004</td>
<td>psaI</td>
<td>1,15E-04</td>
<td>-3,18</td>
<td>photosystem I subunit VIII</td>
<td>8e</td>
</tr>
<tr>
<td>smr0008</td>
<td>psaJ</td>
<td>1,46E-05</td>
<td>-2,91</td>
<td>photosystem I subunit IX</td>
<td>8e</td>
</tr>
<tr>
<td>ssr0390</td>
<td>psaK1</td>
<td>6,50E-05</td>
<td>-2,74</td>
<td>photosystem I reaction center subunit X</td>
<td>8e</td>
</tr>
<tr>
<td>sll0819</td>
<td>psaL</td>
<td>5,27E-03</td>
<td>-1,96</td>
<td>photosystem II 11 kD protein</td>
<td>8f</td>
</tr>
<tr>
<td>slr0906</td>
<td>psbB</td>
<td>7,77E-05</td>
<td>-2,70</td>
<td>photosystem II core light harvesting protein</td>
<td>8f</td>
</tr>
<tr>
<td>sll0851</td>
<td>psbC</td>
<td>4,23E-03</td>
<td>-2,17</td>
<td>photosystem II CP43 protein</td>
<td>8f</td>
</tr>
<tr>
<td>slr0849</td>
<td>psbD</td>
<td>4,04E-03</td>
<td>-1,90</td>
<td>photosystem II reaction center D2 protein</td>
<td>8f</td>
</tr>
<tr>
<td>sir0927</td>
<td>psbD2</td>
<td>1,51E-03</td>
<td>-1,67</td>
<td>photosystem II reaction center D2 protein</td>
<td>8f</td>
</tr>
<tr>
<td>ssr3451</td>
<td>psbE</td>
<td>3,58E-05</td>
<td>-2,58</td>
<td>cytochrome b559 alpha subunit</td>
<td>8f</td>
</tr>
<tr>
<td>smr0006</td>
<td>psbF</td>
<td>3,87E-05</td>
<td>-3,19</td>
<td>cytochrome b559 b subunit</td>
<td>8f</td>
</tr>
<tr>
<td>slr2598</td>
<td>psbH</td>
<td>1,02E-04</td>
<td>-2,52</td>
<td>photosystem II PsbH protein</td>
<td>8f</td>
</tr>
<tr>
<td>smr0008</td>
<td>psbJ</td>
<td>3,33E-04</td>
<td>-3,31</td>
<td>photosystem II PsbJ protein</td>
<td>8f</td>
</tr>
<tr>
<td>sml0005</td>
<td>psbK</td>
<td>5,21E-04</td>
<td>-2,43</td>
<td>photosystem II PsbK protein</td>
<td>8f</td>
</tr>
<tr>
<td>smr0007</td>
<td>psbL</td>
<td>6,01E-05</td>
<td>-2,96</td>
<td>photosystem II PsbL protein</td>
<td>8f</td>
</tr>
<tr>
<td>sml0003</td>
<td>psbM</td>
<td>2,84E-05</td>
<td>-6,34</td>
<td>photosystem II reaction center M protein</td>
<td>8f</td>
</tr>
<tr>
<td>sll0427</td>
<td>psbO</td>
<td>6,42E-06</td>
<td>-10,71</td>
<td>photosystem II manganese-stabilizing polypeptide</td>
<td>8f</td>
</tr>
<tr>
<td>smr0001</td>
<td>psbT,ycfB</td>
<td>1,67E-04</td>
<td>-1,72</td>
<td>photosystem II PsbT protein</td>
<td>8f</td>
</tr>
<tr>
<td>sll1194</td>
<td>psbU</td>
<td>5,90E-05</td>
<td>-2,17</td>
<td>photosystem II 12 kDa extrinsic protein</td>
<td>8f</td>
</tr>
<tr>
<td>sll0259</td>
<td>psbV</td>
<td>3,13E-05</td>
<td>-3,37</td>
<td>cytochrome c550</td>
<td>8f</td>
</tr>
<tr>
<td>smr0002</td>
<td>psbX</td>
<td>3,02E-04</td>
<td>-1,72</td>
<td>photosystem II PsbX protein</td>
<td>8f</td>
</tr>
<tr>
<td>sml0007</td>
<td>psbY</td>
<td>2,93E-04</td>
<td>-1,69</td>
<td>photosystem II protein Y</td>
<td>8f</td>
</tr>
<tr>
<td>sir2067</td>
<td>apcA</td>
<td>1,56E-03</td>
<td>-2,04</td>
<td>allophycocyanin alpha subunit</td>
<td>8g</td>
</tr>
<tr>
<td>sir1986</td>
<td>apcB</td>
<td>5,13E-04</td>
<td>-2,97</td>
<td>allophycocyanin beta subunit</td>
<td>8g</td>
</tr>
<tr>
<td>sss3383</td>
<td>apcC</td>
<td>2,81E-05</td>
<td>-5,76</td>
<td>phycobilisome small core linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sli0298</td>
<td>apcD</td>
<td>1,24E-04</td>
<td>-2,03</td>
<td>allophycocyanin-B</td>
<td>8g</td>
</tr>
<tr>
<td>sir0335</td>
<td>apcE</td>
<td>1,26E-05</td>
<td>-6,66</td>
<td>phycobilisome core-membrane linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sll1578</td>
<td>cpcA</td>
<td>6,72E-02</td>
<td>-2,96</td>
<td>phycocyanin alpha subunit</td>
<td>8g</td>
</tr>
<tr>
<td>sll1577</td>
<td>cpcB</td>
<td>2,87E-05</td>
<td>-3,81</td>
<td>phycocyanin beta subunit</td>
<td>8g</td>
</tr>
<tr>
<td>sll1580</td>
<td>cpcC1</td>
<td>2,62E-05</td>
<td>-6,81</td>
<td>phycobilisome rod linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sll1579</td>
<td>cpcC2</td>
<td>1,17E-04</td>
<td>-7,27</td>
<td>phycobilisome rod linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sls3093</td>
<td>cpcD</td>
<td>2,42E-05</td>
<td>-8,07</td>
<td>phycobilisome small rod linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sir2051</td>
<td>cpcG1</td>
<td>1,74E-03</td>
<td>-2,46</td>
<td>phycobilisome rod-core linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sll1471</td>
<td>cpcG2</td>
<td>3,14E-03</td>
<td>-3,96</td>
<td>phycobilisome rod-core linker polypeptide</td>
<td>8g</td>
</tr>
<tr>
<td>sll1663</td>
<td>cpcD</td>
<td>2,92E-05</td>
<td>-2,47</td>
<td>phycocyanin alpha phycocyanobilin lyase related protein</td>
<td>8g</td>
</tr>
<tr>
<td>sll1815</td>
<td>adk</td>
<td>3,47E-04</td>
<td>-1,80</td>
<td>adenylyl kinase</td>
<td>9a</td>
</tr>
<tr>
<td>slr0421</td>
<td>purB</td>
<td>1,04E-03</td>
<td>-1,75</td>
<td>adenylosuccinate lyase</td>
<td>9a</td>
</tr>
<tr>
<td>sll1056</td>
<td>purL</td>
<td>9,73E-03</td>
<td>-1,79</td>
<td>phosphoribosylformyl glycaminid synthetase II</td>
<td>9a</td>
</tr>
<tr>
<td>slr0861</td>
<td>purT</td>
<td>6,47E-04</td>
<td>-2,02</td>
<td>glycaminid ribonucleotide transformlase</td>
<td>9a</td>
</tr>
<tr>
<td>sir1722</td>
<td></td>
<td>2,63E-05</td>
<td>-2,83</td>
<td>inosine-5'-monophosphate dehydrogenase</td>
<td>9a</td>
</tr>
<tr>
<td>sll1059</td>
<td></td>
<td>2,64E-04</td>
<td>-1,72</td>
<td>adenylyl kinase</td>
<td>9a</td>
</tr>
<tr>
<td>sll1443</td>
<td>pyrG</td>
<td>1,65E-03</td>
<td>-1,90</td>
<td>CTP synthetase</td>
<td>9b</td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll0750</td>
<td>hikB, sasA</td>
<td>2.08E-03</td>
<td>-1.53</td>
<td>two-component sensor histidine kinase, KaiC-interacting protein</td>
<td>10</td>
</tr>
<tr>
<td>sll1423</td>
<td>ntcA, ycfZ8</td>
<td>5.74E-03</td>
<td>-1.56</td>
<td>global nitrogen regulator</td>
<td>10</td>
</tr>
<tr>
<td>sll0038</td>
<td>pixG, pisG</td>
<td>2.53E-04</td>
<td>-1.68</td>
<td>positive phototaxis protein, two-comp. response regulator PatA subfamily</td>
<td>10</td>
</tr>
<tr>
<td>sll1584</td>
<td></td>
<td>2.74E-04</td>
<td>-3.00</td>
<td>two-component transcription regulator OmpR subfamily</td>
<td>10</td>
</tr>
<tr>
<td>sll1286</td>
<td></td>
<td>4.42E-04</td>
<td>-1.72</td>
<td>transcriptional regulator</td>
<td>10</td>
</tr>
<tr>
<td>sll0418</td>
<td></td>
<td>1.26E-03</td>
<td>-1.51</td>
<td>putative transcription factor DevT homolog</td>
<td>10</td>
</tr>
<tr>
<td>sll0985</td>
<td>dnaN</td>
<td>4.79E-03</td>
<td>-1.64</td>
<td>DNA polymerase III beta subunit</td>
<td>11</td>
</tr>
<tr>
<td>sll1689</td>
<td>fpg</td>
<td>3.02E-03</td>
<td>-1.55</td>
<td>formamidopyrimidine-DNA glycosylase</td>
<td>11</td>
</tr>
<tr>
<td>sll0417</td>
<td>gyrA</td>
<td>6.24E-05</td>
<td>-2.16</td>
<td>DNA gyrase subunit A</td>
<td>11</td>
</tr>
<tr>
<td>sll1289</td>
<td></td>
<td>1.23E-03</td>
<td>-1.64</td>
<td>DNA gyrase B subunit [Contains: Ssp gyrB intein]</td>
<td>11</td>
</tr>
<tr>
<td>sll1469</td>
<td>rnpA</td>
<td>1.33E-03</td>
<td>-1.81</td>
<td>protein subunit of ribonuclease P (RNase P)</td>
<td>12a</td>
</tr>
<tr>
<td>sll1818</td>
<td>rpoA</td>
<td>6.34E-05</td>
<td>-2.21</td>
<td>RNA polymerase alpha subunit</td>
<td>12a</td>
</tr>
<tr>
<td>sll1789</td>
<td>rpoC2</td>
<td>6.14E-05</td>
<td>-2.18</td>
<td>RNA polymerase beta prime subunit</td>
<td>12a</td>
</tr>
<tr>
<td>srr1600</td>
<td></td>
<td>6.88E-04</td>
<td>-1.58</td>
<td>similar to anti-sigma f factor antagonist</td>
<td>12a</td>
</tr>
<tr>
<td>sll0220</td>
<td>glyS</td>
<td>1.50E-03</td>
<td>-1.72</td>
<td>glycyll-TRNA synthetase beta chain</td>
<td>13a</td>
</tr>
<tr>
<td>sll1560</td>
<td>hisS</td>
<td>4.15E-03</td>
<td>-1.69</td>
<td>histidyl tRNA synthetase</td>
<td>13a</td>
</tr>
<tr>
<td>sll1074</td>
<td>leuS</td>
<td>8.60E-04</td>
<td>-1.90</td>
<td>leucyl-tRNA synthetase</td>
<td>13a</td>
</tr>
<tr>
<td>sll1550</td>
<td>lysS</td>
<td>5.56E-05</td>
<td>-2.25</td>
<td>lysyl-tRNA synthetase</td>
<td>13a</td>
</tr>
<tr>
<td>sll1820</td>
<td></td>
<td>3.74E-04</td>
<td>-1.72</td>
<td>tRNA pseudouridine synthase 1</td>
<td>13a</td>
</tr>
<tr>
<td>sll0008</td>
<td>ctpA</td>
<td>1.59E-03</td>
<td>-1.61</td>
<td>carboxy-terminal processing protease</td>
<td>13b</td>
</tr>
<tr>
<td>sll0193</td>
<td>rpb3</td>
<td>1.77E-04</td>
<td>-1.57</td>
<td>RNA-binding protein</td>
<td>13c</td>
</tr>
<tr>
<td>sll0434</td>
<td>efp</td>
<td>4.94E-05</td>
<td>-2.70</td>
<td>elongation factor P</td>
<td>13d</td>
</tr>
<tr>
<td>sll0145</td>
<td>frr, rnf</td>
<td>3.20E-03</td>
<td>-2.90</td>
<td>ribosome releasing factor</td>
<td>13d</td>
</tr>
<tr>
<td>sll0830</td>
<td>fus</td>
<td>1.98E-03</td>
<td>-2.11</td>
<td>elongation factor EF-G</td>
<td>13d</td>
</tr>
<tr>
<td>sll1463</td>
<td>fus</td>
<td>3.56E-04</td>
<td>-1.63</td>
<td>elongation factor EF-G</td>
<td>13d</td>
</tr>
<tr>
<td>sll0744</td>
<td>inflB</td>
<td>4.36E-04</td>
<td>-1.72</td>
<td>translation initiation factor IF-2</td>
<td>13d</td>
</tr>
<tr>
<td>sll0227</td>
<td>ppiB</td>
<td>5.52E-03</td>
<td>-2.03</td>
<td>peptidyl-prolyl cis-trans isomerase B, periplasmic protein</td>
<td>13d</td>
</tr>
<tr>
<td>sll1110</td>
<td>prfA</td>
<td>4.09E-04</td>
<td>-1.50</td>
<td>peptide chain release factor 1</td>
<td>13d</td>
</tr>
<tr>
<td>sll1261</td>
<td>taf</td>
<td>2.25E-05</td>
<td>-2.63</td>
<td>elongation factor TS</td>
<td>13d</td>
</tr>
<tr>
<td>sll1251</td>
<td></td>
<td>9.54E-03</td>
<td>-2.17</td>
<td>peptidyl-prolyl cis-trans isomerase</td>
<td>13d</td>
</tr>
<tr>
<td>sll0408</td>
<td></td>
<td>4.97E-04</td>
<td>-1.85</td>
<td>peptidyl-prolyl cis-trans isomerase</td>
<td>13d</td>
</tr>
<tr>
<td>sll1744</td>
<td>rpl1</td>
<td>1.87E-04</td>
<td>-4.32</td>
<td>50S ribosomal protein L1</td>
<td>13e</td>
</tr>
<tr>
<td>sll1745</td>
<td>rpl10</td>
<td>2.96E-05</td>
<td>-6.37</td>
<td>50S ribosomal protein L10</td>
<td>13e</td>
</tr>
<tr>
<td>sll1743</td>
<td>rpl11</td>
<td>2.73E-04</td>
<td>-3.14</td>
<td>50S ribosomal protein L11</td>
<td>13e</td>
</tr>
<tr>
<td>sll1746</td>
<td>rpl12</td>
<td>1.15E-05</td>
<td>-6.59</td>
<td>50S ribosomal protein L12</td>
<td>13e</td>
</tr>
<tr>
<td>sll1806</td>
<td>rpl14</td>
<td>1.70E-04</td>
<td>-5.63</td>
<td>50S ribosomal protein L14</td>
<td>13e</td>
</tr>
<tr>
<td>sll1813</td>
<td>rpl15</td>
<td>2.20E-05</td>
<td>-2.81</td>
<td>50S ribosomal protein L15</td>
<td>13e</td>
</tr>
<tr>
<td>sll1805</td>
<td>rpl16</td>
<td>9.33E-05</td>
<td>-7.46</td>
<td>50S ribosomal protein L16</td>
<td>13e</td>
</tr>
<tr>
<td>sll1819</td>
<td>rpl17</td>
<td>9.05E-05</td>
<td>-1.97</td>
<td>50S ribosomal protein L17</td>
<td>13e</td>
</tr>
<tr>
<td>sll1811</td>
<td>rpl18</td>
<td>4.85E-05</td>
<td>-3.77</td>
<td>50S ribosomal protein L18</td>
<td>13e</td>
</tr>
<tr>
<td>sll1740</td>
<td>rpl19</td>
<td>3.33E-04</td>
<td>-1.55</td>
<td>50S ribosomal protein L19</td>
<td>13e</td>
</tr>
<tr>
<td>sll1802</td>
<td>rpl2</td>
<td>5.14E-05</td>
<td>-7.50</td>
<td>50S ribosomal protein L2</td>
<td>13e</td>
</tr>
<tr>
<td>sll1803</td>
<td>rpl22</td>
<td>1.46E-05</td>
<td>-6.87</td>
<td>50S ribosomal protein L22</td>
<td>13e</td>
</tr>
<tr>
<td>sll1801</td>
<td>rpl23</td>
<td>9.05E-05</td>
<td>-8.06</td>
<td>50S ribosomal protein L23</td>
<td>13e</td>
</tr>
<tr>
<td>sll1807</td>
<td>rpl24</td>
<td>3.87E-05</td>
<td>-5.78</td>
<td>50S ribosomal protein L24</td>
<td>13e</td>
</tr>
<tr>
<td>ssl3436</td>
<td>rpl29</td>
<td>1.71E-04</td>
<td>-5.06</td>
<td>50S ribosomal protein L29</td>
<td>13e</td>
</tr>
<tr>
<td>sll1799</td>
<td>rpl3</td>
<td>4.85E-05</td>
<td>-8.92</td>
<td>50S ribosomal protein L3</td>
<td>13e</td>
</tr>
<tr>
<td>ssl3398</td>
<td>rpl33</td>
<td>1.78E-04</td>
<td>-2.05</td>
<td>50S ribosomal protein L33</td>
<td>13e</td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>smr0011</td>
<td>rpl34</td>
<td>4.63E-05</td>
<td>-1.86</td>
<td>50S ribosomal protein L34</td>
<td>13e</td>
</tr>
<tr>
<td>sll1808</td>
<td>rpl5</td>
<td>1.27E-05</td>
<td>-7.56</td>
<td>50S ribosomal protein L5</td>
<td>13e</td>
</tr>
<tr>
<td>sll1810</td>
<td>rpl6</td>
<td>9.20E-05</td>
<td>-4.81</td>
<td>50S ribosomal protein L6</td>
<td>13e</td>
</tr>
<tr>
<td>sll1101</td>
<td>rps10</td>
<td>4.22E-05</td>
<td>-2.59</td>
<td>30S ribosomal protein S10</td>
<td>13e</td>
</tr>
<tr>
<td>sll1817</td>
<td>rps11</td>
<td>7.55E-05</td>
<td>-1.92</td>
<td>30S ribosomal protein S11</td>
<td>13e</td>
</tr>
<tr>
<td>ssl3437</td>
<td>rps17</td>
<td>7.40E-06</td>
<td>-7.78</td>
<td>30S ribosomal protein S17</td>
<td>13e</td>
</tr>
<tr>
<td>ssr1399</td>
<td>rps18</td>
<td>2.69E-03</td>
<td>-1.91</td>
<td>30S ribosomal protein S18</td>
<td>13e</td>
</tr>
<tr>
<td>ssl3432</td>
<td>rps19</td>
<td>6.78E-06</td>
<td>-10.67</td>
<td>30S ribosomal protein S19</td>
<td>13e</td>
</tr>
<tr>
<td>sll1260</td>
<td>rps2</td>
<td>3.40E-04</td>
<td>-3.06</td>
<td>30S ribosomal protein S2</td>
<td>13e</td>
</tr>
<tr>
<td>sll1804</td>
<td>rps3</td>
<td>1.63E-05</td>
<td>-6.60</td>
<td>30S ribosomal protein S3</td>
<td>13e</td>
</tr>
<tr>
<td>sll1812</td>
<td>rps5</td>
<td>1.37E-04</td>
<td>-3.21</td>
<td>30S ribosomal protein S5</td>
<td>13e</td>
</tr>
<tr>
<td>sll1767</td>
<td>rps6</td>
<td>1.84E-04</td>
<td>-3.47</td>
<td>30S ribosomal protein S6</td>
<td>13e</td>
</tr>
<tr>
<td>sll1800</td>
<td>rps8</td>
<td>6.85E-06</td>
<td>-6.21</td>
<td>30S ribosomal protein S8</td>
<td>13e</td>
</tr>
<tr>
<td>slr1295</td>
<td>futA1</td>
<td>5.95E-04</td>
<td>-3.11</td>
<td>iron transport system substrate-binding protein</td>
<td>14</td>
</tr>
<tr>
<td>sll0771</td>
<td>gcoP</td>
<td>9.57E-04</td>
<td>-2.47</td>
<td>glucose transport protein</td>
<td>14</td>
</tr>
<tr>
<td>sll1599</td>
<td>mntA</td>
<td>4.18E-04</td>
<td>-1.65</td>
<td>manganese transport system ATP-binding protein MntA</td>
<td>14</td>
</tr>
<tr>
<td>sll1046</td>
<td>natC</td>
<td>2.50E-04</td>
<td>-2.25</td>
<td>Integral membrane protein of the ABC-type, Nat permease for neutral a.a.</td>
<td>14</td>
</tr>
<tr>
<td>slr0415</td>
<td>nhaS5</td>
<td>5.79E-03</td>
<td>-1.92</td>
<td>Na+/H+ antiporter</td>
<td>14</td>
</tr>
<tr>
<td>slr1920</td>
<td>pacS</td>
<td>1.02E-03</td>
<td>-2.56</td>
<td>copper-transporting P-type ATPase PacS</td>
<td>14</td>
</tr>
<tr>
<td>slr0681</td>
<td></td>
<td>1.86E-05</td>
<td>-2.98</td>
<td>probable sodium/calcium exchanger protein</td>
<td>14</td>
</tr>
<tr>
<td>slr1890</td>
<td></td>
<td>1.53E-04</td>
<td>-1.93</td>
<td>bacterioferritin</td>
<td>14</td>
</tr>
<tr>
<td>slr2057</td>
<td></td>
<td>2.10E-04</td>
<td>-1.92</td>
<td>water channel protein</td>
<td>14</td>
</tr>
<tr>
<td>sll0574</td>
<td></td>
<td>8.14E-03</td>
<td>-1.73</td>
<td>probable permease protein of lipopolysaccharide ABC transporter</td>
<td>14</td>
</tr>
<tr>
<td>sll0477</td>
<td></td>
<td>6.67E-04</td>
<td>-1.67</td>
<td>putative biopolymer transport ExbB-like protein</td>
<td>14</td>
</tr>
<tr>
<td>slr2043</td>
<td></td>
<td>1.13E-03</td>
<td>-1.54</td>
<td>zinc transport system substrate-binding protein</td>
<td>14</td>
</tr>
<tr>
<td>slr1047</td>
<td></td>
<td>4.38E-05</td>
<td>-2.60</td>
<td>light repressed protein A homolog</td>
<td>15a</td>
</tr>
<tr>
<td>ssl2250</td>
<td></td>
<td>1.27E-04</td>
<td>-2.28</td>
<td>bacterioferritin-associated ferredoxin</td>
<td>15b</td>
</tr>
<tr>
<td>sll0648</td>
<td></td>
<td>5.86E-04</td>
<td>-1.66</td>
<td>probable glycosyltransferase</td>
<td>15b</td>
</tr>
<tr>
<td>slr2094</td>
<td></td>
<td>4.13E-03</td>
<td>-2.73</td>
<td>fructose-1,6-/sedoheptulose-1,7-bisphosphatase</td>
<td>15d</td>
</tr>
<tr>
<td>sll1595</td>
<td></td>
<td>8.58E-04</td>
<td>-1.51</td>
<td>circadian clock protein KaiC homolog</td>
<td>15d</td>
</tr>
<tr>
<td>slr1942</td>
<td></td>
<td>3.86E-03</td>
<td>-1.80</td>
<td>circadian clock protein KaiC homolog</td>
<td>15d</td>
</tr>
<tr>
<td>slr1761</td>
<td></td>
<td>4.70E-05</td>
<td>-2.70</td>
<td>FKBP-type peptidyl-prolyl cis-trans isomerase, periplasmic protein</td>
<td>15d</td>
</tr>
<tr>
<td>sll1308</td>
<td></td>
<td>8.20E-04</td>
<td>-2.29</td>
<td>probable oxidoreductase</td>
<td>15d</td>
</tr>
<tr>
<td>slr1106</td>
<td></td>
<td>8.53E-05</td>
<td>-2.12</td>
<td>prohibitin</td>
<td>15d</td>
</tr>
<tr>
<td>slr1945</td>
<td></td>
<td>2.66E-03</td>
<td>-1.73</td>
<td>1-deoxyxylulose-5-phosphate synthase</td>
<td>15d</td>
</tr>
<tr>
<td>slr1916</td>
<td></td>
<td>4.10E-04</td>
<td>-1.68</td>
<td>probable esterase</td>
<td>15d</td>
</tr>
<tr>
<td>slr1521</td>
<td></td>
<td>1.79E-03</td>
<td>-1.59</td>
<td>flavoprotein</td>
<td>15d</td>
</tr>
<tr>
<td>sll0550</td>
<td></td>
<td>3.40E-04</td>
<td>-1.54</td>
<td>flavoprotein</td>
<td>15d</td>
</tr>
<tr>
<td>slr1284</td>
<td></td>
<td>1.30E-03</td>
<td>-1.52</td>
<td>esterase</td>
<td>15d</td>
</tr>
<tr>
<td>smr0010</td>
<td></td>
<td>5.51E-05</td>
<td>-3.24</td>
<td>putative transposase</td>
<td>15e</td>
</tr>
<tr>
<td>srr2227</td>
<td></td>
<td>6.61E-04</td>
<td>-2.60</td>
<td>putative transposase</td>
<td>15e</td>
</tr>
<tr>
<td>sll0800</td>
<td></td>
<td>2.99E-04</td>
<td>-1.77</td>
<td>putative transposase [ISY802_c]</td>
<td>15e</td>
</tr>
<tr>
<td>sll1792</td>
<td></td>
<td>6.49E-03</td>
<td>-1.58</td>
<td>putative transposase [ISY802_a]</td>
<td>15e</td>
</tr>
<tr>
<td>sll1911</td>
<td></td>
<td>1.96E-03</td>
<td>-4.71</td>
<td>glutamine synthetase inactivating factor IF7</td>
<td>16</td>
</tr>
<tr>
<td>sll1281</td>
<td></td>
<td>1.31E-04</td>
<td>-5.04</td>
<td>photosystem II PsbZ protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0118</td>
<td></td>
<td>5.08E-05</td>
<td>-3.95</td>
<td>possible Rubisco chaperonin</td>
<td>16</td>
</tr>
<tr>
<td>sll1780</td>
<td></td>
<td>4.26E-05</td>
<td>-2.88</td>
<td>hypothetical protein YCF54</td>
<td>16</td>
</tr>
<tr>
<td>sll1214</td>
<td></td>
<td>5.61E-04</td>
<td>-1.52</td>
<td>hypothetical protein YCF59</td>
<td>16</td>
</tr>
<tr>
<td>sll0253</td>
<td></td>
<td>6.12E-06</td>
<td>-21.21</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
</tbody>
</table>
Appendices

Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssr0692</td>
<td>2,79E-04</td>
<td>-9,35</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ssr1251</td>
<td>7,55E-06</td>
<td>-8,02</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0863</td>
<td>1,36E-04</td>
<td>-4,97</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1634</td>
<td>9,05E-03</td>
<td>-4,63</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0483</td>
<td>3,87E-05</td>
<td>-4,33</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1963</td>
<td>4,97E-05</td>
<td>-3,58</td>
<td>water-soluble carotenoid protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1500</td>
<td>5,28E-05</td>
<td>-3,41</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0244</td>
<td>1,52E-05</td>
<td>-3,19</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1654</td>
<td>2,03E-04</td>
<td>-3,19</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1098</td>
<td>2,98E-04</td>
<td>-3,17</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll2013</td>
<td>2,27E-03</td>
<td>-3,16</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0144</td>
<td>3,97E-05</td>
<td>-3,13</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1528</td>
<td>2,99E-05</td>
<td>-3,06</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ssr2062</td>
<td>4,18E-05</td>
<td>-2,96</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr2070</td>
<td>1,46E-05</td>
<td>-2,92</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1394</td>
<td>3,32E-05</td>
<td>-2,91</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1635</td>
<td>3,62E-05</td>
<td>-2,86</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1209</td>
<td>1,80E-05</td>
<td>-2,83</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1638</td>
<td>1,20E-05</td>
<td>-2,77</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0680</td>
<td>7,56E-05</td>
<td>-2,73</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0013</td>
<td>1,74E-04</td>
<td>-2,68</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1386</td>
<td>1,95E-04</td>
<td>-2,52</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1513</td>
<td>3,99E-05</td>
<td>-2,49</td>
<td>periplasmic protein, function unknown</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0735</td>
<td>1,85E-05</td>
<td>-2,46</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll3803</td>
<td>2,24E-05</td>
<td>-2,46</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1209</td>
<td>1,69E-04</td>
<td>-2,42</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0695</td>
<td>5,28E-05</td>
<td>-2,42</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ssr1375</td>
<td>4,64E-05</td>
<td>-2,32</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1390</td>
<td>2,81E-05</td>
<td>-2,28</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0172</td>
<td>9,42E-05</td>
<td>-2,20</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0105</td>
<td>1,75E-03</td>
<td>-2,20</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1109</td>
<td>6,68E-05</td>
<td>-2,19</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1793</td>
<td>1,28E-03</td>
<td>-2,18</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1079</td>
<td>1,11E-04</td>
<td>-2,17</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1469</td>
<td>9,70E-04</td>
<td>-2,17</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll1110</td>
<td>8,12E-05</td>
<td>-2,17</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1431</td>
<td>3,39E-05</td>
<td>-2,14</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0615</td>
<td>3,62E-05</td>
<td>-2,07</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1606</td>
<td>9,49E-05</td>
<td>-2,07</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr1656</td>
<td>2,45E-04</td>
<td>-1,96</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0351</td>
<td>7,62E-04</td>
<td>-1,96</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0990</td>
<td>4,53E-03</td>
<td>-1,94</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ssr1562</td>
<td>1,27E-03</td>
<td>-1,93</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll2002</td>
<td>9,07E-05</td>
<td>-1,91</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0867</td>
<td>2,41E-03</td>
<td>-1,91</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0550</td>
<td>4,55E-05</td>
<td>-1,90</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0283</td>
<td>5,47E-05</td>
<td>-1,89</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>sll0598</td>
<td>1,65E-04</td>
<td>-1,89</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>slr0146</td>
<td>4,51E-03</td>
<td>-1,88</td>
<td>hypothetical protein</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1911</td>
<td>4.39E-03</td>
<td>-1.88</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1543</td>
<td>1.39E-03</td>
<td>-1.88</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl1498</td>
<td>7.33E-05</td>
<td>-1.88</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0519</td>
<td>1.76E-04</td>
<td>-1.85</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1600</td>
<td>6.64E-05</td>
<td>-1.82</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1935</td>
<td>1.47E-04</td>
<td>-1.81</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1704</td>
<td>1.52E-03</td>
<td>-1.79</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr2005</td>
<td>6.71E-04</td>
<td>-1.78</td>
<td></td>
<td>periplasmic protein, function unknown</td>
<td>16</td>
</tr>
<tr>
<td>sll1498</td>
<td>7.33E-05</td>
<td>-1.88</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1451</td>
<td>1.70E-04</td>
<td>-1.77</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0148</td>
<td>1.33E-04</td>
<td>-1.77</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1188</td>
<td>2.48E-03</td>
<td>-1.76</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0476</td>
<td>6.67E-05</td>
<td>-1.54</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1210</td>
<td>3.08E-05</td>
<td>-2.17</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1583</td>
<td>7.16E-03</td>
<td>-2.14</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0630</td>
<td>1.41E-04</td>
<td>-2.10</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0518</td>
<td>4.41E-05</td>
<td>-2.07</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1456</td>
<td>3.58E-03</td>
<td>-1.98</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix 4B (continued). List of significantly down-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1873</td>
<td>6,90E-03</td>
<td>-1,97</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssl1326</td>
<td>1,59E-03</td>
<td>-1,97</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>sll0022</td>
<td>9,15E-05</td>
<td>-1,92</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>sll0624</td>
<td>4,71E-04</td>
<td>-1,89</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>sll0068</td>
<td>9,07E-05</td>
<td>-1,87</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr0145</td>
<td>1,36E-04</td>
<td>-1,87</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssr2333</td>
<td>1,37E-04</td>
<td>-1,83</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr1396</td>
<td>1,28E-03</td>
<td>-1,82</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssr2553</td>
<td>3,17E-03</td>
<td>-1,81</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssr1853</td>
<td>1,27E-03</td>
<td>-1,80</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr1788</td>
<td>1,43E-04</td>
<td>-1,73</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr0376</td>
<td>1,25E-03</td>
<td>-1,72</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>sll0140</td>
<td>5,08E-03</td>
<td>-1,66</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssr0680</td>
<td>3,89E-03</td>
<td>-1,61</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr0962</td>
<td>3,30E-04</td>
<td>-1,58</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ssl3142</td>
<td>1,56E-04</td>
<td>-1,57</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr0318</td>
<td>3,44E-03</td>
<td>-1,56</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>sll0066</td>
<td>2,00E-04</td>
<td>-1,56</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr1437</td>
<td>3,62E-04</td>
<td>-1,52</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>slr0209</td>
<td>2,45E-03</td>
<td>-1,50</td>
<td>unknown protein</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4C. List of significantly up-regulated genes.

ORF, gene, gene product, category and subcategory and functional annotation are as in Cyanobase (genome.kazusa.or.jp/cyanobase). Category numbers are assigned in alphabetical order. Categories description is listed in Appendix 4A. p-value - significance of differential expression, adjusted for multiple hypothesis testing using the false discovery rate; FC - fold change; only genes with p < 0.01 and FC > 1.5 are listed. Top 50 of most strongly down-regulated genes are highlighted in bold.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll0402</td>
<td>aspC</td>
<td>4.52E-03</td>
<td>1.55</td>
<td>aspartate aminotransferase</td>
<td>1b</td>
</tr>
<tr>
<td>sir1698</td>
<td>argB</td>
<td>4.02E-04</td>
<td>1.54</td>
<td>N-acetylglutamate kinase</td>
<td>1d</td>
</tr>
<tr>
<td>sir1133</td>
<td>argH</td>
<td>8.46E-04</td>
<td>1.51</td>
<td>L-argininosuccinate lyase</td>
<td>1d</td>
</tr>
<tr>
<td>sir0899</td>
<td>cynS</td>
<td>1.67E-05</td>
<td>3.56</td>
<td>cyanate lyase</td>
<td>1d</td>
</tr>
<tr>
<td>ssl0707</td>
<td>glnB</td>
<td>4.35E-05</td>
<td>3.17</td>
<td>nitrogen regulatory protein P-II</td>
<td>1d</td>
</tr>
<tr>
<td>sir0288</td>
<td>glnN</td>
<td>8.45E-03</td>
<td>3.23</td>
<td>glutamate--ammonia ligase</td>
<td>1d</td>
</tr>
<tr>
<td>sir0784</td>
<td>merR</td>
<td>1.11E-04</td>
<td>4.04</td>
<td>nitrate</td>
<td>1d</td>
</tr>
<tr>
<td>sir0898</td>
<td>nirA</td>
<td>1.33E-05</td>
<td>3.83</td>
<td>ferredoxin--nitrite reductase</td>
<td>1d</td>
</tr>
<tr>
<td>sir1254</td>
<td>pds,</td>
<td>3.17E-04</td>
<td>1.59</td>
<td>pythoene dehydrogenase (pythoene desaturase)</td>
<td>2a</td>
</tr>
<tr>
<td>slr0378</td>
<td>cobA</td>
<td>2.31E-03</td>
<td>1.79</td>
<td>uroporphyrin-III C-methyltransferase</td>
<td>2b</td>
</tr>
<tr>
<td>sir0969</td>
<td>cobJ</td>
<td>1.88E-03</td>
<td>1.55</td>
<td>precorrin methylase</td>
<td>2b</td>
</tr>
<tr>
<td>sir1368</td>
<td>cobL</td>
<td>5.09E-04</td>
<td>1.58</td>
<td>precorrin decarboxylase</td>
<td>2b</td>
</tr>
<tr>
<td>sir0794</td>
<td>corR,</td>
<td>7.73E-03</td>
<td>1.53</td>
<td>cobalt-dependent transcriptional regulator</td>
<td>2b</td>
</tr>
<tr>
<td>sir0900</td>
<td>moeA</td>
<td>2.02E-04</td>
<td>2.04</td>
<td>molybdopterin biosynthesis MoeA protein</td>
<td>2e</td>
</tr>
<tr>
<td>sir1271</td>
<td></td>
<td>1.78E-04</td>
<td>2.85</td>
<td>probable porin; major outer membrane protein</td>
<td>3a</td>
</tr>
<tr>
<td>sir0827</td>
<td></td>
<td>1.30E-03</td>
<td>1.51</td>
<td>alanine racemase</td>
<td>3b</td>
</tr>
<tr>
<td>sir0938</td>
<td>rfbF</td>
<td>2.50E-05</td>
<td>2.41</td>
<td>glucose-1-phosphate cytidylyltransferase</td>
<td>3c</td>
</tr>
<tr>
<td>sir0948</td>
<td>rfbG</td>
<td>1.58E-04</td>
<td>2.04</td>
<td>CDP-glucose 4,6-dehydratase</td>
<td>3c</td>
</tr>
<tr>
<td>sir1064</td>
<td></td>
<td>2.37E-04</td>
<td>2.06</td>
<td>plobable glycosyltransferase</td>
<td>3c</td>
</tr>
<tr>
<td>sir1072</td>
<td></td>
<td>1.82E-04</td>
<td>1.85</td>
<td>GDP-D-mannose dehydratase</td>
<td>3c</td>
</tr>
<tr>
<td>sir1294</td>
<td></td>
<td>2.43E-04</td>
<td>1.92</td>
<td>methyl-accepting chemotaxis protein</td>
<td>4b</td>
</tr>
<tr>
<td>srr2784</td>
<td></td>
<td>4.47E-04</td>
<td>1.64</td>
<td>antitoxin ChpI homolog</td>
<td>4c</td>
</tr>
<tr>
<td>sir1377</td>
<td></td>
<td>1.58E-04</td>
<td>1.70</td>
<td>leader peptidase I (signal peptidase I)</td>
<td>4d</td>
</tr>
<tr>
<td>ssl2922</td>
<td>vapB</td>
<td>2.81E-04</td>
<td>1.64</td>
<td>similar to virulence-associated protein VapB</td>
<td>4e</td>
</tr>
<tr>
<td>slr2923</td>
<td>vapC</td>
<td>1.12E-04</td>
<td>1.93</td>
<td>similar to virulence-associated protein VapC</td>
<td>4e</td>
</tr>
<tr>
<td>ssl0009</td>
<td></td>
<td>3.70E-04</td>
<td>1.51</td>
<td>similar to virulence-associated protein VapC</td>
<td>4e</td>
</tr>
<tr>
<td>sir1064</td>
<td>glgB</td>
<td>6.52E-04</td>
<td>1.59</td>
<td>1,4-alpha-glucan branching enzyme</td>
<td>5b</td>
</tr>
<tr>
<td>sir1830</td>
<td>phaC</td>
<td>1.52E-04</td>
<td>2.60</td>
<td>poly(3-hydroxyalkanoate) synthase</td>
<td>5b</td>
</tr>
<tr>
<td>sir1367</td>
<td></td>
<td>7.75E-05</td>
<td>2.76</td>
<td>glycogen phosphorylase</td>
<td>5b</td>
</tr>
<tr>
<td>sir0237</td>
<td></td>
<td>1.20E-03</td>
<td>1.83</td>
<td>glycogen operon protein GlgX homolog</td>
<td>5b</td>
</tr>
<tr>
<td>sir0864</td>
<td>gap1</td>
<td>5.75E-03</td>
<td>2.48</td>
<td>glyceraldehyde 3-phosphate dehydrogenase 1 (NAD+)</td>
<td>6b</td>
</tr>
<tr>
<td>sll0587</td>
<td></td>
<td>6.16E-04</td>
<td>2.10</td>
<td>pyruvate kinase</td>
<td>6b</td>
</tr>
<tr>
<td>sir1843</td>
<td>zwf</td>
<td>5.23E-04</td>
<td>1.60</td>
<td>glucose 6-phosphate dehydrogenase</td>
<td>6c</td>
</tr>
<tr>
<td>sll0920</td>
<td>ppc</td>
<td>7.28E-04</td>
<td>1.56</td>
<td>phosphoenolpyruvate carboxylase</td>
<td>6d</td>
</tr>
<tr>
<td>sir1067</td>
<td></td>
<td>4.11E-05</td>
<td>2.31</td>
<td>UDP-glucose 4-epimerase</td>
<td>6f</td>
</tr>
<tr>
<td>sir1617</td>
<td></td>
<td>2.50E-05</td>
<td>2.31</td>
<td>similar to UDP-glucose 4-epimerase</td>
<td>6f</td>
</tr>
<tr>
<td>sir0493</td>
<td></td>
<td>7.75E-05</td>
<td>1.84</td>
<td>similar to mannose-1-phosphate guanylyltransferase</td>
<td>6f</td>
</tr>
<tr>
<td>sir1078</td>
<td></td>
<td>1.41E-03</td>
<td>1.73</td>
<td>similar to UDP-glucose 4-epimerase</td>
<td>6f</td>
</tr>
<tr>
<td>sir1289</td>
<td>icd</td>
<td>6.96E-05</td>
<td>2.38</td>
<td>isocitrate dehydrogenase (NADP+)</td>
<td>6g</td>
</tr>
<tr>
<td>sir1993</td>
<td>phaA</td>
<td>1.53E-03</td>
<td>2.04</td>
<td>PHA-specific beta-ketothiolase</td>
<td>7</td>
</tr>
<tr>
<td>sll0330</td>
<td></td>
<td>8.82E-05</td>
<td>3.74</td>
<td>sepiapterine reductase</td>
<td>7</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>slr0054</td>
<td>1.40E-03</td>
<td>2.17</td>
<td>diacylglycerol kinase</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>slr0574</td>
<td>1.00E-03</td>
<td>1.71</td>
<td>cytochrome P450</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>slr0851</td>
<td>5.17E-04</td>
<td>2.05</td>
<td>type 2 NADH dehydrogenase</td>
<td>8d</td>
<td></td>
</tr>
<tr>
<td>sll0452</td>
<td>1.21E-05</td>
<td>19.40</td>
<td>phycobilisome degradation protein NbiA</td>
<td>8g</td>
<td></td>
</tr>
<tr>
<td>sll0453</td>
<td>2.12E-05</td>
<td>9.30</td>
<td>phycobilisome degradation protein NbiA</td>
<td>8g</td>
<td></td>
</tr>
<tr>
<td>sll1899</td>
<td>3.42E-03</td>
<td>1.75</td>
<td>cytochrome c oxidase folding protein</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>slr1136</td>
<td>1.27E-05</td>
<td>3.90</td>
<td>cytochrome c oxidase subunit II</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>slr1137</td>
<td>6.48E-05</td>
<td>2.47</td>
<td>cytochrome c oxidase subunit I</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>slr1379</td>
<td>3.67E-04</td>
<td>2.30</td>
<td>quinol oxidase subunit I</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>slr1380</td>
<td>6.86E-05</td>
<td>2.15</td>
<td>quinol oxidase subunit II</td>
<td>8h</td>
<td></td>
</tr>
<tr>
<td>sll1382</td>
<td>2.18E-03</td>
<td>1.50</td>
<td>ferredoxin, petF-like protein</td>
<td>8i</td>
<td></td>
</tr>
<tr>
<td>sll2559</td>
<td>7.11E-04</td>
<td>1.76</td>
<td>ferredoxin</td>
<td>8i</td>
<td></td>
</tr>
<tr>
<td>sll0222</td>
<td>1.50E-03</td>
<td>1.54</td>
<td>two-component hybrid sensor and regulator</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>sll1671</td>
<td>2.00E-04</td>
<td>1.84</td>
<td>two-component system sensory histidine kinase</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>sll1860</td>
<td>4.76E-04</td>
<td>1.66</td>
<td>carbon metabolisms regulatory protein IcfG</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr1594</td>
<td>5.12E-05</td>
<td>9.98</td>
<td>two-component response regulator PatA subfamily</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr1330</td>
<td>2.53E-04</td>
<td>2.82</td>
<td>two-component system response regulator OmpR subfamily</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr1291</td>
<td>1.04E-03</td>
<td>2.61</td>
<td>two-component response regulator PatA subfamily</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr0690</td>
<td>9.02E-03</td>
<td>2.21</td>
<td>probable transcription regulator</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr0782</td>
<td>2.09E-03</td>
<td>2.06</td>
<td>transcriptional regulator</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr1694</td>
<td>1.06E-03</td>
<td>1.87</td>
<td>expression activator appA homolog</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr0741</td>
<td>9.64E-05</td>
<td>1.80</td>
<td>transcriptional regulator</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>slr0764</td>
<td>1.23E-05</td>
<td>4.00</td>
<td>urea transport system ATP-binding protein</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>sll1081</td>
<td>4.50E-05</td>
<td>5.53</td>
<td>ABC transport system permease protein</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr0536</td>
<td>9.22E-03</td>
<td>2.97</td>
<td>probable potassium channel protein</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr1200</td>
<td>5.16E-05</td>
<td>2.06</td>
<td>urea transport system permease protein</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr0977</td>
<td>3.54E-04</td>
<td>1.92</td>
<td>ABC transporter, permease component</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr0982</td>
<td>3.92E-03</td>
<td>1.77</td>
<td>probably polysaccharide ABC transporter ATP binding subunit</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr1374</td>
<td>3.39E-04</td>
<td>1.73</td>
<td>probable sugar transporter</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>slr2002</td>
<td>5.48E-04</td>
<td>1.53</td>
<td>cyanophycin synthetase</td>
<td>15a</td>
<td></td>
</tr>
<tr>
<td>sll2595</td>
<td>9.82E-04</td>
<td>1.83</td>
<td>high light-inducible polypeptide HIIB, CAB/ELIP/HLIP superfamily</td>
<td>15a</td>
<td></td>
</tr>
<tr>
<td>sll0086</td>
<td>1.38E-03</td>
<td>1.78</td>
<td>putative arsenical pump-driving ATPase</td>
<td>15b</td>
<td></td>
</tr>
<tr>
<td>sll1159</td>
<td>3.72E-04</td>
<td>1.55</td>
<td>probable bacterioferritin comigratory protein</td>
<td>15b</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1220</td>
<td>hoxE</td>
<td>1.82E-04</td>
<td>1.81</td>
<td>putative diaphorase subunit of the bidirectional hydrogenase</td>
<td>15c</td>
</tr>
<tr>
<td>sll1221</td>
<td>hoxF</td>
<td>2.40E-04</td>
<td>1.56</td>
<td>diaphorase subunit of the bidirectional hydrogenase</td>
<td>15c</td>
</tr>
<tr>
<td>sll1226</td>
<td>hoxH</td>
<td>3.30E-04</td>
<td>2.55</td>
<td>hydrogenase subunit of the bidirectional hydrogenase</td>
<td>15c</td>
</tr>
<tr>
<td>sll1223</td>
<td>hoxU</td>
<td>2.65E-05</td>
<td>3.22</td>
<td>diaphorase subunit of the bidirectional hydrogenase</td>
<td>15c</td>
</tr>
<tr>
<td>sll1432</td>
<td>hypB</td>
<td>1.06E-04</td>
<td>1.89</td>
<td>putative hydrogenase expression/formation protein HypB</td>
<td>15c</td>
</tr>
<tr>
<td>sll1079</td>
<td>hypB</td>
<td>3.45E-03</td>
<td>1.68</td>
<td>putative hydrogenase expression/formation protein HypB</td>
<td>15c</td>
</tr>
<tr>
<td>sll3580</td>
<td>hypC</td>
<td>2.60E-03</td>
<td>1.58</td>
<td>putative hydrogenase expression/formation protein HypC</td>
<td>15c</td>
</tr>
<tr>
<td>sll1222</td>
<td>hoxJ</td>
<td>2.70E-04</td>
<td>1.59</td>
<td>circadian clock protein KaiA homolog</td>
<td>15c</td>
</tr>
<tr>
<td>sll1063</td>
<td></td>
<td>1.34E-05</td>
<td>3.46</td>
<td>probable glycosyltransferase</td>
<td>15c</td>
</tr>
<tr>
<td>sll1065</td>
<td></td>
<td>1.20E-05</td>
<td>3.08</td>
<td>probable glycosyltransferase</td>
<td>15c</td>
</tr>
<tr>
<td>slr0377</td>
<td></td>
<td>2.92E-03</td>
<td>1.64</td>
<td>probable glycosyltransferase</td>
<td>15c</td>
</tr>
<tr>
<td>slr1610</td>
<td></td>
<td>8.04E-04</td>
<td>1.78</td>
<td>putative C-3 methyl transferase</td>
<td>15c</td>
</tr>
<tr>
<td>slr0777</td>
<td></td>
<td>4.94E-04</td>
<td>1.73</td>
<td>putative carboxypeptidase</td>
<td>15c</td>
</tr>
<tr>
<td>ssr0871</td>
<td></td>
<td>3.53E-05</td>
<td>2.21</td>
<td>putative transposase [ISY352_e1]</td>
<td>15e</td>
</tr>
<tr>
<td>ssr0460</td>
<td></td>
<td>4.91E-05</td>
<td>2.07</td>
<td>putative transposase [ISY352_g1]</td>
<td>15e</td>
</tr>
<tr>
<td>ssr0817</td>
<td></td>
<td>5.81E-05</td>
<td>1.91</td>
<td>putative transposase [ISY352_g2]</td>
<td>15e</td>
</tr>
<tr>
<td>ssr3452</td>
<td></td>
<td>3.53E-04</td>
<td>1.91</td>
<td>putative transposase [ISY352_a]</td>
<td>15e</td>
</tr>
<tr>
<td>slr1960</td>
<td></td>
<td>1.81E-04</td>
<td>1.83</td>
<td>putative transposase</td>
<td>15e</td>
</tr>
<tr>
<td>slr1962</td>
<td></td>
<td>2.48E-04</td>
<td>1.78</td>
<td>putative transposase [ISY352_c2]</td>
<td>15e</td>
</tr>
<tr>
<td>slr0665</td>
<td></td>
<td>9.49E-06</td>
<td>1.84</td>
<td>acyl-CoA synthase</td>
<td>15c</td>
</tr>
<tr>
<td>slr1611</td>
<td></td>
<td>5.78E-05</td>
<td>3.29</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1069</td>
<td></td>
<td>1.61E-04</td>
<td>3.29</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1612</td>
<td></td>
<td>2.30E-05</td>
<td>3.85</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1119</td>
<td></td>
<td>3.89E-05</td>
<td>3.36</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1770</td>
<td></td>
<td>3.21E-05</td>
<td>5.35</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1593</td>
<td></td>
<td>7.52E-05</td>
<td>3.95</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1612</td>
<td></td>
<td>2.30E-05</td>
<td>3.85</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr0888</td>
<td></td>
<td>7.40E-06</td>
<td>3.73</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1634</td>
<td></td>
<td>7.18E-05</td>
<td>3.40</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr0645</td>
<td></td>
<td>1.67E-05</td>
<td>3.40</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1119</td>
<td></td>
<td>3.89E-05</td>
<td>3.36</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1770</td>
<td></td>
<td>3.21E-05</td>
<td>5.35</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1593</td>
<td></td>
<td>7.52E-05</td>
<td>3.95</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1612</td>
<td></td>
<td>2.30E-05</td>
<td>3.85</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1119</td>
<td></td>
<td>3.89E-05</td>
<td>3.36</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1770</td>
<td></td>
<td>3.21E-05</td>
<td>5.35</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1593</td>
<td></td>
<td>7.52E-05</td>
<td>3.95</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1612</td>
<td></td>
<td>2.30E-05</td>
<td>3.85</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
<tr>
<td>slr1614</td>
<td></td>
<td>6.79E-04</td>
<td>3.16</td>
<td>hypothetical protein</td>
<td>15c</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1895</td>
<td>ORF</td>
<td>1.80E-05</td>
<td>3.14</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr1766</td>
<td>ORF</td>
<td>1.07E-05</td>
<td>3.00</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2377</td>
<td>ORF</td>
<td>1.10E-04</td>
<td>2.99</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl3297</td>
<td>ORF</td>
<td>2.94E-04</td>
<td>2.98</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>srr1966</td>
<td>ORF</td>
<td>1.64E-03</td>
<td>2.86</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0981</td>
<td>ORF</td>
<td>4.22E-05</td>
<td>2.83</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0374</td>
<td>ORF</td>
<td>7.18E-05</td>
<td>2.71</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1504</td>
<td>ORF</td>
<td>2.94E-05</td>
<td>2.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1814</td>
<td>ORF</td>
<td>1.64E-05</td>
<td>2.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1619</td>
<td>ORF</td>
<td>1.99E-04</td>
<td>2.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1081</td>
<td>ORF</td>
<td>1.73E-05</td>
<td>2.59</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll2921</td>
<td>ORF</td>
<td>5.66E-05</td>
<td>2.58</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>srr1765</td>
<td>ORF</td>
<td>1.64E-05</td>
<td>2.55</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl1918</td>
<td>ORF</td>
<td>1.05E-04</td>
<td>2.53</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1080</td>
<td>ORF</td>
<td>4.50E-05</td>
<td>2.52</td>
<td>ABC transport system substrate-binding protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0983</td>
<td>ORF</td>
<td>3.36E-05</td>
<td>2.51</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0185</td>
<td>ORF</td>
<td>4.18E-04</td>
<td>2.50</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1504</td>
<td>ORF</td>
<td>1.83E-05</td>
<td>2.50</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1774</td>
<td>ORF</td>
<td>1.92E-05</td>
<td>2.49</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1715</td>
<td>ORF</td>
<td>3.36E-04</td>
<td>2.47</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0890</td>
<td>ORF</td>
<td>3.26E-05</td>
<td>2.47</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0299</td>
<td>ORF</td>
<td>6.50E-05</td>
<td>2.41</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0312</td>
<td>ORF</td>
<td>5.28E-05</td>
<td>2.39</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1505</td>
<td>ORF</td>
<td>2.05E-03</td>
<td>2.37</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0300</td>
<td>ORF</td>
<td>5.11E-04</td>
<td>2.37</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0740</td>
<td>ORF</td>
<td>2.82E-04</td>
<td>2.35</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1813</td>
<td>ORF</td>
<td>2.64E-05</td>
<td>2.34</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1083</td>
<td>ORF</td>
<td>7.30E-05</td>
<td>2.33</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1832</td>
<td>ORF</td>
<td>7.52E-04</td>
<td>2.28</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0810</td>
<td>ORF</td>
<td>4.82E-04</td>
<td>2.28</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0957</td>
<td>ORF</td>
<td>3.10E-04</td>
<td>2.26</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0364</td>
<td>ORF</td>
<td>2.70E-05</td>
<td>2.25</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll2920</td>
<td>ORF</td>
<td>1.27E-04</td>
<td>2.24</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1969</td>
<td>ORF</td>
<td>2.61E-04</td>
<td>2.22</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1201</td>
<td>ORF</td>
<td>1.38E-04</td>
<td>2.22</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0208</td>
<td>ORF</td>
<td>8.24E-05</td>
<td>2.21</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0205</td>
<td>ORF</td>
<td>3.38E-05</td>
<td>2.18</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1657</td>
<td>ORF</td>
<td>4.91E-04</td>
<td>2.17</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0771</td>
<td>ORF</td>
<td>6.50E-05</td>
<td>2.16</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1300</td>
<td>ORF</td>
<td>1.56E-04</td>
<td>2.15</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1664</td>
<td>ORF</td>
<td>2.61E-04</td>
<td>2.15</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll2128</td>
<td>ORF</td>
<td>8.50E-05</td>
<td>2.15</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1290</td>
<td>ORF</td>
<td>3.53E-05</td>
<td>2.14</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0082</td>
<td>ORF</td>
<td>2.48E-04</td>
<td>2.13</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1609</td>
<td>ORF</td>
<td>8.53E-04</td>
<td>2.11</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>srr0756</td>
<td>ORF</td>
<td>2.22E-05</td>
<td>2.11</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>srr0761</td>
<td>ORF</td>
<td>8.07E-05</td>
<td>2.09</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll0549</td>
<td>7,95E-03</td>
<td>2,08</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr0757</td>
<td>3,39E-05</td>
<td>2,07</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1314</td>
<td>4,50E-05</td>
<td>2,07</td>
<td></td>
<td>putative C4-dicarboxylase binding protein, periplasmic protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr0663</td>
<td>1,35E-04</td>
<td>2,06</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1039</td>
<td>1,75E-04</td>
<td>2,04</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll0742</td>
<td>1,04E-04</td>
<td>2,03</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1812</td>
<td>9,09E-05</td>
<td>2,02</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0207</td>
<td>9,43E-04</td>
<td>2,00</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0292</td>
<td>1,99E-04</td>
<td>2,00</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1541</td>
<td>4,42E-04</td>
<td>1,98</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1440</td>
<td>8,00E-03</td>
<td>1,98</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1355</td>
<td>1,08E-04</td>
<td>1,97</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0978</td>
<td>5,17E-05</td>
<td>1,97</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0976</td>
<td>6,33E-05</td>
<td>1,96</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1117</td>
<td>4,92E-05</td>
<td>1,96</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1783</td>
<td>6,67E-05</td>
<td>1,93</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1168</td>
<td>2,65E-04</td>
<td>1,92</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0885</td>
<td>1,41E-04</td>
<td>1,91</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1913</td>
<td>4,33E-05</td>
<td>1,90</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1677</td>
<td>1,48E-04</td>
<td>1,90</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1752</td>
<td>3,69E-04</td>
<td>1,87</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0373</td>
<td>9,74E-03</td>
<td>1,87</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0926</td>
<td>5,56E-05</td>
<td>1,86</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1898</td>
<td>1,55E-04</td>
<td>1,86</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1275</td>
<td>3,22E-04</td>
<td>1,86</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2754</td>
<td>5,76E-05</td>
<td>1,86</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1004</td>
<td>7,46E-05</td>
<td>1,85</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0995</td>
<td>1,25E-04</td>
<td>1,85</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0744</td>
<td>3,47E-03</td>
<td>1,85</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1184</td>
<td>5,65E-04</td>
<td>1,84</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1276</td>
<td>1,16E-04</td>
<td>1,84</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0238</td>
<td>1,73E-04</td>
<td>1,81</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1767</td>
<td>6,11E-05</td>
<td>1,81</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr2122</td>
<td>1,95E-04</td>
<td>1,80</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1203</td>
<td>2,19E-04</td>
<td>1,80</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1119</td>
<td>1,51E-03</td>
<td>1,80</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1116</td>
<td>8,49E-05</td>
<td>1,80</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1072</td>
<td>6,87E-05</td>
<td>1,79</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0869</td>
<td>1,33E-03</td>
<td>1,79</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1811</td>
<td>1,56E-04</td>
<td>1,79</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2615</td>
<td>1,61E-04</td>
<td>1,77</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1825</td>
<td>6,61E-05</td>
<td>1,77</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0192</td>
<td>5,10E-03</td>
<td>1,77</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2066</td>
<td>8,22E-05</td>
<td>1,73</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1766</td>
<td>8,31E-04</td>
<td>1,73</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1327</td>
<td>6,95E-05</td>
<td>1,72</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1652</td>
<td>9,12E-05</td>
<td>1,72</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1692</td>
<td>8,31E-04</td>
<td>1,72</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2803</td>
<td>4,70E-04</td>
<td>1,72</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1581</td>
<td>ORF</td>
<td>1.08E-04</td>
<td>1.71</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1087</td>
<td>ORF</td>
<td>1.12E-03</td>
<td>1.70</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1158</td>
<td>ORF</td>
<td>7.66E-03</td>
<td>1.70</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0517</td>
<td>ORF</td>
<td>4.56E-04</td>
<td>1.69</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>sll1547</td>
<td>ORF</td>
<td>9.52E-04</td>
<td>1.69</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1583</td>
<td>ORF</td>
<td>1.13E-03</td>
<td>1.68</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1676</td>
<td>ORF</td>
<td>8.61E-04</td>
<td>1.68</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0832</td>
<td>ORF</td>
<td>3.36E-03</td>
<td>1.68</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0755</td>
<td>ORF</td>
<td>6.25E-03</td>
<td>1.67</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0832</td>
<td>ORF</td>
<td>3.36E-03</td>
<td>1.68</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1940</td>
<td>ORF</td>
<td>4.07E-04</td>
<td>1.66</td>
<td>periplasmic protein, function unknown</td>
<td>16</td>
</tr>
<tr>
<td>sll1455</td>
<td>ORF</td>
<td>1.39E-04</td>
<td>1.65</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0525</td>
<td>ORF</td>
<td>1.72E-03</td>
<td>1.65</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1464</td>
<td>ORF</td>
<td>5.13E-04</td>
<td>1.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0326</td>
<td>ORF</td>
<td>2.39E-03</td>
<td>1.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0781</td>
<td>ORF</td>
<td>2.61E-04</td>
<td>1.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1183</td>
<td>ORF</td>
<td>1.08E-03</td>
<td>1.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1886</td>
<td>ORF</td>
<td>1.34E-03</td>
<td>1.64</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0770</td>
<td>ORF</td>
<td>4.42E-04</td>
<td>1.63</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr1880</td>
<td>ORF</td>
<td>1.04E-04</td>
<td>1.63</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0496</td>
<td>ORF</td>
<td>5.65E-03</td>
<td>1.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1259</td>
<td>ORF</td>
<td>1.54E-04</td>
<td>1.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl1046</td>
<td>ORF</td>
<td>1.12E-03</td>
<td>1.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1684</td>
<td>ORF</td>
<td>1.66E-04</td>
<td>1.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1769</td>
<td>ORF</td>
<td>6.25E-04</td>
<td>1.62</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1241</td>
<td>ORF</td>
<td>6.88E-04</td>
<td>1.61</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0551</td>
<td>ORF</td>
<td>1.58E-04</td>
<td>1.61</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1220</td>
<td>ORF</td>
<td>1.29E-04</td>
<td>1.60</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0925</td>
<td>ORF</td>
<td>1.69E-04</td>
<td>1.59</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssr2755</td>
<td>ORF</td>
<td>4.72E-03</td>
<td>1.59</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1338</td>
<td>ORF</td>
<td>4.46E-04</td>
<td>1.59</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1376</td>
<td>ORF</td>
<td>1.35E-04</td>
<td>1.59</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1961</td>
<td>ORF</td>
<td>6.27E-04</td>
<td>1.58</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1738</td>
<td>ORF</td>
<td>2.68E-03</td>
<td>1.57</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0870</td>
<td>ORF</td>
<td>1.88E-03</td>
<td>1.57</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0784</td>
<td>ORF</td>
<td>3.62E-04</td>
<td>1.56</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1675</td>
<td>ORF</td>
<td>1.23E-03</td>
<td>1.56</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1025</td>
<td>ORF</td>
<td>8.65E-03</td>
<td>1.56</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1260</td>
<td>ORF</td>
<td>6.07E-04</td>
<td>1.55</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1773</td>
<td>ORF</td>
<td>3.23E-04</td>
<td>1.55</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1651</td>
<td>ORF</td>
<td>1.69E-04</td>
<td>1.55</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1363</td>
<td>ORF</td>
<td>6.72E-03</td>
<td>1.54</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>smi0012</td>
<td>ORF</td>
<td>6.24E-04</td>
<td>1.54</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0924</td>
<td>ORF</td>
<td>1.85E-04</td>
<td>1.54</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr2084</td>
<td>ORF</td>
<td>2.01E-04</td>
<td>1.53</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr2015</td>
<td>ORF</td>
<td>2.01E-04</td>
<td>1.53</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1659</td>
<td>ORF</td>
<td>8.11E-04</td>
<td>1.53</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>ssl0385</td>
<td>ORF</td>
<td>2.43E-03</td>
<td>1.53</td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>slr1816</td>
<td>3,27E-04</td>
<td>1,53</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0883</td>
<td>1,65E-03</td>
<td>1,51</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1732</td>
<td>3,55E-04</td>
<td>1,51</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr2120</td>
<td>2,31E-03</td>
<td>1,51</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr0585</td>
<td>6,67E-04</td>
<td>1,51</td>
<td></td>
<td>hypothetical protein</td>
<td>16</td>
</tr>
<tr>
<td>slr1687</td>
<td>2,20E-03</td>
<td>1,61</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1629</td>
<td>1,32E-05</td>
<td>4,01</td>
<td></td>
<td>putative poly(3-hydroxyalkanoate) synthase component</td>
<td>17</td>
</tr>
<tr>
<td>slr2016</td>
<td>2,51E-05</td>
<td>2,11</td>
<td></td>
<td>type 4 pilin-like protein, essential for motility</td>
<td>17</td>
</tr>
<tr>
<td>slr2017</td>
<td>1,03E-03</td>
<td>1,77</td>
<td></td>
<td>type 4 pilin-like protein, essential for motility</td>
<td>17</td>
</tr>
<tr>
<td>slr1930</td>
<td>2,80E-04</td>
<td>1,53</td>
<td></td>
<td>type 4 pilin-like protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0783</td>
<td>6,85E-06</td>
<td>23,24</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1464</td>
<td>2,27E-05</td>
<td>5,76</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0733</td>
<td>6,19E-06</td>
<td>5,75</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll2507</td>
<td>6,12E-06</td>
<td>5,36</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll2501</td>
<td>4,70E-05</td>
<td>5,31</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0785</td>
<td>4,30E-05</td>
<td>5,14</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0786</td>
<td>4,40E-05</td>
<td>4,78</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1225</td>
<td>1,99E-05</td>
<td>4,19</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0172</td>
<td>6,13E-05</td>
<td>3,60</td>
<td></td>
<td>periplasmic protein, function unknown</td>
<td>17</td>
</tr>
<tr>
<td>sll2502</td>
<td>6,25E-04</td>
<td>3,51</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1618</td>
<td>1,32E-05</td>
<td>3,51</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1616</td>
<td>1,81E-05</td>
<td>3,34</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1768</td>
<td>1,15E-05</td>
<td>3,33</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1714</td>
<td>4,98E-05</td>
<td>3,17</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1074</td>
<td>1,05E-04</td>
<td>3,12</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1272</td>
<td>1,21E-04</td>
<td>2,96</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0266</td>
<td>1,75E-05</td>
<td>2,78</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1062</td>
<td>2,92E-05</td>
<td>2,77</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1066</td>
<td>1,20E-04</td>
<td>2,75</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1421</td>
<td>1,29E-04</td>
<td>2,69</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0982</td>
<td>1,65E-05</td>
<td>2,69</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1396</td>
<td>5,16E-05</td>
<td>2,59</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll2420</td>
<td>2,02E-04</td>
<td>2,40</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0843</td>
<td>5,53E-03</td>
<td>2,39</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll2162</td>
<td>5,59E-03</td>
<td>2,32</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sss3467</td>
<td>3,87E-05</td>
<td>2,31</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0912</td>
<td>2,45E-04</td>
<td>2,30</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0334</td>
<td>3,28E-04</td>
<td>2,17</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1079</td>
<td>7,10E-05</td>
<td>2,17</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0323</td>
<td>1,01E-04</td>
<td>2,14</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1304</td>
<td>3,71E-05</td>
<td>2,13</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1084</td>
<td>4,97E-05</td>
<td>2,10</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1071</td>
<td>6,74E-04</td>
<td>2,09</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1658</td>
<td>4,79E-03</td>
<td>2,08</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0426</td>
<td>7,56E-05</td>
<td>2,07</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1293</td>
<td>8,03E-05</td>
<td>2,07</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1315</td>
<td>3,59E-04</td>
<td>2,06</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0403</td>
<td>1,12E-04</td>
<td>2,04</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1086</td>
<td>1,80E-04</td>
<td>2,03</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sll1241</td>
<td>9.14E-04</td>
<td>2.00</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1273</td>
<td>8.77E-05</td>
<td>2.00</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssl1520</td>
<td>8.04E-05</td>
<td>1.94</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0302</td>
<td>1.66E-04</td>
<td>1.92</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssr0536</td>
<td>6.48E-05</td>
<td>1.90</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1784</td>
<td>8.57E-05</td>
<td>1.90</td>
<td></td>
<td>periplasmic protein, function unknown</td>
<td>17</td>
</tr>
<tr>
<td>slr0406</td>
<td>5.29E-05</td>
<td>1.89</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1135</td>
<td>5.62E-05</td>
<td>1.89</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1865</td>
<td>1.15E-04</td>
<td>1.86</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0708</td>
<td>5.67E-04</td>
<td>1.84</td>
<td></td>
<td>periplasmic protein, function unknown</td>
<td>17</td>
</tr>
<tr>
<td>slr1503</td>
<td>1.36E-03</td>
<td>1.84</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr2046</td>
<td>7.18E-05</td>
<td>1.83</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0398</td>
<td>1.41E-04</td>
<td>1.83</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0914</td>
<td>7.89E-04</td>
<td>1.82</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0668</td>
<td>1.27E-04</td>
<td>1.80</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1056</td>
<td>2.82E-04</td>
<td>1.80</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0023</td>
<td>3.52E-03</td>
<td>1.80</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1932</td>
<td>1.05E-04</td>
<td>1.79</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1854</td>
<td>1.36E-04</td>
<td>1.78</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssr3532</td>
<td>5.51E-05</td>
<td>1.77</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1268</td>
<td>5.67E-04</td>
<td>1.77</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1340</td>
<td>5.05E-04</td>
<td>1.76</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0184</td>
<td>1.36E-04</td>
<td>1.76</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1768</td>
<td>2.38E-03</td>
<td>1.75</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1023</td>
<td>7.21E-04</td>
<td>1.74</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0658</td>
<td>3.32E-04</td>
<td>1.72</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1855</td>
<td>1.74E-04</td>
<td>1.71</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1875</td>
<td>2.28E-03</td>
<td>1.70</td>
<td></td>
<td>periplasmic protein, function unknown</td>
<td>17</td>
</tr>
<tr>
<td>slr0614</td>
<td>1.94E-03</td>
<td>1.69</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1862</td>
<td>9.35E-04</td>
<td>1.69</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0960</td>
<td>2.26E-04</td>
<td>1.69</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr2018</td>
<td>1.70E-04</td>
<td>1.68</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1544</td>
<td>5.97E-04</td>
<td>1.68</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1082</td>
<td>3.71E-04</td>
<td>1.66</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1407</td>
<td>6.74E-04</td>
<td>1.66</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1240</td>
<td>6.51E-04</td>
<td>1.61</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0923</td>
<td>1.11E-04</td>
<td>1.61</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssl3222</td>
<td>4.28E-04</td>
<td>1.61</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0666</td>
<td>2.54E-03</td>
<td>1.60</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0447</td>
<td>2.93E-04</td>
<td>1.60</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1187</td>
<td>2.60E-03</td>
<td>1.58</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssr2201</td>
<td>1.24E-04</td>
<td>1.56</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssl0410</td>
<td>4.03E-03</td>
<td>1.56</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1373</td>
<td>1.28E-03</td>
<td>1.56</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1073</td>
<td>4.49E-04</td>
<td>1.55</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0588</td>
<td>2.68E-04</td>
<td>1.54</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0327</td>
<td>2.28E-03</td>
<td>1.53</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>ssl1533</td>
<td>1.18E-03</td>
<td>1.52</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1739</td>
<td>2.08E-04</td>
<td>1.52</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
</tbody>
</table>
Appendix 4C (continued). List of significantly up-regulated genes.

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>p-value</th>
<th>FC</th>
<th>Gene Product</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>slr1450</td>
<td>3.53E-04</td>
<td>1.52</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll1630</td>
<td>3.26E-04</td>
<td>1.51</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr1397</td>
<td>1.78E-04</td>
<td>1.51</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr0909</td>
<td>2.00E-03</td>
<td>1.51</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>sll0267</td>
<td>9.68E-04</td>
<td>1.50</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
<tr>
<td>slr2119</td>
<td>4.23E-04</td>
<td>1.50</td>
<td></td>
<td>unknown protein</td>
<td>17</td>
</tr>
</tbody>
</table>