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C(sp3)–H sulfinylation of light hydrocarbons
with sulfur dioxide via hydrogen atom
transfer photocatalysis in flow

Dmitrii Nagornîi 1,2, Fabian Raymenants 1,2, Nikolaos Kaplaneris1 &
Timothy Noël 1

Sulfur-containing scaffolds originating from small alkyl fragments play a cru-
cial role in various pharmaceuticals, agrochemicals, and materials. None-
theless, their synthesis using conventional methods presents significant
challenges. In this study, we introduce a practical and efficient approach that
harnesses hydrogen atom transfer photocatalysis to activate volatile alkanes,
such as isobutane, butane, propane, ethane, andmethane. Subsequently, these
nucleophilic radicals react with SO2 to yield the corresponding sulfinates.
These sulfinates then serve as versatile building blocks for the synthesis of
diverse sulfur-containing organic compounds, including sulfones, sulfona-
mides, and sulfonate esters. Our use of flow technology offers a robust, safe
and scalable platform for effectively activating these challenging gaseous
alkanes, facilitating their transformation into valuable sulfinates.

Gases, being lightweight and arguably the most atom-efficient choice
of reagents for various transformations, present a unique set of chal-
lenges when it comes to their practical use in the laboratory
environment1. The inherent difficulties in handling gases using con-
ventional batch equipment, coupled with the physical separation of
gases and liquid reaction mixtures due to gravity, often discourage
their utilization. When gases serve as reagents, they need to diffuse
within the reaction mixture before they can react effectively. To
overcome this limitation, researchers frequently turn to Henry’s law,
which allows for the enhancement of gas solubility by increasing the
pressure within the vessel2. However, this approach necessitates spe-
cialized equipment, such as Parr bombs, and additional safety pre-
cautions. As a consequence, setting upmultiple reactions concurrently
becomes impractical, resulting in a slowpaceof reactiondiscovery and
optimization. To circumvent these challenges, chemists often resort to
the development of engineered reagents that are crystalline, easy to
handle and store3. However, such reagents tend to be more expensive
and less atom-efficient than their gaseous counterparts. For instance,
delivering 1mol of SO2 from the convenient reagent DABSO4–6 [i.e.,
DABCO-bis(sulfur dioxide)] costs approximately three orders of mag-
nitude more than using the gas itself.

Besides practical considerations, some gases are also challenging
to activate under conditions suitable for synthetic organic chemistry
due to their inert nature. Notably, achieving selective functionalization
of C(sp3)–H bonds in saturated volatile hydrocarbons like methane,
ethane, propane, and butane represents a significant goal in modern
C–H activation chemistry7,8. Despite recent advancements, efficiently
functionalizing gaseous alkanes remains a formidable task. This chal-
lenge is exacerbated by their unfavorable thermodynamics, with bond
dissociation energies (BDE) reaching up to 105 kcal/mol9, and com-
pounded by issues related to chemoselectivity, solvent compatibility,
and solubility (Fig. 1A)1. Consequently, these reactions often demand
harsh conditions, characterized by high temperatures and pressures,
which may not align with the delicate nature of most organic
molecules.

Recently, our group and other researchers have demonstrated
that hydrogen atom transfer (HAT) photocatalysis offers a promising
avenue for achieving mild activation conditions in the functionaliza-
tion of volatile alkanes10–12. Although this reaction has historically
posed practical challenges when conducted in batch conditions, the
emergence of flow technology has introduced a convenient reactor
platform13. This reactor design enhances the overall irradiation profile
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within the reaction mixture and increases gas-liquid mass transfer
rates14. As a result, this approach leads to substantial reductions in
reaction times, increased selectivity15, and enhanced practicality for
exploring a wider scope of reactions16. Notwithstanding this recent
progress, there are still significant limitations in the scope of available
reactions suitable for light alkane activation.

Sulfones, sulfonamides, and sulfonate esters represent ubiquitous
functional groups with applications spanning various fields, including
pharmaceuticals17,18, agrochemicals19,20, andmaterial science (Fig. 1C)21.
Commonly, sulfinate salts serve as versatile precursors for construct-
ing sulfur-containing compounds due to their reactivity and
stability22,23. Industrial methods currently employed for synthesizing
sodium sulfinates rely on a two-step process involving the reduction of
corresponding sulfonyl chlorides. These chlorides, in turn, are derived

from the respective alkanes, sulfur dioxide (SO2), and chlorine gas
(Fig. 1B)24. This conventional approach necessitates the handling of
highly hazardous and corrosive gases (SO2 and Cl2) at elevated tem-
peratures and pressures. In light of the increasing use of sulfur dioxide
and its surrogates in recent methodologies25,26, our objective was to
develop a method that harnesses the advantages of both flow chem-
istry and photocatalysis in conjunction with gaseous alkanes.

Despite the common use of SO2 surrogates in recent photo-
chemical methodologies (DABSO, sodium metabisulfite and sodium
bisulfite), their low solubility in commonorganic solvents hampers the
development offlowmethodologies27–30. Although a limited amount of
work has focused on the photochemical C(sp3)–H functionalization of
alkanes for the generation of sulfur containing compounds31,32, meth-
ods utilizing gaseous alkanes or flow chemistry have not been
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Table 1 | Optimization of the photocatalytic sulfinylation of propane with SO2 in flow

+
TBADT (1 mol%)

hv (365 nm, 144 W)
CH3CN/H2O (4:1)
tR = 1 h, p = 34 bar
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Me Me
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(aq.)

S

Me Me
H

OHO Bn Br

NaHCO3

S
O

O

Reac�on op�miza�on

5 eq. 1 eq. 1

Entrya Parameter Deviation from the standard conditions Yield [%]b

1 Residence time [h] 0.5/1/2/4 41/48/46/25

2 Catalyst loading [mol%] 0.5/1/2/3 18/48/44/34

3 Gas equivalents 2.5/5/10 19/48/45

4 DT source TBADT/NaDT 48/59

5 Concentration SO2 [mol/L] 0.1/0.2 43/59

6 BnBr as limiting reagent BnBr 1 eq.c 95
aReactionconditions: SO2 (0.4mmol), propane (2.0mmol), DT catalyst (1mol%) inCH3CN/H2O (4:1, 2mL, 0.2M) irradiated in photoreactor (365nm, 144Woptical output power) for 1 h. The outflow is
collected in a flask containing NaHCO3 (1.0mmol) and benzyl bromide (0.6mmol, 1.5 equiv.) and is stirred overnight at room temperature.
bYield determined by 1H-NMR spectroscopy using trichloroethylene as external standard.
cOptimized conditions: SO2 (0.6mmol), propane (3.0mmol), DT catalyst (1mol%) in CH3CN/H2O (4:1, 3mL, 0.2M) irradiated inphotoreactor (365nm, 144Woptical output power) for 1 h. Theoutflow
is collected in a flask containing NaHCO3 (1.2mmol) and benzyl bromide (0.2mmol, 1 equiv.) and is stirred overnight at room temperature.
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previously reported. Alkyl sulfinates derived from C1-4 alkanes are
commonly found in drug structures (Fig. 1C); however, their direct
synthesis from light alkanes has proven to be an elusive task thus far.
As presented herein, we have developed a general flow-based platform
for generating synthetically valuable alkyl sulfinates directly from
readily available and cost-effective gases (Fig. 1B). Most notably, we
demonstrated their synthetic utility in the late-stage functionalization
of medicinally relevant organic scaffolds.

Results and discussion
We initiated our investigation into the proposedC(sp3)–H sulfinylation
of gaseous alkanes by blending a mixture of propane and an aqueous
solution of sulfur dioxide in the presence of tetrabutylammonium
decatungstate (TBADT) in an acetonitrile:H2O solution (4:1, 0.2M).

This reaction mixture was then passed through a transparent
continuous-flow microreactor (FEP tubing, ID =0.5mm, 1.5mL
volume) exposed to six high-intensity UV-A light sources (Chip-on-
Board LED, λ = 365 nm, 144W optical power)33. Subsequently, the
reaction stream was combined with benzyl bromide and sodium
bicarbonate using a fed-batch approach. To facilitate complete lique-
faction of the gas and enhance the efficiency of C(sp3)–H bond acti-
vation through decatungstate-catalysed HAT, a 34 bar back-pressure
regulator (BPR) was positioned at the reactor outlet1. After a careful
exploration of various reaction conditions, we successfully obtained
the desired product in a 48% yield, with just a one-hour residence time,
in the presence of 1mol% of TBADT (Table 1, Entries 1-2). Prolonged
exposure to irradiation did not yield further improvements in the
reaction yield likely due to degradation (Table 1, Entry 1). Increasing
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the amount of propane gas beyond 5 equivalents did not lead to a
significant improvement in yield (Table 1, Entry 3). Remarkably, the
choice of cation for the decatungstate photocatalyst was found to
impact the reaction yield, with sodium decatungstate (NaDT) yielding
a 59% yield, likely due to its higher solubility (Table 1, Entry 4)34. Higher
concentrations of SO2 led to enhanced yields by improving reaction
rates, simultaneously increasing the overall throughput and thus the
scalability of the process (Table 1, Entry 5). Given the low cost of the
gaseous components, we adjusted the stoichiometry by adding three
equivalents of SO2, resulting in a high yield for the transformation,with
benzyl bromide serving as the limiting reagent (Table 1, Entry 6).

Having established optimized conditions, we embarked on
exploring the sulfinylation of the light alkane homologous series
(C1–C4) as depicted in Fig. 2. Within this study, we selected various
electrophilic traps for the intermediate sulfinic acid, including func-
tionally diverse alkyl bromides such as benzyl, allyl bromide, α-bromo
amide and alkyl iodide (see Supplementary Information, Section 7.7).
This series encompasses compounds like benzyl bromide, bromo-
methyl pyridine, geranyl bromide, as well as structurally intriguing

substrates such as tryptophan and quinoline derivatives, each bearing
a diverse array of functional groups.

By employing isobutane as the hydrogen donor in the sulfinyla-
tion reaction,we achieved efficient installation of the tert-butylsulfonyl
group on the series of electrophiles, yielding good to excellent results
ranging from 49% to 93% isolated yield for compounds 2–6. When
isobutane is used, tertiary radicals are the preferred outcome over
primary radicals, primarily due to the lower bond dissociation energy
(BDE) of the C–H bond and the increased stability of the resulting
radical. This preference results in an average regioisomeric ratio of
87:1310.

Likewise, whenbutanewas utilized,weachievedgood to excellent
yields for the same set of electrophiles (ranging from 52% to 90%).
However, the regioisomeric ratio in this case was slightly lower (82:18)
due to the narrower difference between the BDE values of the sec-
ondary and primary C–H bonds. Similarly, propane underwent suc-
cessful functionalization, resulting in the corresponding sulfones 1,
12–15 in good to excellent isolated yields (ranging from 68% to 95%).
Due to its comparable BDE values to butane, we observed a similar
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trend in regioselectivity (averaging 80:20) during the activation of
propane10.

Due to the stronger primary C(sp3)−H bonds in ethane, the func-
tionalization process necessitated an extended residence time of 2 h
instead of the previous 1 h. Additionally, to ensure complete lique-
faction of the gas and minimize potential gas-to-liquid mass transfer
effects, a back-pressure regulator (BPR) set at 52 bar was employed.
These optimized conditions yielded synthetically useful to excellent
isolated yields, ranging from 41% to 89%.

Methane, characterized by its high bond dissociation energy
(BDE) of C–H bonds (BDE = 105 kcal/mol), presents a substantial chal-
lenge for functionalization. Despite requiring the most demanding
activation conditions,methane standsout asoneof themost abundant
feedstockgases,making it a highly sought-after C1 building block35, if it
were more facile to activate at more benign reaction conditions. To
tackle the functionalization of methane, a 2-h reaction time was
employed, along with the use of deuterated acetonitrile to prevent the
functionalization of the reaction solvent, a method aligned with our
prior work11. These optimized reaction conditions successfully yielded
synthetically valuable building blocks 21 to 25 in satisfactory to good
yields, ranging from 27% to 76%.

Furthermore, we harnessed the ease of scaling up flow reactions
and synthesized quinoline derivative 15 on a 1mmol scale, maintaining
both yield and regioselectivity (82%, 80:20 r.r). This result underscores
themethod’s ability to be seamlessly scaled up to producemeaningful
quantities, which is particularly valuable for researchers working in
medicinal or crop-protection chemistry.

Notably, by utilizing a single set of reaction conditions, we
achieved the synthesis of structural analogues of various sulfone
compounds, each modified with distinct short alkyl fragments,
accomplished solely by altering the choice of the light alkane gas.

To underscore the extensive applicability of this method in the
synthesis of diverse organosulfur compounds, various post-
functionalization procedures were applied to ethane sulfinate
(Fig. 3). Our mild protocol facilitated straightforward follow-up func-
tionalization through an operationally-simple fed-batch process. One-
pot protocols enabled the synthesis of heteroaryl sulfones via aromatic
nucleophilic substitution reactions (SNAr), yielding benzothiazole
derivative 26 and thiophene derivative 27 in 76% and 63% yields,
respectively. Additionally, the use of diaryliodonium salts led to the
synthesis of aryl sulfones 28 and 29 in 79% and 68%, respectively. The
Michael addition reaction of ethane sulfinate intermediate with N-
phenyl succinimide resulted in the formation of imide 30 in 56% yield.
A cine-sulfonylation reaction was applied for the synthesis of highly

electrophilic alkenyl sulfone 31 with a yield of 70%36. A two-step pro-
cedure was utilized for the synthesis of sulfonamides and sulfonate
esters, involving a sulfonyl halide intermediate, leading to medicinally
relevant compounds 32–36, including derivatizations of Amoxapine
and (+)-Leelamine. Primary, secondary, and aromatic amines, along
with two alcohols were sulfonylated, providing the desired products in
synthetically useful yields ranging from 27% to 68%.

Lastly, we tested the unique capability of continuous-flow tech-
nology to combine different reaction steps in a telescoped reaction
sequence (Fig. 4)37. The photocatalytic sulfinylation of propane was
initiated in the first step under high-intensity light irradiation, with a
residence time of 1 h. Subsequently, the process stream exiting from
the photoreactor was merged with a stream containing benzyl bro-
mide, and introduced into a second flow reactor for nucleophilic
substitution. A back-pressure regulator (BPR) was positioned at the
outlet of the second reactor to maintain stable flow conditions across
the entire reactor network. We opted for the soluble organic base, 2,6-
lutidine, instead of NaHCO3 to prevent clogging38. Consequently, the
corresponding sulfone product 1 was isolated in good yield after both
steps (86%, 80:20 r.r), demonstrating similar efficiency to our fed-
batch approach.

In conclusion, we have established a practical protocol for the
photocatalytic conversion of C(sp3)–H bonds originating from light-
weight alkanes into alkyl sulfinates, employing SO2. This methodology
grants access to a wide range of valuable organosulfur compounds
bearing small aliphatic fragments. Although affordable and atom-
economical, gaseous reagents are frequently disregarded due to a
combination of chemical and practical considerations. In contrast, our
study showcases their facile applicability as versatile reagents within
the realm of organic synthesis, facilitated by the use of flow
technology.

Methods
General procedure describing the telescoped synthesis of alkyl sul-
fones: To a nitrogen-purged, screw-capped vial, fitted with a rubber
septum and charged with NaDT (14.65mg, 6 µmol, 3mol%) degassed
CH3CN is added (2.4mL), followed by aqueous SO2 (6wt%, 0.6mL,
0.6mmol, 3 equiv.). The SO2 solution is charged in a gastight syringe,
positioned in a syringe pump and combined with a stream of propane
gas (73.5mL, 3mmol, 15 equiv.) through a T-mixer into a filling loop,
with a liquid flow rate of 0.16mL·min−1 and a propane gas flow rate of
4mL·min-1. A BPR of 2.8 bar is used during the loop filling. Additionally,
to a nitrogen-purged, screw-capped vial, fitted with a rubber septum
and chargedwith benzyl bromide (34.2mg, 23.8 µL, 0.2mmol, 1 equiv.)
and 2,6-lutidine (214mg, 232.0 µL, 1.0mmol, 10 equiv.) degassed
CH3CN is added (2mL). The benzyl bromide solution was charged into
a second filling loop, with one end connected to an HPLC pump and
the other end connected to the outlet of the photoreactor through a T-
mixer, with a shut-off valve positioned immediately before the
T-mixer. Next, the SO2 filling loop is connected to the photoreactor,
the system is pressurized to 34 bar using an HPLC pump (while the
shut-off valve is closed) and the reaction mixture is pumped over the
Signify Eagle reactor (365 nm, 144W output power, FEP capillary:
0.5mm ID, 2.8mL) at a flow rate of 0.046mL·min−1, resulting in a
residence time of 1 h. At the same time, the benzyl bromide filling loop
is also pressurized to 34 bar using an HPLC pump. When the reaction
mixture reaches the T-mixer, the shut-off valve is open and the benzyl
bromide solution is pushed at aflow rate of 0.031mL·min−1, resulting in
3:1 SO2:benzyl bromide ratio and a total flow rate of 0.077mL·min−1.
Thismixture is pumped into a final reactor loop (4.6mL), resulting in a
residence time of 1 h. Then, the collected outflow is transferred to a
separatory funnel, diluted with water (20mL) and extracted with DCM
(3 × 20mL). The combined organic layers are dried over MgSO4 and
evaporated in vacuo. The crude mixture was purified by flash column
chromatography (100%n-pentane to n-pentane 80:20AcOEt) to afford

+
NaDT (1 mol%)

hv (365 nm, 144 W)
CH3CN/H2O (4:1)

tR = 1 h

SO2

H

Me Me
H
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S

Me Me
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OHO Bn Br

2,6-lu�dine

S
O

O

Telescope in flow

1, 86% (80:20 r.r.)

160 �L·min-1
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Propane

(0.2 M)SO2
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46 �L·min-1

V = 2.8 mL
tR = 1 h

BPR
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31 �L·min-1

BnBr (0.1 M)

V = 4.6 mL
tR = 1 h

T = rt

Product

Base (1 M)

V = 10 mL

SN2 reactorPhotoreactorFilling loop

Waste

Solvent

NaDT (1 mol%)

Fig. 4 | Telescoped reaction sequence inflowof thephotocatalytic sulfinylation
of propane with SO2 and subsequent trapping with benzyl bromide. See Sup-
plementary Information for further experimental details.
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product 1a and 1b (80:20 ratio determined by 1H NMR analysis of the
crude reaction mixture), (34.1mg, 86%) as a clear oil.

Data availability
The data supporting the results of the article, including optimization
studies, experimental procedures, compound characterization and
scale-up procedures are provided within the paper and its Supple-
mentary Information. Additional data are available from the corre-
sponding author upon request.
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