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Chapter 1

Introduction

In todayÕs world, many devices that traditionally operated on purely mechanical or analog
electro-technical principles, are enhanced and extended with small, integrated digital com-
puter systems. These so-calledembedded systemseither replace or accompany traditional
components as part of the updated design of the device, thereby extending its functionality
or reducing the cost. Examples of such embedded systems are close at hand: modern TVs
contain one or multiple computer systems in order to handle functionality such as decoding
the input signal, performing various image enhancements techniques as well as displaying
and updating live information (e.g., program guide or weather forecast). Cars depend on
embedded systems to do anything from braking to fuel injection and deploying airbags. The
use of embedded systems is however by no means restricted to consumer electronics: in
industrial, medical or defense applications they are equally pervasive. In fact, it is estimated
that embedded systems now outnumber more commonly known computer types (desktop
PCs, game consoles, etc.) by two orders of magnitute. This can partially be explained by
the fact that embedded systems bear the promise to improve existing products (in terms
of functionality, usability, interoperability, etc.) and to enable the development of entirely
new products and devices that were previously inconceivable. Additionally, the fabrication
process technology for embedded computing systems is now at a point where they can be
produced at relatively low prices.

In addition to the increasing demand for embedded systems, there is also a clear trend to-
wards more complex systems that combine different functions into a single device. Consider
for example mobile phones that integrate more and more functions such as (video) camera,
GPS-based navigation and internet browsing capabilities. Moreover, new generations of
these products have to be released in shorter time frames. By recognizing and extrapolat-
ing this trend, the notion of ubiquitous computing has been developed: small, yet powerful
interconnected computer systems that are unobtrusively integrated in our everyday objects
and activities, augmenting our natural cognitive, sensory and communication capabilities.
In face of the excitement of such a prospect (be it positive or negative), one would almost
forget the enormous technical challenges that need to be solved for even the current and next
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10 CHAPTER 1. INTRODUCTION

generation of ÒcommonÓ embedded systems1. It is clear that improved methodologies and
tools are needed in order to design the next generation of embedded systems that meet the
requirements of the future. In the remainder of this chapter, we describe the background of
the embedded systems Þeld, discuss the motivation of the work presented in this thesis, and
address the main research questions.

1.1 Design constraints and trade-offs

The design and engineering of embedded systems makes for an interesting Þeld of study
because it not only deals with the issues already present in commodity-computer system de-
sign (e.g., functionality, performance), but it deals with additional constraints as well. For
example, the issue of power consumption is of relatively small concern for desktop com-
puter systems. But for a mobile, battery operated embedded system, high power usage can
mean complete design failure and render the device practically useless (e.g. a mobile phone
that discharges within a day). Reliability is often also a concern for embedded systems,
since they may be part of continuously operating devices (set-top boxes, surveillance sys-
tems), or safety-critical systems such as ßy-by-wire systems of an airplane. Other design
requirements that are typically associated with embedded systems are cost, physical size,
redundancy and ßexibility (the ability to use or reuse the system in multiple applications).
These requirements result in a set of so-calleddesign constraints: a list of requirements
that have to be met by any candidate system design in order to be considered successful.
Even the development time of an embedded system can be considered a design constraint,
since updated or innovative systems have to enter the market before the competition. It is
commonly accepted that design constraints are inherently non-orthogonal: improving the
system according to one constraint may decrease the value of another. For example, per-
formance can be increased by adding additional processing components, which typically
reduces power efÞciency and increases cost. Performance and power usage can be improved
by using ASICs instead of programmable processor components, but this in turn reduces the
ßexibility of the system and increases design time in case of custom ASICs.

In the Þeld of embedded systems, it has traditionally been the case that a systemÕs func-
tionality was quite Þxed and therefore ßexibility was not a major design concern. However,
these days ßexibility is a very important design criterium. As embedded systems are becom-
ing increasingly complex, such as mobile communication and media devices that may be
required to run software that was not envisioned at design time, or alternatively, the device
was designed to be adapted and updated during its lifetime. The latter makes sense from a
design perspective, since embedded systems are pervasive in all kinds of applications, and
there may be great cost involved in updating or Þxing such systems. Take as an example the
embedded systems in use in the automotive industry: post-production errors may require a
recall of all cars of a speciÞc model in order to Þx the problem. The total cost of the recall

1Not to mention the non-technical challenges which include human-computer interaction, privacy, environ-
mental and safety concerns
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can be reduced if the Þx is a simple software or Þrmware upgrade by the brand dealer instead
of an expensive repair that requires replacement parts and labor.

A different concern related to ßexibility exists in those consumer product areas where
a system is used for a relatively short time and new devices are released frequently, thus
increasing pressure on the design process. A good example where product lifetime (and
therefore design cycles) are reduced is the mobile consumer electronic market of mobile
phones, media players, navigation systems, etc. The result is that there is too little time to
re-design the system between generations, and therefore, large parts of the design have to
be reusable. In these cases, but the design process itself needs to be ßexible in order to be
reused for the next generation of products.

There is no generic solution to the problem of non-orthogonal design constraints, so that
trade-offs have to be considered carefully for each system individually. In traditional design
methodologies, a system designer would often make trade-offs implicitly, guided only by
his expert knowledge and experience (Òthe art of system designÓ). As the complexity of
embedded systems increases, there is a trend towards more explicit declaration of design
constraints, which enables methods and tools to (semi-)automatically help the designer to
search for designs that meet the design constraints in the best possible way. The aim of such
methods and tools is always to reduce the complexity of embedded system design, which in
turn should increase quality and reduce design time.

1.2 Current state of technology

Modern embedded systems are built using the wide range of component, process and pack-
aging technologies that are available today. Typically, a system consists of one or multiple
CPUs (e.g., microprocessor, DSP, or ASIC), memory (ROM, RAM, etc.), interconnects, tim-
ing sources and counters as well as external interfaces (USB, Ethernet, UART, etc.). Many
options are typically available for each type of component, each of which has different prop-
erties that will push the design constraints one way or another. For example, using an ASIC
implementation to perform a certain (Þxed) functionality generally improves performance
and reduces power consumption as compared to execution on a microprocessor. On the
other hand, the use of an ASIC reduces the ßexibility as compared to a microprocessor and
it may increase the cost of a system because of increased packaging cost or intellectual
property (IP) licensing fees. In addition, there exists an entire range of processor options
in between generic microprocessor and ASIC, each with different properties (consider for
example ASIPs or DSPs). Determining which combination of components is suitable for a
particular system is a non-trivial problem.

For many embedded applications a better trade-off in the design criteria can be found by
combining different (heterogeneous) types of cores in system, where each core is optimized
for a particular part of the operation of the whole system. This is the reason that embedded
systems were the earliest mass-produced multi-processor systems, far before the Þrst gen-
eral purpose multi-processor PC systems (IBM Power4, 2001). The embedded system Þeld
was particularly suitable for this development, because initially embedded systems were not
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designed with ßexibility in mind and therefore design trade-offs could be Þne-tuned to the
limited set of requirements for a particular application. As we mentioned before, this is
completely different for current and future generations of embedded systems.

There are different methods to combine the various components for a heterogeneous
embedded system. In addition to the traditional printed circuit board (PCB), components can
now be joined together as a System-in-Package (SiP), Package-on-Package (PoP), System-
on-Chip (SoC), or using a combination of these techniques. Each technique has different
pros and cons with respect to the manufacturing process, which again results in a system of
trade-offs. For example, a processing/memory combination as a PoP allows a manufacturer
to develop the components separately or, alternatively, to allow some waiting time to buy an
off-the shelf component at a good price point. A System-on-Chip does not have this beneÞt,
because for a SoC all components are manufactured onto the same silicon die. However,
SoC has the added beneÞts of increased performance (lower latencies between components),
lower system-assembly cost and may work out cheaper if produced in sufÞcient volume.

Improvements in lithographic process technologies continually increase the density of
on-chip resources. The result is that many embedded systems now make use of multi-
processor SoC (MPSoC) technology. Indeed, MooreÕs law seems to be alive and well, pre-
dicting a doubling of transistors on chip every two years. Next generations of high-end
commodity processors will consist of a few billion of transistors and it is likely this will be
tens of billions in the near future. The result is that the predominant research question in
both the embedded and the commodity processor design Þelds is now: how to to put these
enormous amounts of available resources to efÞcient use? There is a general consensus that
there exists animplementation gap, that is: transistors are now so plentiful that traditional
design methods fail to efÞciently use them all. In the commodity processor Þeld the (stop-
gap) solution has been to use the resources to replicate existing designs by doubling the
number of cores or by increasing the L2 cache size. However, such a homogeneous solution
does not Þt well with the embedded design Þeld which (for the reasons mentioned in the
previous section) looks towards inherently heterogeneous designs.

In recent years, MPSoC system development based on reconÞgurable technologies (such
as FPGAs) have received increasing attention from both research and industry. This is not
surprising, as the cost of FPGAs goes down and gate count goes up, driven by the improve-
ment of manufacturing technology. Modern FPGAs consist of hundreds of millions of gates,
which is sufÞcient to implement complex MPSoC systems consisting of tens or hundreds of
processing components as well as memories and on-chip interconnection networks. FPGA
technology Þlls a niche in the (embedded) system design market as it has different cost and
performance properties compared to traditional ASIC-based system design. System devel-
opment on FPGA does not need the same time-consuming and expensive fabrication process
as ASICs, making FPGAs an interesting solution for system prototyping, especially in re-
search and low-volume applications. Compared to ASICs, the unit cost of FPGA solutions
is relatively high, and the performance is generally rated to be lower than ASICs [59] for
systems based on similar hardware design. But in some computational domains FPGA tech-
nology seems actually to be catching up; e.g., it has been reported in [108] that the increase
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in peak performance per year is higher for FPGAs than for commodity CPUs. However, the
major point in favor of FPGAs is their ßexibility: the logic design of the FPGA system can
be adapted to and optimized for a speciÞc application or workload. We will frequently refer
to and use this technology throughout this thesis.

1.3 Platform-based design

Platform-based design has become one of the major approaches in recent years to overcome
the challenges for embedded system design. A platform is a partial deÞnition of a system
encompassing hardware and software components, interfaces, APIs and (sometimes) a tool
suite with compilers and debugging tools or an integrated development environment (IDE).
On the one hand, the hardware part of a platform (in contrast to a fully custom-designed
system), is deÞned with ßexibility in mind so that it is suitable for a range of applications
or products. Flexibility comes from the inclusion of programmable cores (microprocessor,
DSP) or reconÞgurable hardware (FPGA) in the platform. On the other hand, platforms typi-
cally also contain more static architectural features (such as ASICs) which are optimized for
speciÞc applications. In this way, platforms aim to strike a balance by combining ßexibility
with application speciÞc optimization, which can ultimately result in systems that meet e.g.
power and performance requirements. The challenge for the designer is to make the remain-
ing design decisions offered by the platform, in order to create the system as aplatform
instancefor use in a given application.

There are different implementation and fabrication possibilities for platforms: on a sin-
gle IC-die, as a collection of interoperable components, entirely on reconÞgurable fabric,
or even as a mix of these. Moreover, platform-based design can have a positive impact on
the economic trade-offs that are inherent to manufacturing. For example, the increasing
non-recurring engineering cost (e.g., mask creation) for custom-built ICs can be mitigated
as multi-purpose platform ICs can achieve larger production volumes. Single-die IC-based
platforms are typically released as a family of platform products, where each type offers dif-
ferent conÞgurations (e.g., different memory size or integrated ASICs to accelerate particular
applications). These platform families can reuse large parts of the platform design, which
reduces design cost. Later on in this thesis we will consider (multi-processor) platforms im-
plemented entirely on the reconÞgurable fabric provided by an FPGA. Here, platform based
design takes the form of composing the platform from a pre-deÞned library of components
which contains both programmable and dedicated hardware cores. As we will see however,
the methods and techniques presented in this thesis are equally applicable to all types of
platforms, irrespective of implementation or manufacturing technology.

Another beneÞt of platform-based design is that it provides a certain level of standardiza-
tion, which is conductive to the development of the software stack running on the hardware
as well as the development of software tools. In this way, libraries, (real-time) operating sys-
tems, compilers and debugging tools can reach a level of maturity that beneÞts development
on that platform.

In summary: a platform Þxes most technology parameters (and some of the other design
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parameters) and provides a stable development environment that may not be readily available
for custom ICs. However, a platform is only the starting point of a design process, and many
problems still need to be solved. Finally, we consider that the platform itself has to be
designed, which is perhaps the most complex design problem of all, due to the requirement
of having to be useful for many different purposes.

1.4 System-Level Design

In order to manage the increasing complexity of modern embedded systems, designers are
forced to view the system from a higher level of abstraction.System-level designaims to
provide a path from system speciÞcation to system implementation in such a way that the
resulting system meets the design requirements and the design effort is efÞcient in terms of
time and cost. The system level viewpoint considers the system as a modular collection of
software and hardware components, without the need to deÞne every detail of every com-
ponent at the early design stages. In practice this means that the design process is divided
in a number of (more or less) distinct phases that a designer traverses one by one. In each
subsequent phase, the system speciÞcation is extended with additional details, so that the
Þnal phase results in a fully speciÞed, implementable system speciÞcation.

An example design process that starts at the system level is given in Figure 1.4. The
width of the pyramid shape indicates the relative number of design options in each stage of
the design: the high-level stages have less options, since they omit the lower level details of
the system; the base of the pyramid represents all the possible system implementations. The
design process starts at the top with the high-level system requirements and the platform
speciÞcations.The Þrst design stage includes the pen-and-paper designs and very simple
spreadsheet models which are common design practice to conÞrm the designerÕs initial in-
tuitive solutions and to deÞne initial design space boundaries. It is unfortunately the case
that the next design stage too often is the cycle accurate or RTL model, as they are currently
the most available and best understood models. Particularly the use of RTL-level models
is common, because it is offered by industrial design tools, which are geared towards im-
plementation and debugging and provide very little system-level design support that support
design decisions in the very early stages. This is in fact a manifestation of the aforemen-
tioned implementation gap from the perspective of system design: there exist no mature
methodologies, techniques, and tools to effectively and efÞciently convert system-level sys-
tem speciÞcations to RTL speciÞcations. We propose a smoother transition by adding an
intermediate stage consisting of abstract executable models. These models are less detailed,
easy to construct and allow for evaluation (by fast simulation) to support early design deci-
sions (Chapter 3).

Making design decisions in the early design stages is essential to reduce the number of
implementation options and thereby reducing the total design effort. This process is called
design spacepruning. In every design phase, a subset from the non-pruned design options
is selected and evaluated. The evaluation is typically performed by means of simulation, or
(at the lower abstraction levels) by making prototype implementations. The feedback from
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Figure 1.1: The system-level design process

the evaluation determines which of the candidates will be used in the next (lower) level of
abstraction in the design process. In Figure 1.4, the set of evaluated design candidates is
represented by the horizontal black line; the triangular shapes show the optional designs (at
subsequent design phases) that can follow from a higher level candidate. Pruning at a higher
level of abstraction has the potential to signiÞcantly reduce the design effort. For example,
by selecting a good candidate at the abstract executable model (where evaluation is cheap),
one may prevent multiple expensive re-implementations at the RTL-level.

System-level design is still very much an active area of research, since there are many
unsolved problems in the design path from system-level speciÞcation to implementation. In
particular, it is hard to offer a single, generic methodology, and furthermore, the transition
from one level of detail to another typically requires various amounts of manual effort. This
makes it infeasible to provide a fully automatic design process. Nevertheless, there is a clear
need for such a methodology as it could help solve the aforementioned implementation gap
problem. In the next chapter we will introduce the Daedalus system-level design tool ßow
that aims to do exactly that.

1.5 Navigating the design space

In order for an embedded system to meet the design criteria, the system designer is faced
with the challenge of making the right design choices at every design stage and for every
aspect of the system. Given the increasing complexity and delivery demands of embedded
systems, it has become infeasible to perform this task by hand. The many design choices
that have to be made at the system level, may include (but are certainly not limited to) the
following:

¥ the number and type of programmable processors,

¥ HW/SW partitioning: deciding which tasks to implement in software and which tasks
as Þxed ASICs or reconÞgurable hardware blocks,
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¥ mapping of application tasks to architecture resources,

¥ choice of on-chip interconnect (e.g., bus, direct connection, crossbar, etc.),

¥ size, type and location of memory components

¥ et cetera . . .

Indeed many of these design decisions in reality give rise to any number of additional
choices, e.g., embedded soft or hardcore IPs may be parameterizable (or be available in
variants) with different number and type of functional units, pipeline depth, speciÞc ISA
extensions or bus interfaces. Note that design choices can have inter-dependencies and are
not necessarily fully orthogonal. For example, the mapping of application tasks depends on
the number of available processors in the architecture, and the type of processor determines
whether the task runs efÞciently (e.g., a task that contains divide operations may not run
efÞciently on a processor without integer or ßoating-point FPU), or whether the processor
can run the task at all (only speciÞc tasks may be mapped to an ASIC).

However, in most cases, the number of possible parameter combinations far outweighs
the dependent or impossible combinations and the design space grows exponentially with
the number of parameters. For the purpose of illustration, letÕs assumep parameters, each
with an equal number ofc orthogonal, independent number of choices, then the design
space consists ofcp possible designs. We can view the design space as ap-dimensional
space where each axis represents one of the parameters. We can map each point in this
parameter spaceto a point in theobjective space(Figure 1.2), where each axis represents the
design criteria in terms of speciÞc objectives (performance, power, etc.). The values of the
objectives have to be obtained with an appropriate evaluation mechanism, which may consist
of some kind of estimation algorithm, a simulator, or measurements on a real (prototype)
system implementation. If the objective space were a given, then a designer could easily
select the candidate design and build a system with the given parameters. However, in real
design problems, the design space is large and complex and the objective space can not be
trivially derived from the parameter space (at least not in reasonable time).
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Figure 1.2: The design space broken down in parameter and objective space
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In practice, the designer will attempt to navigate the design space using a partial under-
standing of the objective space. In many cases, the one design point that is better than all
other design points (thetrue optimum), may never be found. However, Þnding a design point
in the known design space that meets the design requirements as best as possible, is often
sufÞcient. In general, we identify two ways of navigating the design space:

¥ Design space pruning(discarding unsuitable design points)

¥ Design space searching(looking for optima in the design space)

Both cases attempt to bring into focus the part of the design space that is of interest to the
designer (containing the optima): either by slashing unsuitable parts of the design space
(pruning) or by design space traversal based on an algorithm that Þnds incrementally better
design points (searching). Note that these methods are often combined to obtain the best
result. In general we observe that for successful DSE there are two requirements:

¥ the ability to evaluate a single design point

¥ the ability to use the evaluation to traverse the design space in search of optima

Both requirements are non-trivial and in practice many trade-offs have to be made. For
example, to obtain the objective values of a single design point with high accuracy, detailed
(and therefore slow) evaluation is necessary. Such evaluation mechanisms are unsuitable
for use in the early design stages, where most of the design options are still undecided and
evaluation feedback should be quick. Note however, that low-level simulations are typically
very useful in later design stages. As we will see later in this thesis, giving up some of the
accuracy in exchange for speed is a useful strategy.

However, faster evaluation speed goes only so far when we consider the exponentially
growing design spaces of real-world design problems. EfÞcient pruning and searching algo-
rithms are required that make appropriate use of the evaluation mechanism. This is the area
of design space exploration that is currently the least well understood. Various attempts have
been made and, in some particular cases, have been shown to be quite successful, but it is
still an open research question to Þnd generic, scalable methods that work for a wide variety
of design problems.

1.6 Scope and contribution of this thesis

The work in this thesis has been performed in the context of the Daedalus design tool ßow.
The tools in Daedalus enable system-level design space exploration and help the designer to
(semi-)automatically traverse the entire design process, including parallelizing applications,
design space exploration (DSE), and Þnally resulting in a prototype system implementation
(see Chapter 2 for more details). In this thesis we focus on the modeling and simulation part
of the tool ßow and its implications for efÞcient design space exploration. Within Daedalus,
the Sesame tool (Chapter 3) is used for modeling and simulation at the abstract executable
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level in order to provide feedback about design decisions in the early design stages. The
abstract modeling methodology used by Sesame delivers high-performance models that are
require only a small implementation effort compared to traditional, lower level models.

The main contributions of this thesis concern the following topics:

¥ model calibration and validation: improving and verifying model accuracy

¥ extending modeling scope: modeling capabilities for different system types

¥ implementation and analysis of evolutionary search algorithms for DSE

These topics have been selected on the basis of an ideal DSE scenario, where the method-
ology and tools support a designer by offering fast, modular models that can be easily mod-
iÞed to accurately model many different systems. These models then serve as input for one
or more efÞcient design space search algorithm that can quickly Þnd optimal design points.
Recognizing the many problems that are still open in this Þeld, we try to approximate the
ideal scenario as much as possible. Therefore, we expand the two requirements for efÞcient
DSE of the previous section into a classiÞcation of what we consider the most important
characteristics on respectively the modeling and exploration side (Figure 1.3).
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Figure 1.3: The two-part taxonomy of concerns for efÞcient DSE

Naturally we need models that are both as fast and as accurate as possible (or at least
sufÞciently so for our purpose). But it is just as important that the early design stages are not
burdened by model implementation effort: modularity and reusability of models is important
in this respect. Lastly, the models need to be able to model a wide range of systems, covering
both old and new technologies.

On the traversal/exploration part,convergencedenotes the speed of evaluating a range of
design points, and, more speciÞcally, the rate at which the DSE search algorithm manages
to converge to an optimum. TheconÞdencecharacteristic denotes how certain we are that
the design points returned by the DSE includes the true optimum, or alternatively, how close
they are to the true optimum. In many search algorithms conÞdence is obtained by avoiding
local optima and ensuring sufÞcient design space coverage. Completely analogous with



1.7. THESIS LAYOUT 19

effort in the case of evaluating a single design point, theeffort (for design space traversal)
should again be minimized. In the latter caseeffort refers to implementation of the search
method and setting its parameters, as well as setting up, running and evaluating the results of
the exploration experiment. Effort reduction can be accomplished by Þnding generic search
methods that perform well for a wide range of design spaces; and by automating many of the
exploration steps that would otherwise have to be done manually. In the conclusions of this
thesis (Chapter 9), we return to the above classiÞcation and discuss the various contributions
in the context of the ideal DSE scenario.

1.7 Thesis layout

The chapters in this thesis can be roughly divided into three parts:

¥ Part One: background, design ßow and tools (Chapters 1, 2 and 3)

¥ Part Two: techniques and methods (Chapter 4, 5, 6 and 7)

¥ Part Three: experiments and case studies (Chapter 8)

The introduction provided the background of the work and puts the work in a global context.
Chapter 2 describes the Daedalus tool ßow, which provides the speciÞc context in which

the subsequent chapters of Part Two and Part Three have been performed. The tools section
is continued in Chapter 3 with the modeling and simulation part from the toolßow (Sesame).
Sesame is used for almost all of the experiments in this thesis, either in its basic form, or with
speciÞc adaptations that support a particular technique. SpeciÞcally, we describe the various
parts that compose a Sesame model: the model description, the application and architecture
model and the application-to-architecture mapping. Furthermore, we show how to perform
a design space exploration case study using Sesame. The aim of this chapter is to provide
sufÞcient information about the Daedalus toolßow (and the Sesame tool in particular) to
promote a good understanding of the topics in the remainder of this thesis. Additionally,
we give enough details to serve as a user introduction to Sesame and to recreate any of the
experiments.

The second part of the thesis presents various advanced modeling and simulation tech-
niques. These techniques can aid a designer to traverse the design space by improving
the accuracy of the model, or to capture different systems and behavior that could not be
represented in the standard Sesame model. Each chapter focuses on a speciÞc method or
technique, discusses its beneÞts, and shows how the Sesame model can be adapted to sup-
port it. Most of these methods and techniques are not restricted for use in Sesame and can
be applied in other modeling and simulation environments as well. Care will be taken to in-
dicate which parts of the techniques and methods are Sesame-speciÞc, and which are more
generally applicable. Each chapter concludes with an experimental section to demonstrate
how the speciÞc method or technique can be applied in a practical case study. Two detailed
and industrially relevant case-studies are given in the last part of the thesis.
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The Þrst chapter of Part Two (Chapter 4) describes techniques to calibrate the perfor-
mance estimation of a model to a speciÞc platform or implementation. SesameÕs high-level
models capture both the behavior of each component in the system as well as the interac-
tion between model components. The description of each componentÕs behavior (or com-
ponent interaction) is usually maintained separately from its quantitative performance im-
pact. Quantitatively, the performance is described as a list of latency values, which are
typically part of the parameter list of a model component. These parameters inßuence
greatly SesameÕs ability to evaluate the performance of a modeled system. Chapter 3 gives
an overview of latency parameters used by various standard Sesame components. In Chapter
4, a method will be shown to obtain and reÞne these model latency parameters.

Chapter 5 deals with multi-application workloads in Sesame. The increasing complexity
of modern embedded systems is partially due to the fact that they need to be able to execute
multiple applications concurrently. There are different ways such multi-application work-
loads can be described and implemented. Naturally, as Sesame is intended for use in the
early design phases (where important design decisions are made), it should be capable of
modeling such workloads. In addition to real workloads, we describe a method to integrate
synthetic application workloads in Sesame. These can be particularly useful for speculative
exploration of a systemÕs properties as well as supporting simultaneous development of ap-
plication and architecture models by using synthetic workloads to develop the architecture
while the application is still in development.

Chapter 6 demonstrates a technique to model platforms that contain reconÞgurable com-
ponents. ReconÞgurable components, such as FPGAs, can be integrated into embedded
systems to improve performance and ßexibility. Performance is obtained by implement-
ing application-dependent accelerators in logic on the reconÞgurable element(s) in order to
speed up execution. The ability to change part of the reconÞgurable logic on-the-ßy (partial
dynamic reconÞgurability) introduces the ßexibility to re-use the reconÞgurable resources
for different accelerators at runtime. In this chapter it is shown how this feature can be
modeled in an environment (such as Sesame) that does not have native (built-in) support for
it. An additional challenge is that dynamically reconÞgurable systems greatly increase the
number of design choices, which results in a more complex design space. Furthermore, some
suggestions and an example are given of how design space exploration can be performed for
these systems. A case study looks at the evaluation of different reconÞguration policies for
an extended processor-coprocessor platform.

Chapter 7 deals with the problem of fully automated design space exploration. Whereas
the topic of design space exploration has been around for many years,automatedDSE is
a relatively young Þeld of research. Relatively little is known about the structure of design
spaces and the best algorithms to automatically search them. In this chapter we take a closer
look at the use of evolutionary algorithms in this context (particularly genetic algorithms:
GAs). Such algorithms have been used successfully for combinatorial search problems in
other research domains. Here we consider the beneÞt of GAs for some of the most challeng-
ing design space parameters available: task mapping. In an attempt to improve the results
we introduce a metric that may provide a handle on the otherwise chaotic organization of the
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mapping subspace. The metric also gives rise to a new implementation of GA primitives.
In the third and Þnal part of the thesis, Chapter 8 reports on several larger case studies.

Firstly we show the results of a validation case study where we validate the Sesame simula-
tion results as compared to measurements on prototype systems from the Daedalus toolßow.
Next, an industrial case study is presented where an image processing application is mapped
onto a tiled architecture. We discuss the modeling and simulation aspects and show the de-
sign space exploration process, which is partially automated. Finally, the thesis concludes
with Chapter 9, where we revisit the contributions of the thesis in light of the requirements
for efÞcient DSE as summarized in Figure 1.3.
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Chapter 2

Daedalus: design ßow

2.1 Introduction

As mentioned in the previous chapter, the complexity of modern embedded systems, which
are increasingly based on heterogeneous MultiProcessor-SoC (MP-SoC) architectures, has
led to the emergence of system-level design. To cope with this design complexity, system-
level design aims at raising the abstraction level of the design process. Key enablers to this
end are, for example, the use of architectural platforms to facilitate re-use of IP compo-
nents and the notion of high-level system modeling and simulation [53]. The latter allows
for capturing the behavior of platform components and their interactions at a high level of
abstraction. As such, these high-level models minimize the modeling effort and are opti-
mized for execution speed, and can therefore be applied during the very early design stages
to perform, for example, architectural Design Space Exploration (DSE). Such early DSE is
of paramount importance as early design choices heavily inßuence the success or failure of
the Þnal product.

System-level design for MP-SoC based embedded systems typically involves a num-
ber of challenging tasks. For example, applications need to be decomposed into parallel
speciÞcations so that they can be mapped onto an MP-SoC architecture [66]. Subsequently,
applications need to be partitioned into HW and SW parts since MP-SoC architectures often
are heterogeneous in nature. To this end, MP-SoC platform architectures need to be mod-
eled and simulated to study system behavior and to evaluate a variety of different design
options. Once a good candidate architecture has been found, it needs to be synthesized,
which involves the synthesis of its architectural components as well as the mapping of ap-
plications onto the architecture. To accomplish all of these tasks, a range of different tools
and tool-ßows is often needed, potentially leaving designers with all kinds of interoperabil-
ity problems. Moreover, there typically remains a large gap (the so-calledimplementation
gap[69]) between the deployed system-level models and actual implementations of the sys-
tem under study. Currently, there exist no mature methodologies, techniques, and tools to
effectively and efÞciently convert system-level system speciÞcations to RTL speciÞcations.

DaedalusÕ main objective is to bridge the aforementioned implementation gap for the

23
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design of multimedia MP-SoCs. It does so by providing an integrated and highly-automated
environment for system-level architectural exploration, system-level synthesis, program-
ming and prototyping. In this chapter we will show how the different components Þt together
as the pieces of a puzzle, resulting in a system-level design environment that addresses the
entire design trajectory with an unparalleled degree of automation.

The next section provides a birds-eye overview of Daedalus, after which the three sub-
sequent sections present the three core tools that constitute Daedalus in more detail. More
speciÞcally, Section 2.3 explains how multimedia applications are automatically decom-
posed in parallel speciÞcations. Section 2.4 describes how Ð given the parallel application(s)
Ð promising candidate architectures can be found using our system-level modeling, simu-
lation and exploration methodology and toolset. In Section 2.5, we explain how selected
candidate architectures can be automatically and rapidly synthesized, programmed and pro-
totyped. Section 2.6 describes in some more detail how the different components of the
tool-ßow have been linked together. Finally, Section 2.7 discusses related work. As the
main focus of this thesis concerns design space exploration, the next chapter will take a
closer look at the Sesame simulation and modeling environment, which we already intro-
duce shortly in this chapter (Section 2.4 In Chapter 8 of this thesis a case study demonstrates
the entire Daedalus design ßow in action.

2.2 The Daedalus framework

In Figure 2.1, the design ßow of the Daedalus framework is depicted. As mentioned before,
Daedalus provides a single environment for rapid system-level architectural exploration,
high-level synthesis, programming and prototyping of multimedia MP-SoC architectures.
Here, a key assumption is that the MP-SoCs are constructed from a library of pre-determined
and pre-veriÞed IP components. These components include a variety of programmable and
dedicated processors, memories and interconnects, thereby allowing the implementation of
a wide range of MP-SoC platforms. The remainder of this section provides a high-level
overview of Daedalus, after which the subsequent sections zoom in on its core components
and how they interact with the rest of the design ßow.

Starting from a sequential application speciÞcation in C or C++, the KPNgen tool [116]
allows for automatically converting the sequential application into a parallel Kahn Process
Network (KPN) [51] speciÞcation. Here, the sequential input speciÞcations are restricted
to so-called static afÞne nested loop programs, which is an important class of programs in,
e.g., the scientiÞc and multimedia application domains. By means of automated source-level
transformations [94], KPNgen is also capable of producing different input-output equivalent
KPNs, in which for example the degree of parallelism can be varied. Such transformations
enable application-level design space exploration.

The generated or handcrafted KPNs (the latter in the case that, e.g., the input speciÞca-
tion did not entirely meet the requirements of the KPNgen tool) can subsequently be used
by our Sesame modeling and simulation environment [79] to perform system-level architec-
tural DSE. To this end, Sesame uses (high-level) architecture model components from the
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Figure 2.1: The Daedalus design ßow.

IP component library. Sesame allows for quickly evaluating the performance of different
application to architecture mappings, HW/SW partitionings, and target platform architec-
tures. Such DSE should result in a number of promising candidate system designs, of which
their speciÞcations (system-level platform description, application-architecture mapping de-
scription, and application description) act as input to the ESPAM tool [74]. This tool uses
these system-level input speciÞcations, together with RTL versions of the components from
the IP library, to automatically generate synthesizable VHDL that implements the candidate
MP-SoC platform architecture. In addition, it also generates the C/C++ code for those ap-
plication processes that are mapped onto programmable cores. Using commercial synthesis
tools and compilers, this implementation can be readily mapped onto an FPGA for proto-
typing. Such prototyping also allows for calibrating and validating SesameÕs system-level
models, and as a consequence, improving the trustworthiness of these models.

Ultimately, Daedalus aims at traversing an entire design ßow Ð going from a sequen-
tial application to a working MP-SoC prototype in FPGA technology with the application
mapped onto it Ð in a matter of hours. Evidently, this would offer great potentials for quickly
experimenting with different MP-SoC architectures and exploring design options during the
early stages of design.

In the following sections we describe each of the main components in Daedalus: appli-
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cation parallelization, design space exploration and system-level synthesis.

2.3 Parallelizing applications

Today, traditional imperative languages like C or C++ are still dominant with respect to im-
plementing applications for SoC-based architectures. It is, however, difÞcult to map these
imperative implementations, with typically a sequential model of computation, onto MP-
SoC architectures that allow for exploiting task-level parallelism in applications. In con-
trast, models of computation that inherently express task-level parallelism in applications
and make communications explicit, such as CSP [43] and Process Networks [51], allow for
easier mapping onto MP-SoC architectures. However, specifying applications using these
models of computation usually requires more implementation effort in comparison to se-
quential imperative solutions.

In Daedalus, we start from a sequential imperative application speciÞcation (C/C++)
which is thenautomaticallyconverted into a Kahn Process Network (KPN) [51] using the
KPNgen tool [116]. This conversion is fast and correct by construction. In the KPN model
of computation, parallel processes communicate with each other via unbounded FIFO chan-
nels. Reading from channels is done in a blocking manner, while writing to channels is
non-blocking. We use KPNs for application speciÞcations because this model of computa-
tion nicely Þts the targeted media-processing application domain and is deterministic. The
latter implies that the same application input always results in the same application output,
irrespective of the scheduling of the KPN processes. This provides complete scheduling
freedom when, as will be discussed later on, mapping KPN processes onto MP-SoC archi-
tecture models for quantitative performance analysis and design space exploration.

As mentioned before, KPNgenÕs input applications need to be speciÞed as so-called
static afÞne nested loop programs to allow for automatic parallelization of applications. As a
Þrst step, KPNgen can apply a variety of source-level transformations to these speciÞcations
in order to, for example, increase or decrease the amount of parallelism in the Þnal KPN [94].
Subsequently, the C/C++ code is transformed into single assignment code (SAC), which
resembles the dependence graph (DG) of the original nested loop program. Hereafter, the
SAC is converted to a Polyhedral Reduced Dependency Graph (PRDG) data structure, being
a compact mathematical representation of a DG in terms of polyhedra. Finally, a PRDG
is converted into a KPN by associating a KPN process with each node in the PRDG. The
parallel KPN processes communicate with each other according to the data dependencies
given in the DG.

In Figure 2.2, a Kahn Process Network example is given in which three processes (A, B
and C) are connected using three channels (CH1-3). Figure 2.2(a) shows the XML descrip-
tion of Kahn process B as generated by KPNgen. The XML describes both the topology
of the KPN (i.e., how the processes are connected together, see e.g. lines 20-25) as well
as the communications and computations performed by processes. In our example, process
B executes a function calledcompute(line 8). The function has one input argument (line
9) and one output argument (line 10). The relation between the function arguments and the
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main()void {

read( p2, in_0, sizeof(myType) );
compute( in_0, out_0 );
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write( p1, out_0, sizeof(myType) );
}

}

void

for
int *isEmpty = port + 1;

// reading is blocked if a FIFO is empty
while
(byte* data)[i] = *port; // read data from a FIFO

( int i=o; i<length; i++ )

}

( *isEmpty ){  }

read( byte *port, void *data, int length )

void write( byte *port, void *data, int length )

for
int *isFull = port + 1;

// writing is blocked if a FIFO is full
while

( int i=o; i<length; i++ )

( *isFull ) {  }
*port = (byte* data)[i]; // write data to a FIFO

}

{

{

}

25

20

}

name = CH2<channel >

<toProcess name = "B" />

<fromProcess />

</channel

name = "A"

. . .

XML specification of a KPNa) b) Program code, generated by ESPAM
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1

</port

</port

<var name = "out_0"

<var name = "in_0"

/>type = "myType"
<port name = "p1" direction = "out" />

type = "myType" />

</loop
</process_code

</process >

<loop parameter = "N" >index = "k"
<loop_bounds

/>
matrix = "[1,  1,0,! 2;"

1,! 1,2,! 1]"

for ( int k=2; k<=2*N! 1; k++ ){

{

{

Figure 2.2: A Kahn Process Network example.

communication ports of the process is given in lines 3 and 6. The function has to be executed
2" N # 2 times as speciÞed by the polytope in lines 12-13. The value ofN is between 3 and
384 (lines 14-15).

From the XML speciÞcation, Daedalus allows for automatically generating the C/C++
code implementing the behavior of each KPN process. This is done by the ESPAM tool,
which will be discussed later on. Figure 2.2(b) shows, for example, the generated C code
for process B (some variable declarations have been omitted). The code contains the main
behavior of a process, together with the read/write communication primitives. In accordance
with the XML speciÞcation in Figure 2.2(a), the functioncomputeÐ which is derived from
the original sequential application speciÞcation Ð is part of a loop that iterates 2" N # 2
times. For synthesis purposes, Daedalus also allows for generating the code for the read and
write communication primitives, as shown in Figure 2.2(b). Currently, these primitives are
implemented using polling and memory-mapped I/O. Note that the implementation of the
write primitive is blocking since at implementation level FIFO channels are bounded in size.
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Figure 2.3: SesameÕs layered infrastructure.

2.4 Design Space Exploration

Given a (set of) KPN application speciÞcation(s) Ð as for example generated by KPNgen
or devised by hand Ð and the components in DaedalusÕ IP library, the Sesame system-level
simulation framework [79] addresses the problem of Þnding a suitable and efÞcient target
MP-SoC platform architecture. Figure 2.3 illustrates SesameÕs layered infrastructure for
the case in which a Motion-JPEG application is studied with a crossbar-based distributed-
memory MP-SoC as target architecture. Sesame deploys separate application and architec-
ture models, where an application model describes the functional behavior of an application
and an architecture model deÞnes architecture resources and captures their performance con-
straints. After explicitly mapping an application model onto an architecture model, they are
co-simulated via trace-driven simulation. This allows for evaluation of the system perfor-
mance of a particular application, mapping, and underlying architecture. Essential in this
methodology is that an application model is independent from architectural speciÞcs and as-
sumptions on hardware/software partitioning. As a result, a single application model can be
used to exercise different hardware/software partitionings and can be mapped onto a range
of architecture models, possibly representing different architecture designs or modeling the
same architecture design at various levels of abstraction.

For application modeling, the computational and communication behavior of the KPN
application speciÞcations are captured usingapplication event traces. The computation and
communication events in these traces typically are coarse grained, such asExecute(DCT)or
Read(channel_id, pixel-block). To generate the application events, the C/C++ code of each
Kahn process is instrumented with annotations that describe the applicationÕs computational
actions. In addition, Sesame provides read and write communication primitives that generate
communication events as a side-effect. So, by executing the KPN model, each process
generates its own trace of application events, representing the workload that is imposed on
the underlying MP-SoC architecture model.

An architecture model simulates the performance consequences of the computation and
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communication events generated by an application model. To this end, each component in
the architecture model is parameterized with performance parameters specifying the laten-
cies of computation events likeExecute(DCT), communication transactions, and memory
accesses. This approach allows to quickly assess, e.g., different HW/SW partitionings by
simply experimenting with the latency parameters of processing components in the architec-
ture model: a low computational latency refers to a HW implementation while a high latency
mimics a SW solution.

To bind application tasks to resources in the architecture model, Sesame provides an in-
termediatemapping layer. It controls the mapping of Kahn processes (i.e. their event traces)
onto architecture model components by dispatching application events to the correct archi-
tecture model component. The mapping also includes the mapping of Kahn channels onto
communication resources in the architecture model. The mapping layer has two additional
purposes. First, the event dispatch mechanism in the mapping layer provides a variety of
static and dynamic policies to schedule application tasks (i.e., their event traces) that are
mapped onto shared architecture model components. Second, the mapping layer is also ca-
pable of dynamically transforming application events into (lower-level) architecture events
in order to facilitate ßexible reÞnement of architecture models [79].

The output of system simulations in Sesame provides the designer with performance
estimates of the system(s) under study together with statistical information such as utiliza-
tion of architectural components (idle/busy times), the contention in a system (e.g., network
contention), proÞling information (time spent in different executions), critical path analy-
sis, and average bandwidth between architecture components. Such results allow for early
evaluation of different design choices, identifying trends in the systemsÕ behavior, and can
help in revealing performance bottlenecks early in the design cycle. Here, the exploration
process is also facilitated by the fact that system conÞgurations (bindings, scheduling and
arbitration policies, performance parameters, and so on) are speciÞed using XML descrip-
tions. Hence, different system conÞgurations can be rapidly simulated without remodeling
and/or recompilation.

As a result of the design space exploration with Sesame, a small set of promising MP-
SoC platform instances can be selected for automatic synthesis (see next section). Each
selected platform instance is speciÞed using two XML Þles. One describing the architectural
platform at the system level, i.e. which IP components are used in the platform and how
they are interconnected. And the other describing how application tasks are mapped onto
the platform components.

2.5 System-level Synthesis

The system-level speciÞcations that result from DSE Ð describing (the structure of) the ap-
plication and platform architecture as well as the mapping of the former onto the latter Ð are
given as input to the ESPAM tool for system-level synthesis [74]. To guarantee correctness-
by-construction, ESPAM Þrst runs a consistency check on the provided platform instance.
This includes Þnding impossible and/or meaningless connections between system-level plat-
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form components as well as parameter values that are out of range. Subsequently, ESPAM
reÞnes the abstract platform model to a parameterized RTL model which is ready for an im-
plementation on a target physical platform. The reÞned system components are instantiated
by setting their parameters based on the target physical platform features. Finally, ESPAM
generates program (C/C++) code for each programmable processor in the multiprocessor
platform in accordance with the application and mapping speciÞcations. To this end, it uses
the XML speciÞcations generated by KPNgen. In addition, ESPAM also provides the sup-
port for scheduling the code in the case multiple application processes are mapped onto a
single processor in the platform. Currently, this code scheduling is performed statically.

The output of ESPAM, namely an RTL speciÞcation of the MP-SoC platform, is a model
that can adequately abstract and exploit the key features of a target physical platform at the
register transfer level. It consists of four parts (as shown in Figure 2.1): 1) aplatform
topologydescription deÞning in greater detail the structure of the multiprocessor platform;
2) hardware descriptions of IP corescontaining predeÞned and custom IP cores used in
1). These IP cores, which are selected from DaedalusÕ IP component library, include pro-
grammable as well as dedicated processors, various memory components (FIFO buffers,
random access memory, etc.), and different interconnects (point-to-point links, shared bus
with various arbitration mechanisms, and a crossbar switch). For programmable processors,
ESPAM currently uses PowerPCs and Microblazes since it targets the Xilinx VirtexII-Pro
family of FPGA technology for prototyping the synthesized MP-SoCs. ESPAM also auto-
matically generates custom IP cores needed as a glue/interface logic between components
in the platform; 3) theprogram code for processorsÑ as mentioned before, to execute the
software parts of the application on the synthesized multiprocessor platform, and 4)Auxil-
iary informationcontaining Þles which give tight control on the overall speciÞcations, such
as deÞning precise timing requirements and prioritizing signal constraints.

With the above descriptions, a commercial synthesizer can convert an RTL speciÞcation
to a gate-level speciÞcation, thereby generating the target platform gate-level netlist (see
the bottom part of Figure 2.1). At this moment, ESPAM facilitates automated MP-SoC
synthesis and programming using the Xilinx VirtexII-Pro family of FPGAs and therefore
uses the Xilinx Platform Studio (XPS) tool as a back-end to generate the Þnal bit-stream
Þle that conÞgures the FPGA. However, our framework is general and ßexible enough to be
targeted to other physical platform technologies as well.

2.6 The Daedalus Design-ßow Infrastructure

As discussed in the previously, the heart of Daedalus consists of the three core tools KPNgen,
Sesame and ESPAM. In addition, Daedalus also features several supporting tools to im-
prove the user-friendliness and deployability of the framework. This section provides a brief
overview of the supporting infrastructure.

In Daedalus, most design information (e.g., structural descriptions of the application, ar-
chitecture, and the mapping of the former onto the latter) as well as experimental results are
described using XML-based descriptions. Daedalus therefore contains the Oracle Berkeley
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Figure 2.4: DaedalusÕ customizable work ßow.

DB XML relational database management system (RDBMS) to store all information (mod-
els, parameters and results) related to designs and experiments. This RDBMS, together with
its GUI, provide the designer with a powerful tool to e.g., explore and visualize the large
amounts of data generated by Daedalus design space exploration. Moreover, it guarantees
the reproducibility of experiments at all times.

The vision behind the Daedalus software infrastructure is that it should be open for
integration of new tools as well as that it should allow for customization of the design ßow.
Therefore, the design ßow (or tool ßow) in Daedalus is composable and constructed from
Õdesign-ßow blocksÕ. These design-ßow blocks, which are illustrated as the dashed boxes in
Figure 2.4, are the tools that take part in the design ßow together with their input- and output
descriptions. The latter descriptions, illustrated by the grey boxes in Figure 2.4, provide
information about what input/output data a tool consumes/produces and from/to where it
reads/writes this data. This allows us to describe a design ßow as a simple composition
of the design-ßow blocks, speciÞed in theworkßow description. For example, Figure 2.4
shows a design ßow which includes a visualization block to visualize SesameÕs DSE results
and which stores both the DSE and ESPAMÕs prototyping results in the RDBMS (using the
so-called ÕXML saverÕ tool). Evidently, this composability of the design ßow allows for
easily adding new design steps to a design ßow, or to customize design ßows for speciÞc
design domains.

Control and monitoring software utilities have been developed to facilitate the process of
setting up and executing experiments on the FPGA-based prototypes of MP-SoCs generated
by Daedalus. Such utilities are necessary and very useful for: (i) conducting an effective and
efÞcient design space exploration at implementation level on a narrow design space deÞned
by Sesame; (ii) measuring real performance and cost numbers used for calibration of the
DaedalusÕ high-level architecture models [80]; (iii) preparing real HW/SW demonstrators.
The control and monitoring utilities include a conÞguration manager, an execution control
panel, and an on-line monitoring console, all supported by a GUI which allows users unfa-
miliar with the FPGA prototyping board to perform experiments with the MP-SoCs.
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2.7 Related Work

Systematic and automated application-to-architecture mapping has been widely studied in
the research community. The closest to our work is the Koski MP-SoC design ßow [52] and
the SystemC-based design methodology presented in [40]. Koski provides a single infras-
tructure for modeling of applications, automatic architectural design space exploration, and
automatic system-level synthesis, programming, and prototyping of selected MP-SoCs. The
methodology in [40] supports automated design space exploration, performance evaluation,
and automatic platform based system generation. But unlike Daedalus, [52] and [40] do not
allow for automated parallelization of applications, nor design space exploration at appli-
cation level. Both [52] and [40] require applications to be speciÞed by hand in UML and
SystemC, respectively.

Other examples of related work can be found in [95, 64, 20, 33]. However, these ef-
forts are limited to processor-coprocesor architectures [95], only provide a limited degree of
automation [64, 20], or do not provide an automated step towards RTL [33].

Companies such as Xilinx and Altera provide design tool chains attempting to gener-
ate efÞcient implementations starting from descriptions higher than (but still related to) the
register transfer level of abstraction. The required input speciÞcations are still so detailed
that designing a single processor system is still error-prone and time consuming, let alone
designing alternative multiprocessor systems. In contrast, Daedalus raises the design to an
even higher level of abstraction allowing the exploration, design, and programming of multi-
processor systems in a short amount of time. For a more detailed discussion of related work
and a classiÞcation of system-level design and synthesis tools we refer to [34].

2.8 Conclusion

In this chapter we presented the Daedalus framework that tries to bridge the so-called imple-
mentation gap between system-level platform speciÞcations and the actual physical imple-
mentations of these platforms. To this end, Daedalus focuses on the design of multimedia
MP-SoC platforms. As such, it provides an integrated and highly-automated environment
for system-level architectural exploration, system-level synthesis, programming and pro-
totyping. Such a framework offers remarkable potentials for quickly experimenting with
different MP-SoC architectures and exploring system-level design options during the very
early stages of design. In Chapter 8 we illustrate DaedalusÕ design steps and demonstrate its
efÞciency using a case study with a Motion-JPEG encoder application.



Chapter 3

Sesame: modeling and simulation

3.1 Introduction

As was shown in the previous chapter, the Sesame tool is used within Daedalus for efÞcient
system-level modeling and simulation. Most of the topics discussed in the second part of this
thesis (Techniques: Chapters 4, 5 and 6) either use Sesame directly, or with the modiÞcations
proposed in those chapters. In the current chapter we will give an overview of the Sesame
environment to give the reader a general insight into the methodology and scope of Sesame.
Although Sesame is the tool of choice in the context of the Daedalus toolßow, it may be
equally useful in other contexts where system-level modeling and simulation is required.
Therefore, in this chapter, Sesame will be presented as a generic modeling and simulation
tool, but where appropriate, its connection to the Daedalus environment will be discussed.

The structure of this chapter is as follows. In the next section a general overview of
the Sesame environment will be presented. A Sesame model consists of three parts: the
application model, the architecture model and the mapping model: shown in Figure 3.2 as
the top, bottom and middle model layer respectively. The discussion in the next section will
follow the natural order from modeling the functional behavior of the system to modeling
the system platform and hardware aspects with respect to non-functional behavior. Section
3.3 revisits these topics with a focus on the implementation details of different parts of the
model in Sesame. Some modeling examples will be given to make the previously discussed
topics more concrete. The Þnal section discusses issues related to the periphery of Sesame:
methods for efÞcient speciÞcation of the design space (Section 3.4) and interpretation of
simulation results (Section 3.5).

3.2 Overview

One of the main design principles of the Sesame environment is to apply separation of con-
cerns where possible. In this way, complicated problems are decomposed in smaller, easier
to solve sub-problems, which (combined) still represent the original complicated problem.
The most prominent separation of concerns in Sesame is the separation of functionality and

33
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Figure 3.1: Y-chart design methodology

implementation, which is also proposed by the Y-Chart design principle ([54]). Sesame
adheres to this principle by providing separate application and architecture models: the for-
mer captures the functional behavior of the system while the latter captures non-functional
behavior. The non-functional behavior modeled by Sesame principally concerns system per-
formance, but the model can be extended to account for additional objectives such as energy
[81] or cost. The Y-Chart principle is schematically depicted in Figure 3.1 and consists
of three stages: 1) application and architecture model creation, 2) mapping application to
architecture and 3) model evaluation and feedback. The application model describes the
functional behavior of an application in an architecture-independent way and it does not
contain any architectural speciÞcs such as the resource or performance constraints of ar-
chitectural components. To obtain a rough estimate of its performance requirements, the
application model can typically be studied independently from the architecture model us-
ing traditional software analysis tools such as software proÞlers. However, for the purpose
of more detailed analysis, an architecture model is created that models for example system
performance, power or cost. Sesame uses trace-driven cosimulation where the application
model "drives" the architecture model by providing it with dynamic application information.
A trace consists of events, and each event describes a single atomic action by the applica-
tion model. The information contained in an event is typically a high-level description of a
communication or computation action of the application: detailed functional information is
omitted. For example, a data communication is described by its source, target and data size,
but the actual values of the data are not included because they are not needed in SesameÕs
high-level non-functional architecture models. In the remainder of this section we will dis-
cuss how the three Y-Chart stages are represented in Sesame and give further details of the
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interaction between the application and architecture models. Section 3.3 will give more
details towards the implementation of Sesame.

Figure 3.2: Overview of a Sesame model: the application, architecture and virtual layer

3.2.1 The application model

In Sesame we use Kahn Process Networks (KPN) as the preferred Model of Computation
(MoC) to represent the application. This choice is motivated by the application domain that
is targeted by Daedalus: multimedia and signal processing applications are often data-ßow
dominated and can be thought of as streams of data passing through a network of actors
performing computations on individual data items (which may represent, in the example
of an imaging application, pixels, lines, pixel blocks or image frames). A KPN is deÞned
as a network of concurrently executing processes without access to shared memory, which
communicate exclusively over Kahn channels. Kahn Channels are one-directional FIFO
buffers of unbounded capacity without restrictions on the type of data that can be sent. In
the top section of Figure 3.2, an example is given of a simple KPN with 4 processes and 4
channels. Internally, Kahn processes may be deÞned in any high-level language as long as
the Kahn semantics are observed.



36 CHAPTER 3. SESAME: MODELING AND SIMULATION

The KPN MoC is deÞned mainly by the semantics that are enforced on the channel
communication. Processes are allowed to read to and write from any channel at any time.
Write operations always succeed, since the channel buffers are of inÞnite capacity. However,
reading from an empty channel causes a process to stall ("block") until data is written to this
channel. A further condition is that there is no "test" operator to check data availability
and therefore process execution is independent of the state of the channel. There are no
restrictions on what a Kahn process is allowed to do internally, except (as mentioned before)
that it is not a allowed to access memory that is shared with other processes: all inter-process
communication has to occur explicitly over Kahn channels. Similar to the Synchronous Data
Flow MoC (SDF), KPNs fall in the untimed MoC category: there is no concept of time
passing, neither in terms of clock cycles nor in (simulated) time.

The result of the above semantics is that the KPN MoC is deterministic: the order of the
tokens that are communicated over the channels does not depend on the execution order or
execution time of individual processes. Determinism is a highly desirable property for the
kind of models that we are considering: the system model (the combination of application
and architecture) will produce the same output (for given input) regardless of the speciÞc
process scheduling or architectural (timing) characteristics. It also guarantees the validity of
the event traces between the independently executing application and architecture models.
Although determinism guarantees the functional behavior of the system, no assertions can
be made yet about the systemÕs non-functional behavior. For this purpose we need either
an implementation on a real system or an architectural simulation that captures certain non-
functional behavior.

3.2.2 The architecture model

The architecture model in Sesame (see the bottom of the three layers in Figure 3.2) is re-
sponsible for modeling latencies associated with the physical properties of the system. The
Sesame architecture model is speciÞed using the Pearl discrete event simulation language.
The Pearl language was designed from the ground up to efÞciently model multi-processor
heterogeneous computer architectures at a high level of abstraction. On the one hand it
achieves very good runtimes for entire system-level simulations running an application with
a representative input workload. On the other hand, it sports an easy and compact concur-
rent programming style with powerful semantics that enables designers to express complex
interactions between model components with relative ease. This means that complete sys-
tem level models can be deÞned while the model development time remains modest, which
is especially important in the early stages of development as architectural design decisions
may be taken at the highest level and models may frequently need to be changed to test and
evaluate new designs. The choice of programming language is therefore more than a trivial
choice, since it can directly affect the overall design time of the system. In the following we
discuss some of the main language features of Pearl. In Section 3.3.3, some more details
and a simple model example will be given.

The Pearl programming language is characterized by two main features: 1) an object
oriented approach for deÞning model components and 2) integrated primitives for commu-
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nication and synchronization between model components. The functionality and behavior
of model components is speciÞed as aclass, similar to a class deÞnition in object oriented
languages such a Java or C++. Also similar to object oriented languages is that each class
has a private namespace for variable and functions in order to avoid variable name clashes.
A light-weight class hierarchy scheme is available to group related classes into a family with
a common superclass. The Pearl syntax will be familiar to C users, but the language has
been designed to include only those features that are necessary for architecture modeling. In
particular this means that there is no support for advanced data structures (other than classes
for model components), no pointer support, and only a limited set of basic data types con-
sisting of integers, ßoats and strings and one-dimensional arrays of these basic data types.
In rare cases where a programmer needs more advance language features, it is possible to
incorporate C functions which will be linked into the Þnal simulation executable. At simula-
tion time, classes can be instantiated as simulation components (also referred to asmodules).
Class instantiation is done automatically by the simulator prior to the start of the actual sim-
ulation according to an XML-based speciÞcation which is deÞned by the user (see Section
3.3.1). Since traditionally the components in a hardware system are Þxed, Pearl does not
support instantiation of classes after the initialization of the simulator. This assumption does
not generally hold anymore with the advent of dynamically reconÞgurable hardware plat-
forms such as FPGAs. Indeed this topic is addressed in Chapter 6 where we show how Pearl
can still be used to model this emerging type of systems.

The main difference with traditional object-oriented languages, however, is that each
module maintains its own execution context, or thread, so that modules can easily express the
naturally occurring parallelism between components in hardware. Modules can not modify
data items in each otherÕs address space. Instead, Pearl has Remote Procedure Call (RPC)-
like primitives for communication and synchronization between modules. For example, the
following synchronous function call statement:

calls a method with the name on a module pointed to by with
the given . The Pearl runtime system translates the call to a message which is
sent to the remote module. The calling module will now be halted until the remote module
has completed the function (using a statement, which can optionally be used to
return a value to the calling module). Note that in addition to this synchronous method
call (that halts the calling module), there is also an asynchronous method call (that gives
control immediately back to the caller) using the operator ÒÓ. For both synchronous and
asynchronous calls, the function will execute in the context of the remote moduleand at
a time that is speciÞed by the remote module (note the difference with a method call in a
normal Object Oriented language). Therefore, the runtime system will store (completely
transparent to the user) all function calls issued on a certain module in a dedicated message
queue. The remote module is itself in charge of accepting calls to certain functions by issuing
a matching statement:
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The result of the statement is that the remote module takes the function call message
from its queue and executes it in its own thread context. When this function call exits, the
issuing module is unblocked and both modules continue with the next statement in their code
listing. If a module issues a statement before the
has been called, then the module will block until such a call is made.

The Þnal important Pearl statement is used to indicate that a module is busy for a given
number of clock cycles (eg. a processor component is busy executing some computational
kernel or a bus is busy transferring some data):

During the speciÞed amount of the module is suspended and can not perform other
actions such as remote function calls; it will resume after clock cycles have passed.
The simulation runtime will execute without priority and non-preemptively any runnable
module with simulated concurrency. Modules are runnable until they yield by blocking on
remote function calls or with . The Pearl simulation runtime maintains simulation
time using the globally shared clock. Note that a system with multiple clock domains can be
modeled by relative scaling of latencies (small errors introduced by scaling are insigniÞcant
at SesameÕs high level of abstraction). When there are no more runnable modules, then the
discrete-event simulation engine will increment global clock to the earliest resume-time for
a suspended module and resume execution of that module. Valid termination occurs when
either all modules have Þnished execution, or when all modules are blocking in unmatched
communication primitives: a remote function call primitive without a matching , or
vice versa.

In Pearl, the remote procedure call primitives perform Ð in a completely transparent way
Ð relatively complex communication and synchronization transactions between modules.
Furthermore, the compact syntax of the primitives ensures that simulation code in Pearl is
easy to write, which is an essential property for early model development. As we will see
in the example in Section 3.3.3, Pearl code is also easy to read, since the combination of
RPC primitive and function name completely determines the state a module at any given
time. Code modularity (and thereby code reuse) is further promoted by the use of classes
to deÞne simulation components. The set of remotely callable functions in a class acts as
an explicit module interface: a module can be easily be replaced by another module as
long as it implements the same functions. All in all, Pearl is a suitable language for the
creation of simulation models that support design decisions in the early stages of MPSoC
design where models typically have to be created and modiÞed in short time frames. We
shortly refer to the work in [104] where we transferred the functionality of the compact Pearl
communication primitives to the more widely-used and standardized SystemC modeling
language. However, this approach suffered from performance limitations of the reference
SystemC implementation, thus favoring the use of the custom Pearl language within Sesame
to improve model execution speed.
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3.2.3 Mapping

Due to the separation of application and architecture, an explicit interface is needed to con-
nect the two models. Sesame performs trace driven simulation where the events collected in
the untimed application model are streamed to the timed domain of the architecture model.
The events are abstract representations of the actions performed by the application model
and are initially chosen to represent only coarse grain events. At this coarse grain level
of abstraction only channel communication and computation of large kernels or functions
are represented by events. In Sesame, these event traces are not immediately consumed by
the architecture model, but instead they pass through a so-called "virtual layer" (sometimes
calledmapping layer). The virtual layer serves multiple functions towards mapping, syn-
chronization and scheduling of events before they are passed on to the architecture model.
The virtual layer exists in the same timed domain as the architecture model and is in fact
part of the same simulation model, however, we treat it here as a separate entity from the ar-
chitecture layer as its functionality is distinct from the architecture model. The virtual layer
is composed of virtual processors and virtual channels that are connected according to the
same topology as the application model (see Figure 3.2). For this reason the virtual layer can
initially be generated automatically (this process will be further explained in Section 3.3.4).
The virtual processors read the event traces that are generated by the application model and
forward them (according to the mapping speciÞcation) onto architectural model components
such as processors. Before forwarding events, however, the virtual layer takes care of mod-
eling several important issues with regard to synchronization of the events as well as some
issues that are optional for certain types of models. In the following we will shortly discuss
the different functions of the virtual layer.

Synchronization modeling

According to the Kahn MoC, communication takes place in a world where there is neither
time, nor a limitation on the channel size. Of course, in any practical implementation of a
system this assumption does not hold and (apart from physical wire and switching delays)
the speed of communication is limited by the storage capacity of the transport medium (bus
width, packet size or memory size, etc). This limited capacity may lead to problems when
pairs of producing and consuming nodes are not producing and consuming data at the same
rate. For example consider the case where a receiving node consumes packets slower than
the production rate of packets; eventually the (limited) buffer capacity will Þll up and the
producing node will be forced to wait until storage space becomes available. Similarly, a
consuming node may be blocked on an empty channel when the production rate is slower
than the rate of consumption. Within the context of Sesame, the time spent waiting for
empty or completely saturated communication channels is referred to assynchronization
latencyand it is modeled by the virtual layer. Note that latencies associated with architecture
speciÞc parameters such as bus width, throughput or latency are modeled in the architecture
model, as will be shown in the next subsection.

The virtual processors and virtual channels can be seen as the real-world representatives
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of the Kahn applications and channels: theydoin fact model timing consequences of waiting
for data (when a channel is empty) or waiting for free space (when a channel is full). In the
case of a virtual processor this works a follows: for each communication event (RD or
WR) the virtual processor checks whether the data is available or whether there is sufÞcient
storage space for a write event to complete. If necessary, the virtual processor will halt until
the respective condition is met. The amount of time the virtual processor is halting is referred
to as a synchronization latency. When the condition is met, only then is the communication
event forwarded to the architecture model to model physical latencies that may be associated
with communicating data over a certain medium (communication network or memories for
example). Note that the synchronization latency indirectly includes architectural latencies
(which are modeled in the architecture layer). For example, when a write is blocked on
a full channel, then the total write synchronization latency includes both waiting for the
initiation of the corresponding read eventandthe latency modeled by the architecture model
to complete the read (including e.g., bus and memory latencies).

This reveals a second case of separation of concerns in Sesame: synchronization laten-
cies are modeled separately from the hardware communication latencies. This turns out to be
particularly useful when the synchronization behavior of certain tasks needs to be changed,
as we will see in Section 3.3.4.

Deadlock prevention

For completeness, we list the prevention of deadlock as one of the tasks of the virtual layer,
although this is actually a side-effect of the synchronization modeling in the previous chap-
ter. Deadlocks could occur by chance when two dependent application processes are mapped
onto the same processor, depending on the order of the trace events. Such deadlocks need
to be prevented, since a deadlocked model in Sesame satisÞes the model termination condi-
tion and thus no useful information can be derived from a deadlocked simulation run. For
example in Figure 3.2, assume process A writes to process B, but the communication buffer
in the virtual layer is full. If the write event from A had already been sent to the architecture
model, then this write event would block processor P0 and deadlock would occur, since the
read event from process B (which would free the required buffer space) has to execute on
P0 too. The synchronization mechanism from the previous section resolves this problem by
delaying forwarding the write event to P0 until sufÞcient space is available in the buffer.

Model ReÞnement

An important consideration in Sesame is to support mixed-level modeling and gradual model
reÞnement. In a typical design case study it may be necessary to model some parts of a
system in more detail, for example because their effects on global system performance can
not be captured accurately by the high-level model. Sesame enables a designer to start with
a high level model and gradually reÞne certain parts of the model as needed. The resulting
model mixed model contains components speciÞed at different layers of abstraction, but
still runs as a single simulation entity. Moreover, by gradually reÞning more and more
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Figure 3.3: Virtual processors with reÞned synchronization behavior

components towards a lower level of abstraction (specifying ever more details about the
system), the model will come closer to a level of speciÞcation which is a sufÞcient starting
point for synthesis using traditional methods. As we explained in the previous chapter,
Daedalus is more geared towards system synthesis based on high-level speciÞcations, but
the reÞnement to synthesizable speciÞcation is still an often used design trajectory.

However, when architecture model components are reÞned, the level of granularity of
the events produced by the application model may not be sufÞcient to "drive" the underlying
reÞned architecture model components. Because of the relatively high abstraction level
of the atomic application events (a sequence of Rd, Wr, Ex-events which is executed in
strict trace order), information about the application model is lost that can be needed for the
reÞned architecture components, eg: control ßow information, event dependencies, etc. An
example is an image processing component that works on frames, but the reÞned architecture
component works on pixel lines and has only local memory to contain a few pixel lines.
The processing component should now read the frame data using multiple data transfers,
which in turn need multiple synchronization events. Such information was not present in
the original application event trace. One option is to reÞne the application model together
with the architecture model to generate events containing this additional information, but
this would break the separation of application and architecture.

To resolve this problem (while maintaining the beneÞts of separate application and ar-
chitecture models), Sesame provides dataßow based trace transformation techniques in the
mapping layer. For this purpose, the Virtual Processors in the mapping layer are extended
with automatically synthesized, modiÞed versions of Synchronous Dataßow (SDF) and Inte-
ger Data Flow (IDF) graphs which act as executable, yet abstract representations of the orig-
inal application processes. The nodes in these data ßow graphs represent synchronization
events such as Sr (Signal Room), Sd (Signal Data), Cr (Check Room), Cd (Check Data) or
architectural events such as Ld (Load data) or St (Store data). While synchronization nodes
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are typically connected to each other to express dependencies and available parallelism, Ld
and St nodes directly connect to architectural model components (Figure 3.3). When a Ld or
St nodes Þres, events are forwarded to the architecture model, where the latency of the event
is modeled, which in turn completes the Þring action of the node. Note that this so-called
token-exchange mechanism between the virtual and architecture layer executes in the timed
Pearl simulation domain, which yields timed dataßow models, resulting (in contrast to pure
SDF-models) in a semi-static scheduling. In order to support more complex reÞnements, eg.
for Kahn processes containing loops and conditional code within Kahn processes, special
IDF models have been deÞned.

As an example we use the default synchronization behavior that was explained in the
previous section. It is in fact also a form of trace reÞnement: the Rd and Wr events have
been reÞned in a sequence of smaller communication and synchronization events:

Rd: Cd $ Ld $ Sr
Wr : Cr $ St$ Sd

Figure 3.3 shows the SDF corresponding to this reÞnement for two virtual processors A and
B. Note the dependencies between the synchronization events and the initial token that is
required for the Þrst Cr (check room) event. The token exchange mechanism (consisting of
the reÞned trace events) with the architecture model is depicted as a line that connects the Ld
and St SDF nodes to model components in the architecture layer. This type of synchroniza-
tion behavior is currently the default for any Virtual Processor in Sesame and further model
reÞnement is optional.

To conclude, we can say that the combination of SDF and IDF reÞnement models sup-
port a smooth transition between abstraction levels both for communication (and synchro-
nization) and execution events while keeping the application model unchanged. In this way
reÞned architecture models can be used that capture intra-task level parallelism, various
communication policies as well as pipelined processor components. For more details and
examples we refer to [78].

Scheduling

As explained previously, virtual processors are the Òtimed representativesÓ of application
processes and the application mapping deÞnition determines to which architectural compo-
nent the virtual processors forward trace events. Simultaneous events from different pro-
cesses will compete for resources when they have been mapped onto the same architectural
component (e.g., Processes A and B in Figure 3.2). In the standard non-reÞned Sesame
system model, virtual processors (after modeling synchronization (Section 3.2.3) directly
forward events to the architectural component. As a result of PearlÕs inter-process commu-
nication semantics based on message passing, simultaneous events will be queued at the pro-
cessor and architectural timing consequences are modeled in a Þrst-come Þrst-serve (FCFS)
manner by the processor component. The FCFS scheduling policy for application events
is a suitable model for systems supporting dynamic scheduling of tasks on the execution
units. This may for example be a processor running an operating system that implements
pre-emptive threads (e.g., POSIX pthreads), user threads (light weight processes), OS-level
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processes or some kind of job scheduling middleware. Note that the particular scheduling
technology or scheduling unit (thread, process, etc.) is irrelevant at the high level of abstrac-
tion of the unreÞned Sesame model: we simply assume the resource will schedule a task as
soon as all earlier tasks have been processed.

There are cases, however, where the scheduling behavior of architectural resources dif-
fers signiÞcantly. For this purpose, a scheduler model component has been deÞned that can
be used in the virtual layer to enforce speciÞc user deÞned scheduling policies. The sched-
uler consults an external policy component to identify when tasks are to be forwarded to
the resource. In this way a wide range of different scheduling policies can be implemented;
examples include Þxed predeÞned (static) schedules, time slicing or priority scheduling.
The only limitation of the scheduler is that it can not split the application events, e.g. in
order to implement a pre-emptive scheduling after an event has already been forwarded to
the architecture. Therefore, application events have to be considered atomic, unless they
have been explicitly reÞned (Section 3.2.3). The scheduling policies are deÞned as separate
components to promote reusability and to separate the event scheduling from policy deÞni-
tions. Schedulers in Sesame will be further discussed in Chapter 5, where they are used, for
example, to model multi-application workloads.

3.3 Implementation Aspects

In the previous sections we showed SesameÕs distinct application and architecture model
layers, their important characteristics and their interaction. In this section we focus more on
the implementation aspects of the models and we again follow the structure of the layers in
a Sesame model: application model, architecture model and Þnally the one connecting both:
the virtual (or mapping) layer. But Þrst we discuss SesameÕs model description language
called YML (Y-chart modeling language), which is used to describe both the structure (and
topology) of the various models and to specify the initialization values of each component.

3.3.1 Model speciÞcation

YML is a specialized dialect of the more commonly known XML (Extensible Markup Lan-
guage). YML has the advantage of being both a machine readable as well as human read-
able format (at least for smaller speciÞcations). Each YML element deÞnes a component or
topological relationship in the model. For example we use elements with tag-names,

or to describe respectively a component, a group of components or a rela-
tionship between components. XML attributes specify the additional required details for
each type of element. All element types and their optional and obligatory attributes have
been formally deÞned in a schema (XSD) speciÞcation. By using the schema, it is easy to
use existing parsing solutions, which not only simpliÞes the implementation of the Sesame
tools, but also greatly enhances the possibility to exchange speciÞcations with external tools
which may have been developed by third parties.
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XML is deÞned as a hierarchical speciÞcation language where certain elements (accord-
ing to the relevant schema) may contain other elements, which in turn contain other elements,
etc. This way, what is essentially a tree-like structure is deÞned, which is very suitable to
describe applications or architectural topologies. In SesameÕs YML, the starting element of
a model is always a element in which all other model components are contained.
As an example, see Figures 3.4 and 3.6, where a very compact application and architecture
model is speciÞed. The attributes of the root-level network specify the URI for the YML
schema deÞnition, a name and the type ( ) of the network to indicate whether this is an
application ( ) or architecture model speciÞcation ( ). Additional elements
describe additional information such as the location of the compiled application code (Fig.
3.4 line 8-10, or Fig. 3.6 line 14-15) which will be used respectively by the application
or architecture simulation runtime. In the following we will describe the implementation-
level details of model components at each of the Sesame layers and their speciÞcation in the
corresponding YML Þle.

3.3.2 The application model

< ?xml version= encoding= ?>
< network xmlns=

>
< property name= value= />

< node name= class= >
< property name= value= />
< property name= value= />
< property name= value= />
< property name= value= />
< port name= dir= >
< property name= value= />

< /port>
< port name= dir= >
< property name= value= />

< /port>
< /node>
< node name= class= > < /node>

< link innode= inport= outnode= outport= />
< link innode= inport= outnode= outport= />

< property name= value= />
< property name= value= />
< property name= value= />

< /network>

Figure 3.4: Sample application XML

Figure 3.4 lists part of the YML speciÞcation for a MJPEG application that has been
automatically derived from sequential code by the Daedalus PNGen tool. The node elements
represent Kahn processes of the class (as indeed we will see shortly they



3.3. IMPLEMENTATION ASPECTS 45

are implemented in C or C++), and a attribute. The elements (line 11 and 14)
indicates that the process contains an in-bound port and an outgoing port. The ports form
the anchor points for Kahn channels which communicate data of the type as speciÞed by the
port (in this case 8x8 pixel macroblocks: ). The property (line 20)
connects the out-port of process with an in-port of process , thus connecting the
Kahn channel between the two processes. Figure 3.5 lists the C++ implementation of the

for <
for <

for <
>

>

Figure 3.5: Sample application process code

process. Its regular structure of afÞne nested loops and slightly odd variable names is
due to the fact that this code generated by PNGen. In general, a Kahn process can have many
in- and outgoing channels and there is no restriction on the number or ordering of reads and
writes, the number of produced execute events, or the naming conventions for nodes and
ports. Channels are accessible from the process code by means of the ports structure which
is inherited from the (automatically generated) base class .The runtime system
will automatically instantiate and initialize the processes and channels before it proceeds
to execute the process network. The ports connect processes by means of Kahn channels
according the topology deÞned by the elements in the YML. Input ports and output
ports have, respectively, and functions deÞned on them, where a read is
blocking if the channel is empty and the write is always non-blocking due to inÞnite capacity
of the channels.

Note that the process network is afunctionalapplication: in the case of the DCT
function operates on real data and the result of the given KPN network is a sequence of
compressed MJPEG images. The DCT function (line 14) is called on the input macroblock
(line 12) and writes the result to the next process which will perform quantization (line 17).
Important to note is the execute statement at line 15 which has the sole purpose of generating
a trace event (which has identiÞeras speciÞed in the YML (Fig. 3.4 line 25). The port
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and functions generate trace events as a side-effect of their communication
actions, so these do not have to be speciÞed explicitly. The trace events from each process
are captured as an ordered stream of events which is forwarded ÐÞrst to the components
in the virtual layerÐ and then to the architecture model, where timing consequences of the
events are modeled.

3.3.3 The architecture model

< ?xml version= encoding= ?>
< network xmlns=

>
< node name= class= >
< property name= value= />
< property name= value= />
< property name= value= />
< property name= value= />
< port name= dir= > < /port>
< property name= value= >
< network name= class= >
< node name= class= >
< property name= value= />
< property name= value= />
< property name= value= />
< property name= value= />
< port name= dir= > < /port>
< port name= dir= > < /port>
< port name= dir= > < /port>
< link innode= inport= outnode= outport= />

< /node>
< port name= dir= > < /port>

< /network>
< /property>

< /node>
< node name= class= >
< property name= value= />
< property name= value= />
< property name= value= />
< property name= value= />
< port name= dir= > < /port>

< /node>

< link innode= inport= outnode= outport= />
< link innode= inport= outnode= outport= />

< /network>

Figure 3.6: Architecture YML

In Figure 3.6 we list a part of the YML speciÞcation for an architecture description of
a multi-processor system connected to a shared memory. Theelements in the YML
specify which simulation components will be instantiated in the Pearl simulation language.
In Figure 3.7 a slightly simpliÞed version of the Pearl code for each of the main components
is given. In the YML speciÞcation, the element on line 4 starts the deÞnition of
and subsequent lines list its source code Þles. The string on line 8 gives the initial-
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ization values with which the variablesand in the processor object will be
initialized (Fig. 3.7 line 3-4). The Þrst of these variables is a reference with the namethat
points to a object. According to the string (Fig. 3.6), this reference is initialized
to whatever the output port is connected. On line 34 the element speciÞes that
it connects to an input port on the bus object. Thus, a synchronous or asynchronous Pearl
method call on , means a call to the bus object deÞned on line 26 of the YML. This is a clear
example that the model topology is speciÞed separately (in the YML Þle) from the model
behavior (in the Pearl source Þles). This facilitates model component reuse and makes it
easier to re-run experiments (without re-compilation) by simply changing the parameters in
the YML Þles. Lines 10-24 in the YML specify a virtual processor template, from which the
components in the virtual layer are constructed (we discuss this further in the next section).
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Figure 3.7: Pearl model component code samples for a simple architecture

We offer the following short description of the model behavior that is expressed by the
Pearl code in Figure 3.7. All components are indeÞnitely waiting for calls to their methods
(shown in the code listings starting from lines 25, 12 and 9 respectively). Whenever the pro-
cessor component receives a read-event from the application model, a virtual processor from
the mapping layer will call the processor method to model the timing consequences
of the event. The method will pass (line 10) the call to the bus, which models some
transfer latency (which depends on the size of data being communicated before passing the
call to the memory (bus class line 8). The memory will retrieve the data located at
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and the cascade of statements will return the data to the processor. Contention on
the bus component is implicitly modeled: if two (or more) processor components simulta-
neously call methods on the bus, then the bus will Þrst accept one of the calls and the others
are stored in a message queue. The continuous wait-loop (bus class line 11) will process
the queued calls one after the other, and the calling processors will incur a delay, since they
made synchronous calls to the bus. Note that since the Pearl architecture model typically
does not model functional behavior (just the timing consequences of the events mapped onto
the architecture components), the items passed between the components do not need
to contain real values. To model an execute event (a virtual processor calls the
method on the processor), the processor will simply block for an amount of time as was
speciÞed by the array in the YML Þle (Fig. 3.6 line 8). See Chapter 4 for more information
on how these latency numbers are obtained.

3.3.4 The virtual/mapping modeling layer

< ?xml version= encoding= ?>
< mapping xmlns=

>
< mapping side= name= >
< map source= dest= dtmpl= />
< map source= dest= dtmpl= />
< map source= > dest= dtmpl= />

< /mapping>
< /mapping>

Figure 3.8: Mapping YML

As was discussed before in Section 3.2.3, the virtual layer in Sesame resides between
the application and architecture model layers and provides important functionalities to the
model. Here we focus on the implementation aspects and show how the virtual layer can be
automatically created using the template mapping mechanism. Figure 3.8 shows the YML
Þle that speciÞes the (user-deÞned) application-to-architecture mapping for the example ar-
chitecture in the previous section. The elements construct a context where the

attribute refers to the application and the attribute to the architecture. Subse-
quently, a element maps maps processes and channels to resources in the architecture
model (lines 5-7). Note that the element has an additional attribute which spec-
iÞes one of the architecturaltemplatesassociated with an architectural component.

The automatic procedure to generate the mapping layer will instantiate (for every Kahn
process and channel) an object in the virtual layer corresponding to the template mapping.
This is clariÞed in Figure 3.9 where the three Sesame modeling layers are shown. Note that
every processor in the architecture model has at least one template associated with it (e.g. in
architecture YML Fig. 3.6 lines 10-24). For each Kahn process, a Virtual processor (in the
virtual layer) is automatically instantiated from the template as speciÞed by the application
mapping. So, although Process B and C are mapped onto the same processor P1, they ac-
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Figure 3.9: Template mapping strategy in Sesame (templates and mapping for Kahn chan-
nels omitted)

tually will be represented by different virtual components (Q and R respectively). Similarly
(although not shown in the Þgure), Kahn channels map onto virtual channel templates, so
that the virtual layer can be fully automatically derived from the information in the map-
ping and architecture YML Þles. The template mapping mechanism makes the model more
ßexible, since each template may express different behavior at the virtual layer, such as for
example different synchronization behavior or different model reÞnements (as discussed in
Sections 3.2.3 and 3.2.3).

3.3.5 Graphical user-interface

A GUI has been developed in order to simplify the process of creating application and ar-
chitecture YML speciÞcations and to provide an integrated development environment (IDE)
for use with Sesame. The current GUI is implemented as a plugin to the widely-used Eclipse
IDE: a screenshot is shown in Þgure 3.10. The middle window panes show the application
model (top) and the architecture model (bottom) as a graph. A model designer can change
the models by selecting a tool from the palette (on the right of the graph) and drawing new
nodes or connections. Pre-deÞned modeling components can be dragged from a library (just
under the palette) and newly deÞned components can be stored in the library for later use.
The virtual layer models and the templates from which the virtual layer is built can be edited
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from a separate view (not shown in the Þgure). On the left side is the project manager (top)
and a window to specify application-to-architecture mapping (bottom). The bottom right
window shows all the properties of the currently selected node or link from the application
or architecture windows. Properties can be edited and new ones can be added. The Eclipse
environment can also be used to call the back-end tools to build and run the model, such as
the automatic virtual layer generator, compilers and the simulator. The application shown is
the MJPEG application, which we have used as an example in the previous sections. The
architecture is a 4-processor crossbar based architecture: the crossbar component is shown
on the right. It connects to 4 processors (note the CPU picture), by means of a bus and a
local storage memory. The two components on the left of each processor are a scheduler and
its scheduling policy object.

3.4 Setting up the Design Space

In the previous sections we have shown how Sesame can be used to evaluate single design
points: systems consisting of an application and an architecture model with a given conÞg-
uration as speciÞed in YML. In order to make design decisions and trade-offs, designers are
typically interested in comparing results between different systems and system conÞgura-
tions. As we have shown before, it is easy to manually modify Sesame models and their
parameters Ð either directly in YML, or using the graphical editor. However, even a small
amount of manual effort per design point is infeasible for large design spaces with thousands
or millions of design points. A designer is typically interested in a speciÞc part of the design
space as delimited by some boundary parameters such as a the total number of processors
in the system, a Þnite set of alternative components, the total amount of distributed mem-
ory, etc. In order to provide a direct path from the parameter space to the objective space
(as shown in Figure 1.2 of Chapter 1), we should be able to automatically generate model
speciÞcations for all design points that fall within the part of the design space delimited by
the boundary parameters. In this section we will discuss two methods in Sesame to generate
a set of YML speciÞcations that represents a speciÞc (area of) the design space. Sesame can
then be iteratively run for each speciÞcation, thus evaluating all design points. We note that
such techniques are not only useful for exhaustive design space search, but also for other
design space search algorithms such as heuristic search algorithms (which is the topic of
Chapter 7.

The design space generation approaches discussed here are quite generic and similar
approaches have probably been used in the context of other modeling and simulation tools.
Since each tool provides its own methods to enumerate parts of the design space, much time
and effort is unnecessarily spent to create such scripts and programs. Unfortunately, stan-
dardization of even single system-level design point speciÞcations has not yet been realized
yet by the EDA community. And as far as we know, there are no standards at all for speci-
fying a range of design points (or parts of a design space). This is unfortunate, since design
space speciÞcation and generation is required in many embedded system design tools, both
commercial as well as research. Lack of such standards hinders the development of new
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Figure 3.10: Eclipse plugin for creating Sesame model speciÞcations
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methods and tools and also makes comparison of existing work more difÞcult. However, in
recent years, things are slowly changing with e.g. the emergence IP-XACT from the Spirit
Consortium. While different tools typically require a different speciÞcation format, a sep-
aration can be made between front-end and back-end speciÞcation formats: the front-end
uses the design space parameters to generate abstract representations of design points; the
back-end translates the abstract design point to the required format (in our case YML). This
separation is recognized by IP-XACT in the sense that it is being promoted both not only
as a standard to be used natively by tools, but also as an abstract interchange standard that
needs to be translated to/from proprietary speciÞcation formats.

In the remainder of this thesis we will show various case studies where small and large
design spaces are to be evaluated. In the following we show two design point enumeration
methods that are usable with Sesame: the meta-platform approach (which we commonly
use) and the generator-approach (which is still under development). A hybrid approach,
which combines some of the advantages of both methods, was developed in [48].

Meta-platform approach

The Þrst approach towards instantiating a design space is based on the idea of ameta-
platform speciÞcation. In such a speciÞcation all components and parameters that could
be used by any of the design points are merged into a single system speciÞcation. Individual
design points are then deÞned uniquely by the application-to-architecture mapping speciÞ-
cation. This is possible since in Sesame it is typically the case that architecture model com-
ponents onto which nothing has been mapped (and therefore are not receiving trace events),
do not inßuence the simulation results. Consider for example a design space which studies
an architecture which has 1 to 4 processors which can be of 2 different types connected by
point-to-point, crossbar or a bus network. In this case we could instantiate an architecture
speciÞcation containing 8 processors (one of each type) and the 3 different interconnects. It
is now relatively easy to generate automatically an exhaustive list of mapping speciÞcations
that map application processes to all possible combinations of processors and application
channels to different interconnects. If, for example, the mapping speciÞcation puts all appli-
cation tasks on one processor, then the remaining processor model components will simply
remain inactive. If part of the exhaustively generated mappings constitute invalid design
points, then they can easily be Þltered out. The result is that the problem of generating the
design space has been reduced to the simpler problem of generating mapping speciÞcations
and a meta-platform speciÞcation.

This approach has a number of drawbacks, the most notable of which is that it scales
badly: even in small exploration case studies the number of components that have to be
included in the meta-platform may be very large. Consider an example where the objective
is to Þnd optimal memory sizes within the range of 2Kb to 64Kb: with a discretization of
2Kb, a system with 4 memories would need to instantiate(32+ 1) " 4 = 132 memories. The
number of components multiplies further if the same component has additional properties,
eg. if there are memories with different speeds, different number of ports, etc. For real case
studies where exploration may cover many types of components and properties, creating a
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meta-platform becomes infeasible. Another problem is that the meta-platform speciÞcation
always puts hard limits on the design space: when another DSE experiment requires a larger
meta-platform, then a new meta-platform has to be designed manually. For example a meta-
platform that contains 4 processors requires manual modiÞcation before it can be used in
explorations with up to 8 processors. Therefore, in some cases, it is better to derive the YML
system speciÞcation directly from the parameters: we call this the generator-approach.

Generator approach

There are many different ways to implement this approach, but here we sketch one possi-
bility that is currently being considered for implementation with Sesame. In our case we
assume that each design space parameter is linked to an operator that modiÞes directly the
structure of the YML speciÞcation. The operator takes YML as input an produces YML
as output and by putting the operators together in various ways, different design points can
be generated according to the boundary parameters. An example is a processor-operator
which can instantiate a processor with certain properties; more processors are added by it-
eratively calling the operator. Different operators add different components and properties
to the architecture in such a way that a valid YML speciÞcation results after all operators
have been applied. Operators may have different input requirements: for example, an oper-
ator that instantiates a bus may be able to operate on an empty input, whereas an operator
that instantiates a fully connected peer-to-peer network requires the processors already to
be instantiated. The order in which the YML operators are speciÞed therefore has to occur
according to a priority value associated with the operator.

Figure 3.11: Instantiating a single design space speciÞcation

The advantage compared to the meta-platform approach is that the generator approach
does not suffer from the same problems with respect to scaling. Furthermore, the approach
is extensible: YML operators can be reused between experiments and new ones need to
be deÞned only for any additional parameters types that need to be explored in the new
experiment. Operators can be implemented as functions that work on a parsed YML tree or
as programs or scripts that take YML Þles as input and produce YML as output. Thanks
to the fact that XML is widely supported by most major programming languages (either
natively or using libraries), implementing operators is not complicated and requires a Þxed,
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one time effort. Three operators are given a pseudo-deÞnition in Figure 3.13. Each deÞnition
lists what requirements need to be present in the input YML, the type of operator (e.g.,
insertion or replacement) and the YML code to be inserted or the pattern to be substituted.
For insertion operators it is speciÞed where the inserted YML will be connected to the input
YML. The example in Figure 3.11 shows how a single design point can be generated. Note
the use of pseudo object-oriented function calls as operators that operate in sequence on an

object. The operator is where the design point can be evaluated using (for
example) the Sesame architecture simulator. Using such operators it is not hard to generate
a design space according to some boundary parameters. Figure 3.12 shows a small loop that
iteratively generates design space speciÞcations consisting of a bus based system with 1 to
20 processors. Naturally, more complex combinations are possible to generate speciÞcations
for a wide variety of design spaces.
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Figure 3.12: Instantiating a range of design space speciÞcations

3.5 Model and design space evaluation

As we have seen in Section 3.3, a completely deÞned Sesame model consists of application
and architecture YML Þles as well as source code for the model components. It is then
ready to be run as an application-architecture co-simulation, or the architecture model can
be run stand-alone if the application traces have been generated and stored previously. After
the model has been executed, the Pearl architecture simulator will output a large amount of
statistics that have been collected during simulation time. These statistics provide system-
level as well as detailed component-level information about the performance of the model.
They represent an estimation of the performance of the modeled system with a certain ac-
curacy (depending on the quality of the model). Perhaps the most frequently used statistic
is that of total simulated run-time, which is given as the value of the simulated clock when
the model terminates. For a model without errors or deadlocks, this is equal to the amount
of clock-cycles that the modeled system needs to process all application trace-events. More
detailed information includes for example the utilization of architectural components, which
indicates the ratio of busy and idle times of each component. Another statistic measures
system contention (indicating how many components are waiting for some other component
at the same time). As Sesame uses a transparent message passing mechanism as the ba-
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operator name
requirements primary network
operation type insertion

addition

connection point to primary network
operator name
requirements none
operation type insertion

addition

connection point none
operator name
requirements processorprocId or last added
operation type replacement

pattern

replacement freq

Figure 3.13: DeÞnition of YML generator operators
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sis of its (a)synchronous communication primitives, system contention can be measured by
the number of message waiting in a componentÕs message queue. Other statistics include
proÞling information (e.g., time spent in each method of each component), bandwidth in-
formation and critical path analysis (which sequences of remote method calls block other
method calls). By default, the statistics are given as a text Þle, which can easily overwhelm
the designer. For this purpose a visualization of the statistics has been developed in the work
of [99], that gives a concise summary of all the objective properties of a design point in a
single view.

For real design space exploration case-studies, many design points typically need to be
evaluated. We have discussed in Section 3.4 how to generate larger sets of XML speciÞ-
cations representing a range of system design candidates. Here we emphasize the problem
of dealing with the large amount of output data that results from such experiments. In the
context of the Daedalus framework, all the statistics of the Sesame simulation models will
be stored in an XML-database. It also saves all input-data, so that it is possible to recre-
ate each design point (the model complete with code and XML speciÞcation). Using the
database, well-formed queries can be expressed in an XML query language which reduces
the effort of writing custom scripts to analyze large volumes of simulator output statistics.
In addition, we further exploit the human visual cognitive capacities in aid of design space
exploration. By the same author of [97], another visualization method has been proposed
which is particularly useful for evaluating large, multi-dimensional design spaces. It visu-
alizes the design space as a large tree shape for which the leaves represent different design
points. Different colors and shapes for leaves and nodes summarize important objective in-
formation about the design space (which is taken from the aforementioned XML database).
Various selection and reÞnement mechanisms are available to the designer to re-shape the
tree to interactively manipulate the visualization and to focus on design points of interest.
Different metrics for visualizing (multi-objective) properties of the design points are also
available (for more information we refer to [98]).

3.6 Conclusion

This chapter focused on the Sesame modeling and simulation tool which we use extensively
throughout the work presented in this thesis. We have shown that Sesame uses a strict separa-
tion of concerns and a relatively high level of modeling abstraction by default. Application
and architecture models are highly modular which facilitates component reuse and which
further reduces the design and development time of a Sesame model. Some examples show
some of the details that are involved in the creation and speciÞcation of a Sesame model. A
graphical user interface has been made available to make model composition and speciÞca-
tion even easier. We have discussed the difÞculties of specifying models for multiple design
points and have shown some solutions that can be used in the Sesame context and beyond.
Finally we have discussed the type of information that can be obtained from the standard
Sesame model.



Chapter 4

Model calibration

4.1 Introduction

In the previous chapters we have seen how models are deÞned in Sesame. The behavior
of the model as a whole is Ðof courseÐ deÞned by all its component parts as well as by
the interconnections of the components. The behavior of a model component is in turn
speciÞed by its simulation code and its interactions with other components. Additionally, the
behavior may depend on application input data (such as video input streams), initialization
of random seeds, the initialization of its variables, etc. Sesame helps the model designer
with all modeling aspects, for example by offering separation of concerns, reusable model
components, an easy-to-use simulation language, deterministic model execution, a graphical
model editor, etc. In this way the designer can quickly and easily create functionally correct
models for many different systems and applications. These models can then be quickly and
easily evaluated thanks to good model run time performance and automatically generated
evaluation reports.

However, functional correctness does not by itself mean that the model displays the
correct non-functional behavior as well. Non-functional properties that are important to a
system designer include system performance, power consumption, production cost as well
as physical characteristics such as die size, thermal hot-spots, etc. For example, in Sesame,
we can deÞne a video encoding platform by trivially mapping the application onto an archi-
tecture model for which no realistic properties (eg. processor timings, clock speed, memory
sizes) have been deÞned. In this case the (application) model will be functionally correct
since it produces a correctly encoded video stream, but performance behavior of the ar-
chitecture model will be unrealistic. Therefore, such a model is likely unusable to predict
non-functional behavior of any realistic system. We say that a model is behaviorally correct
if it is able to represent (with a certain level of accuracy) those non-functional properties that
are of interest to the designer.

To determine the behavioral correctness of a model, one has to consider (among other
things) the following. Firstly there is the domain of (non-functional) behavior that is im-
portant for the designer for example: performance, power, cost, physical characteristics, etc.

57
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Secondly, the designer may be interested only in the behavior of part of the system, such as
network behavior or contention of processing or memory resources. Sesame supports this
by offering mixed-level modeling where parts of the system that are of particular interest
may be deÞned at a more detailed level of abstraction than the rest of the model. Choosing
the right level of abstraction is the third main consideration that may inßuence behavioral
correctness. The latter is particularly important, since it is well known that the level of de-
tail used by a simulation model can have major impact on the run-time performance of the
model.

Figure 4.1: Modeling overview

With the above considerations in mind, the chal-
lenge of system-level design can be summarized as
follows: to create a functionally and behaviorally
correct model that accurately and quickly approxi-
mates the important parts of the system under evalu-
ation.

When a system designer constructs a system-
level model, then this model rarely displays the
correct non-functional behavior from the beginning.
Analogous to the traditional method of software de-
bugging to achieve functional correctness of appli-
cation software, there exists a need to tune the non-
functional behavior of (parts of) the model in order to
achieve behavioral correctness. This process is called
model calibration, and it is one of the most difÞcult problems involved in creating a good
system-level model (for a conceptual overview see Figure 4.1).

In this chapter we report on three methods to perform calibration of system-level sim-
ulation models, focusing on the performance objective. In Chapter 8 we will show an an
extensive case study using one of these techniques and there the simulation results will be
validated against prototype system implementations in the context of the Daedalus design
ßow.

4.2 Model calibration

In Chapter 3 the Sesame modeling methodology was discussed in detail. The workload that
is modeled by the application model is forwarded to the architecture model by means of
event traces. The architecture model consumes these events and models their performance
behavior as a delay (orlatency) on the relevant model components. This may be done by
simply associating a latency to that event, but the event may also trigger complex interac-
tions between components. Using special primitives in the simulation language, it is easy
to describe the (possibly complex) interaction between different components in the model.
Moreover, the propagation of latencies as a consequence of component interaction is auto-
matically performed by the simulation languageÕs runtime system. However, determining
the correct latency value at any place in the model can pose quite a challenge depending
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on the type of model, the type of component and even the particular interest and require-
ments of the designer. In general, correct latency values can be obtained from many sources:
component speciÞcation and documentation, instruction set simulators, measurements on
prototypes, and even rough estimations may be sufÞcient in some cases. It may be necessary
to recalibrate the latency values during the different stages of development of the system
model as more details become known and more design decisions are taken. In the end, only
validation of the model (eg. by comparing the behavior with a (partially) implemented pro-
totype) can provide certainty about the quality of the model. Therefore, calibration does not
supersede, but rather supplements modelvalidation, as a method to make the non-functional
behavior of the model match the behavior of the actual system. Figure 4.2 schematically
details the modeling process and the calibration and validation techniques.

Figure 4.2: The calibration and validation process

For some types of components latencies are relatively easily obtained because their be-
havior is known and predictable. Take for example an on-chip network component, such
as a bus or crossbar: a performance model could assume some latency for setting up a new
connection and subsequently add a certain latency per amount of communicated data. The
latencies for the setup time and transfer rate are part of a componentÕs speciÞcation. Note
once more that these latencies do not need to include any additional latency caused by con-
tention of components (such as a shared bus), since this is will be automatically captured by
the simulation runtime system (e.g. using PearlÕs synchronous method calls: Section 3.2.2).

Another possibility is that the designer is making a model that contains components
which are yet to be developed. For example, the designer needs a component to process
a certain task X, but still does not know whether X should be implemented in software or
hardware. Creating a dedicated hardware component represents a signiÞcant development
cost, but may speed-up the overall system performance. Since the designer will not be able to
obtain accurate latencies for X, he could estimate a ball-park value based on his experience.
Using the estimated value he can the use the system-level model to support such design
choices in the very early design stages.

Latencies can be much more difÞcult to estimate for some other types of components.
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E.g., programmable processor components associate a latency to any application execution
events. In our initial, high-level system models such an execution event typically represents a
large chunk of code. The exact latency to be associated with that event may vary according to
data dependencies, but in our simplest and most abstract models, the latency for an execution
event of a certain type is set to an average value. In this case, the calibration process is
focused on Þnding usable average values.

In general, the design of MPSoC embedded systems heavily depends on the reuse of ex-
isting components and therefore it is often the case that data sheets, tools, and prototypes are
available for at least parts of the system. Since all system-level models need calibration it is
crucial to have generic and feasible methods to calibrate those models by Þnding sufÞciently
accurate latencies in a structural and easy way. In the next section we will present theoff-line
model calibration method, which does just that, by measuring these values using an Instruc-
tion Set Simulator (ISS). We present also theon-line trace calibration method, which is a
form of mixed-level co-simulation which has the potential to provide more accurate latency
values even when latencies are data-dependent.

A possible disadvantage of the off-line and on-line calibration methods is that the cali-
bration is performed for a speciÞc application. Therefore, in the second part of this chapter
a method will be presented that attempts to associate a "signature" to an architecture compo-
nent that describes the architecture componentÕs capabilities in an application-independent
way. Using this signature, the relevant latencies can be derived automatically within the
component. We will present the results from a small DSE case study.

4.3 Off-line model calibration

In Figure 4.3 a code fragment is shown from the basic processor model component avail-
able in Sesame. The processor component accepts read, write and execute events from the
virtual layer and models processing time of an event as being busy orblockedfor a certain
number of cycles (line 19). We focus here on the modeling of execution (EX) events and
in particular those that are mapped onto programmable processor cores. In this very sim-
ple model, a table is used to associate a latency to a particular type of event (line 18). For
non-programmable processor cores that are dedicated to process certain Þxed tasks, these
latencies can often simply be taken from their respective documentation. However, for gen-
eral purpose programmable cores the cycle count for certain events may vary depending for
example on input data.

Here, we integrate a lower-level simulator in order to statically (i.e., before system-level
simulation) calibrate the values in an operation latency table according to code-fragment
performance measurements on the ISS. To explain this in more detail, consider Fig. 4.4.
In this example, we assume that model component p2 onto which application process B is
mapped needs to be calibrated using the ISS. This means that the code of Kahn applica-
tion process B is crosscompiled for the ISS (indicated by BÕ in Fig. 4.4a). We note that
Figure 4.4a focuses on the application model level, and only abstractly depicts the mapping
and architecture model levels. Also, throughout the remainder of this chapter, we take the



4.3. OFF-LINE MODEL CALIBRATION 61

example of incorporating an ISS into Sesame. However, other types of simulation models
(like RTL models) can also be used with trace calibration.

class

// latency table initialized in yml:

>

>

>

while true

Figure 4.3: Extract of simulation
code for a processor component

The cross-compiled code is further instrumented
such that it measures the performance of the code
fragments that relate to the computational application
events generated by the application process. For ex-
ample, if process B can generate an execute(DCT)
event, then the performance of the code in process B
that is responsible for the DCT calculation is mea-
sured. To this end, we instrument the code at assem-
bly level (currently done manually) to indicate where
to start and stop the timing of code fragments. In the
case of the SimpleScalar ISS, we use its annote in-
struction Þeld for this purpose. To perform the ac-
tual code fragment timings for application process
B, the code of this process is executed both in the
Kahn application model and on the ISS (the cross-
compiled BÕ). This allows us to keep the application
model to a large extent unaltered, where BÕ runs as
a Òshadow processÓ of B to perform code fragment
measurements.

The two executions of B are synchronized by
means of data exchanges implemented by an API us-
ing an underlying IPC mechanism needed to provide
BÕ (on the ISS) with the correct application input-
data. These data exchanges, which will be discussed
in detail in the next section, only occur when the Kahn application process taking part in the
calibration (process B in our example) performs communication. For example, when Kahn
process B reads data from its input channel, it forwards the data to process BÕ on the ISS,
i.e., process BÕ reads and writes its data from/to process B instead of a Kahn channel.

During execution, the ISS keeps track of the code fragment timings. From these mea-
surements, timing averages are then used for calibrating the latency values of the architecture
model component in question: i.e., the average value is used in the latency table of a pro-
cessor model component. Off-line calibration is a relatively efÞcient mechanism since it
is performed before system-level simulation and basically is a one-time effort. However,
if there is high variability in the demands of computations (i.e., data-dependent computa-
tions) then the measured average timings may be of moderate accuracy. In this case it may
be beneÞcial to perform calibration of trace events in a dynamic way as shown in the next
section.
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4.4 On-line trace calibration

The on-line trace calibration technique accomplishes mixed-level co-simulation by means
of dynamic calibration of the event traces that are generated by an application model. Rather
than using Þxed values in the latency tables of processing components in SesameÕs archi-
tecture models (see Section 2), trace calibration dynamically computes Ð using lower-level
simulators Ð the latency values of computational tasks. Subsequently, instead of generat-
ing Þxed computational execution events, likeExecute(DCT), the Kahn application process
generatesExecute(! ) events, where! equals to the actual cycle count taken by, for exam-
ple, a DCT computation (or any other computation in between communications). This is
illustrated in Figure 4.4b, where an instruction set simulator (ISS) is used for calibrating the
trace from application process B.
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Figure 4.4: Incorporating an instruction set simulator usingoff-line model calibration (a)
andon-linetrace calibration (b)

Compared to the original static operation-latency table method , a calibrated trace can
more accurately represent the computational behavior of an architecture component. For
example, in Figure 4.4(b), statistics on pipeline stalls and cache behavior for process B can
be retrieved from the ISS. Also, SesameÕs dataßow-based event reÞnement methodology
[79] can still be applied to calibrated traces to, e.g., perform communication reÞnement, i.e.,
reÞne theReadandWriteapplication events. The system-level effects of this improved accu-
racy can subsequently be measured within SesameÕs architecture performance model which
accounts for the global timing consequences of all (calibrated as well as non-calibrated)
event traces generated by the application model. Efforts to quantify the improved accuracy,
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should however be performed with great care since their outcome heavily depends on the
quality (i.e., accuracy) of the initial abstract performance models.

The increased accuracy comes however at the cost of higher execution times due to the
inclusion of (slow) lower-level simulators. But, as will be demonstrated in the next sec-
tion, these performance overheads due to wrappers (i.e., data and control exchange between
simulation components) and time synchronizations are very small in our trace calibration
technique. This is because time synchronization occurs at the highest level of abstraction,
namely within SesameÕs trace-driven architecture model, and data and control exchanges
via our API only take place at (Kahn) communication points. In some occasions, it is even
possible to eliminate almost all overheads related to trace calibration. For example, if no
architectural exploration is performed on the architecture components that are simulated by
the lower-level simulators, then the (calibrated and non-calibrated) traces could be generated
once, storing them on disk, and can be re-used in the exploration process of the remaining
parts of the system without rerunning the lower-level simulators.

To explain the details behind the trace calibration technique, consider Figure 4.5. This
Þgure renders the dashed box from Figure 4.4(b) in more detail. The code in the Kahn ap-
plication processes typically consists of alternating periods of communication and computa-
tion, as illustrated by the small code fragment for process B in Figure 4.5. In this fragment,
some data is read from Kahn channel , followed by some computational code (which
may also be discarded, as will be explained later), after which the resulting data is written
to Kahn channel . The two boxes on the right of this code fragment indicate what the
run-time system of the application model executes when it encounters the Kahn read and
write communications. Note that these run-time system actions are automatic and transpar-
ent: the programmer does not need to add or change code. First, the run-time system queries
the ISS via the API, using , to retrieve the current cycle count from the
ISS. As will also be described later on, the ISS provides this cycle information by executing
a matching call. The run-time system then generates anExecute(! )
application event for the architecture model, where! = ncur# nprev, i.e.,! equals to the time
between the previous cycle query and the current one. Hence, theExecuteevent models the
time that has past since the previous communication. Subsequently, aReadapplication event
is generated for the architecture model. Hereafter, the actual read from Kahn channel
is performed. Finally, the data that has been read is copied, using , to process BÕ
running on the ISS.

Figure 4.5 also shows how the ISS side (process BÕ) is handled. First, it sends the
current cycle count of the ISS to the application model ( ) to service the

query from process B. Then, it reads the data that was sent by pro-
cess B, i.e., the from process BÕ matches up with the from process
B. After receiving the data, process BÕ executes the computational code shown in grey in
Figure 4.5. This computational code is Þnished by a communication (a write to ),
which again causes a cycle count query by the run-time system of the application model.
The generatedExecute(! ) application event that follows, represents a detailed timing of the
computational code on the ISS. Figure 4.5 also shows that process BÕ on the ISS Þrst writes
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Figure 4.5: Interaction between application model and instruction set simulator.

back the resulting data to process B in the application model before the latter forwards this
data to Kahn channel . This allows for discarding the computational code between
the communications in process B in the application model. In that case, only process BÕ
simulates computational functionality, while process B only communicates data with its
neighboring application tasks. From the above, it should be clear that the
and calls are blocking.

With trace calibration, it is relatively easy to incorporate any external low-level simu-
lator into SesameÕs system-level architecture models. Only three API functions need to be
introduced in the low-level simulator or in the code that runs on it (in the case of an ISS):

, , and . Here, is the
only function that needs a hook into the simulator to retrieve its cycle count. Most simula-
tors provide such a hook, otherwise it can be created by a small modiÞcation to the simulator
(as will be brießy explained in the next section). Using the API calls, the code to run on an
ISS simulator (BÕ) can be trivially derived from the application code (B). Therefore, the total
coding effort to enable trace calibration is small.

Moreover, for trace calibration, the execution of the lower-level simulators is location in-
dependent. That is, it is straightforward and completely transparent to place the lower-level
simulators on different hosts, yieldingdistributed co-simulation. To this end, the imple-
mentation of the API between application process and lower-level simulator simply features
different communication adaptors (e.g., shared memory or named pipes for local communi-
cation, and sockets for remote communication). As will be shown in the next section, the
distributed co-simulation support considerably improves the scalability of the co-simulations
in the case multiple lower-level simulators are incorporated.

As a side note, we need to mention that a source of inaccuracy, of which a similar
situation is reported in [55], occurs when mapping multiple application tasks to a single
(programmable) architecture component. In this situation, the traces from these application
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tasks would be calibrated bydifferent instancesof an ISS. The scheduling of the (calibrated)
application events from the different traces is subsequently performed at SesameÕs mapping
layer. This approach has two major advantages. First, there is no need for running an OS-
scheduler on an ISS since ISSs always execute a single task. Second, the ISS instances,
representing a single processor in the architecture, can be executed in parallel on different
hosts. However, since context-switching is not modeled by the ISSs, the simulated cache
(performance) behavior in this situation may be inaccurate.

4.5 Trace calibration experiments
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Figure 4.6: Modeling a Motion-JPEG application on an MP-SoC architecture.

To demonstrate that the performance overheads of trace calibration are low, we present
a case study with a Motion-JPEG encoder application and a shared-memory MP-SoC ar-
chitecture consisting of Þve processing elements. SesameÕs application model, architecture
model and mapping for this case study are shown in Figure 4.6. In this experiment, we
have incorporated SimpleScalarÕs sim-outorder ISS [5] in SesameÕs high-level model of the
MP-SoC architecture. This required only one small extension of the ISS: a system-call that
retrieves the cycle count, which is needed by . Small C macros imple-
ment the functions , , and and are compiled
together with the application code executing on the ISS.

For the experiments, we have used a small cluster of unloaded Pentium M 1.7GHz (De-
bian) machines connected by 100 Mbit ethernet. In all simulation runs, we have simu-
lated the encoding of 11 CIF frames with a resolution of 128x128 pixels. Table 4.1 shows
the wall-clock times (averaged over several runs) for three different simulation conÞgura-
tions executed on a single host machine: a Sesame-only system-level simulation (without
trace calibration), a trace-calibrated (mixed-level) co-simulation where the DCT applica-
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Table 4.1: Co-simulation performance.
Sesame DCT on DCT+VLE

only ISS on ISSs
Time (secs) 8.1 157.1 279.6
Kcycles/sec 8,000 414 233

tion process is executed on the ISS (representing P2 in Figure 4.6), and a trace-calibrated
co-simulation where both the DCT and VLE processes are executed on different ISSs (repre-
senting P2 and P3). For each simulation conÞguration, the number of simulated Kcycles/sec
is also given. Table 4.1 clearly shows the performance drop when incorporating lower-level
simulators in SesameÕs architecture models. The results also show the efÞciency of the
Sesame-only simulation (8 Mcycles/sec when simulating a 5 core MP-SoC).
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Figure 4.7: Overhead for one or two ISSs.

To demonstrate that the performance decrease of our mixed-level co-simulations is al-
most entirely due to the lower-level simulators themselves and not due to co-simulation
overheads, Figure 4.7 shows the execution time breakdowns of the two trace-calibrated co-
simulation conÞgurations from Table 4.1. The breakdowns clearly prove that the total exe-
cution times are totally dominated by the ISS execution times. The measured overheads are
respectively 5% (DCT on ISS) and 1% (DCT+VLE on ISSs) of the total execution time. We
suspect that the latter has lower overheads because of the scheduling of the two ISSs that
allows for hiding some of the overheads caused by communications between the DCT/VLE
processes and the ISSs.

By means of distributed co-simulation, the system-level simulation slowdown due to
the incorporation of lower-level simulators can be effectively reduced. To illustrate this,
Table 4.2 presents the performance effect of distributing the ISSs over different hosts. Here,
we use the terms ÔlocalÕ and ÔremoteÕ to indicate if an ISS is executed on respectively the
same or a different host as SesameÕs application and architecture models. The results show
that distributing the lower-level simulators over multiple hosts is certainly beneÞcial. For
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example, by placing the ISSs for the DCT and VLE processes on two different hosts (see
Table 4.2), a speedup of 1.86 is achieved in comparison to execution on a single machine (see
Table 4.1). In this case, only 6.5% of the total execution time is due to overheads (including
network overhead).

Table 4.2: Distributed performance.
DCT on DCT on local ISS DCT+VLE on

remote ISS VLE on remote ISS remote ISSs
Time (secs) 144.2 160.6 150.2
Kcycles/sec 452 405 433

We also performed experiments in which less computational intensive application pro-
cesses, like RGB-to-YUV and Quant, are trace-calibrated as well (these results are not shown
in table form). A fully distributed co-simulation with ISSs for the DCT, VLE and RGB-to-
YUV processes takes 158.3 seconds. Adding an ISS for the Quant process to the previous
distributed co-simulation results in a wall-clock time of 165 seconds. These results indicate
that, with distributed co-simulation, trace calibration scales well.

For comparison, [55] lists the performance of similar case studies using their own work,
Seamless CVE and Synopsys System Studio. With respect to the latter two, our co-simulations
are one to two orders of magnitude faster, while for our Sesame-only simulations this is even
three orders. The reported performance of the state-of-the-art technique proposed in [55] ap-
proximates our co-simulation performance, but they have used the ARMulator ISS which is
signiÞcantly faster than the SimpleScalar ISS we have used.

To get some indication of the accuracy gains of trace calibration, we have also performed
several simple experiments that compare a fully trace-calibrated model to a partially uncali-
brated model. In this case, the uncalibrated model components have to use estimated latency
values for application events. Statically estimating the performance of code executed on a
particular processor is a well-known problem as it may be hard to deduce the correct number
and types of executed instructions due to data-dependent behavior and to determine the CPI
for the processor. Our experiments show, e.g., that if for one processor (onto which the DCT
is mapped) we know the right number and types of executed instructions but mispredict the
CPI by only 0.07 (where the actual CPI is 0.43) to calculate the latencies for the application
events, then the estimated performance for thewhole systemis off by 13%. If the mispre-
diction is bigger or if more components are uncalibrated then the system-level accuracy is
reduced even further. For a more extensive validation case study of our calibrated mod-
els compared to an implemented system, we refer to [80]. Moreover, in Chapter 8, another
validation case study will be shown.
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4.6 Signature based model calibration

As we mentioned before, the off-line calibration method in Section 4.3 has a possible dis-
advantage that calibration is dependent on the application, requiring re-iteration of the cali-
bration process to obtain new values for the latency table for each application. In the case of
on-line calibration these values could be obtained automatically, provided that the KPN code
is sufÞciently platform independent to cross-compile it without problems for the ISS simu-
lator. In both cases the (calibrated) event traces can be stored when the application workload
has been Þxed. The stored traces can subsequently be reused for further architectural design
space exploration, resulting in a model performance improvement for the on-line calibrated
model. This way, any additional effort and model execution time can be considered only a
minor manual effort in the early stages of design for a system that runs a small number of
applications. However, this effort may become a problem for a system targeting wider range
of applications, since the calibration overhead would increase. In those situations it is desir-
able to be able to describe the behavioral (performance) properties of system components in
an application-independent way.

In the following we use a general decomposition of the problem of determining perfor-
mance values (eg. for use in a system-level model) in three sub-problems:

(1) determine workload requirement

(2) determine component capacity

(3) compute performance estimate from (1) and (2)

More speciÞcally, we can say that for a Kahn processk1 and processorp1, the performance
T is deÞned by a functionf :

Tp1 = f (k1, p1) (4.1)

The performance of a certain architectural component naturally depends on both its compu-
tational capacity and the computational requirement of the workload that is mapped onto it.
The aim is then to deÞne a functionf that calculates the performance ofp1 as a number of
cycles taking as input some workload requirement ofk1 and some capacity ofp1. We will
refer tok1 and p1 respectively as the application signature and the architecture signature.
In this section we will describe the signature-based calibration method as proposed in [46]
and show a simple case study to demonstrate the usefulness of this approach. Furthermore,
we show that the accuracy of the signature-based method provides good relative (though not
absolute) performance numbers.

4.6.1 Application requirements

To characterize application requirements a description is proposed that captures a Kahn pro-
cessÕs computational requirement at a high abstraction level. Towards this end we deÞne
an execution proÞle as a vector of instruction counts for the individual execution events
generated by a process. In order to keep this so-called application signature architecture
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f2
op2
f1
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(a)

Signature index AIS opcode Description
1 Block memory transfers
2 Memory transfers
3 Branches
4 Co-proc. instructions
5 Int. multiplications
6 Simple Int. arithmetic
7 Software interrupts
8 Non-mappable instruction

(b)

ARM instruction AIS opcode
bl 0x81c4;
mov ip, sp;
stmdb sp, fp, ip, lr, pc;!
sub fp, ip , #4;
sub sp, sp, #12;
ldr r2 , [fp , ## 16];
ldr r3 , [fp , ## 20];
add r2, r2 , r3;
ldr r3 , [fp , ## 24];
rsb r3 , r3 , r2;
str r3 , [fp , ## 24];
ldr r2 , [fp , ## 16];
ldr r3 , [fp , ## 20];
add r2, r2 , r3;
ldr r3 , [fp , ## 24];

ááá%

ááá%
mul r3, r2 , r3;
str r3 , [fp , ## 16];
ldr r2 , [fp , ## 20];
ldr r3 , [fp , ## 16];
mul r3, r2 , r3;
str r3 , [fp , ## 24];
ldr r2 , [fp , ## 16];
ldr r3 , [fp , ## 24];
add r2, r2 , r3;
ldr r3 , [fp , ## 20];
mul r3, r2 , r3;
str r3 , [fp , ## 16];
sub sp, fp , #12;
ldmia sp, fp , sp, pc;
mov ip, sp;
stmdb sp, fp , ip , lr , pc;

(c)

Figure 4.8: Table (a) lists the event trace of processk1, Table (b) shows the currently deÞned
AIS instructions with their index in the vector-based process signatures and Table (c) shows
an execution trace ofop1 as obtained by an ARM ISS (left column) and the corresponding
AIS classiÞcation (right column).
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independent, we use an abstract instruction set (AIS), see Figure 4.8b. For each type of pro-
cessor that uses the signature based calibration method a mapping has to be provided that
maps its particular instructions to one of the AIS categories. Next we use an instruction set
simulator to generate an execution proÞle for those parts of the code that are represented
by SesameÕs execute events. As an example Figure 4.8a shows a Kahn process event trace
containing twoop1 and oneop2 events. Note that here we discard the description for com-
munication events (read and write) for simplicity, more details can be found in [47]. In the
source code we annotate the beginning and end of each of the execute events in a very sim-
ilar way as with the trace calibration technique. This enables the ISS to know the start and
end points to count instructions according to our AIS categories. For the example execution
trace in Figure 4.8a; one of the twoop1 executions has the detailed execution proÞle as listed
in Figure 4.8c. Measurements for eachopx results in the following derived signatures:

op1.signature = [7, 17, 8, 0, 2, 31, 2, 0]
op2.signature = [3, 15, 1, 0, 3, 9, 0, 0]
op1.signature = [8, 15, 8, 0, 3, 29, 2, 0]

Note that for the purpose of the example we only consider two execution events, but
in general we would aim to measure as many signatures as possible. Also note that when
anop1 is measured repeatedly, its signature may consist of different AIS instruction counts
because of data-dependencies or pseudo-random behavior.

4.6.2 Processor capacity and performance estimation

Next we will show how to derive the signaturep1 that describes the computational capacity
of a processor. Using this signature we will then be able to estimate the number of cycles
required for any workload by deÞningf from Equation 4.1.

Tp1 = f (k1.signature, p1.signature) (4.2)

While the ISS is executing (and counting instructions of the application signatures), we also
register the increase of simulated clock cycles within the ISS. In this way we not only obtain
the instruction count for eachopx, but also the measured latencies for eachopx. If there
was an exact linear relationship between a signature and its execution performance, then the
following would hold:

!

"
op1.signature
op2.signature
op1.signature

#

$ áp1.signature=

!

"
Top1

Top2

Top1

#

$ (4.3)

Of course it is not to be expected that such an exact linear relationship exists, but instead we
approximate a solutionp1.signature for the matrix equation using the least squares method.
The vector of application signatures and its measured timings will serve as our benchmark
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(training set) for the approximation. The performance estimation of the processor signature
in the previous example the previous example would for example result in:

!

"
7 17 8 0 2 31 2 0
3 15 1 0 3 9 0 0
8 15 8 0 3 29 2 0

#

$ áp1.signature=

!

"
185
369
196

#

$ (4.4)

The processorÕs signature can be considered vector of 8 weight-factors, where each value
represents the average estimated contribution of each AIS instruction to the total processing
time. Now we can deÞne the functionf from Equation (4.2) as the inner product of both
signatures. This allows us to estimate a cycle count for an arbitrary operationopx that was
not in our original training set:

Topx = p1.signatureT áopx.signature (4.5)

In general, the training set should be made as large as possible, containingopx measurements
from a range of different applications in order to provide a good approximation of the pro-
cessor signature for a particular processor. Also note that the training process may measure
the same operation signatureopx with differently measured cycle counts, due to the previ-
ously mentioned data-dependencies or micro-architectural effects on pipelining and caching.
All these effects will therefore be included in the approximation of the processor signature.

4.7 Signature-based calibration experiments

In this section, we present an experiment using a Motion-JPEG (M-JPEG) encoder applica-
tion in which the possibilities of mapping application tasks to architecture components are
explored. We compare the results of an off-line calibrated model with a model using sig-
nature based calibration. The signature-based performance models are calibrated using the
Mediabench benchmark suite [61] as an external training set. Finally we discuss the impact
of the choice for the training set on the exploration results.

To validate our signature-based analytic performance model, we studied the mapping
of a Motion-JPEG (M-JPEG) encoder application onto an MP-SoC architecture. This is
illustrated in Figure 4.9. The target MP-SoC consists of four ARM processors with local
memory, FIFO buffers for streaming data, and a crossbar interconnect. The design space
we considered for this experiment consists of all possible mappings of the M-JPEG tasks
(i.e. processes) on the processors in the MP-SoC platform. Without consideration for any
duplicate mappings caused by the symmetry in the target platform, the size of the design
space can be calculated as: 46 = 4096 (6 tasks onto 4 processors).

Before the M-JPEG application model was mapped on the architecture model, the appli-
cation was compiled using an ARM C++ compiler, and executed within the SimIt-ARM in-
struction set simulator environment [82]. The generated ARM instruction traces were used to
create the applicationandarchitecture signatures as described in the previous section. Note
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that determining the application and architecture signatures is one-time (pre-exploration)
effort, and that the resulting execution latencies can be used to explore the full range of
different mapping options. To train our performance model, we Þrst constructed the (appli-
cation) operation signatures for each separate Mediabench program1 using the approach as
discussed in Section 4.6.1. Since the execution time (in terms of simulated cycles) of the

program is quite high, we split up the execution of this program into four chunks,
and generated a separate operation signature for each of these chunks. Figure 4.10 shows
the histogram of the resulting AIS opcode counts for each Mediabench program. This graph
clearly shows that most programs are dominated by instructions, followed by

and instructions respectively.
Similar to Figure 4.10, Figure 4.11 shows the AIS opcode histogram for the application

processes in our target M-JPEG application. Here, we excluded the AIS opcodes with a
zero or insigniÞcant contribution. At Þrst sight, the trends in both Figures 4.10 and 4.11 are
similar, which thus appears to be conÞrming that Mediabench is a representative training set
for M-JPEG.

As a next step, we determined the processor signatures for our performance model using
the Mediabench operation signatures. Using this Mediabench-trained performance model,
we again performed the DSE experiment with the M-JPEG application. Figure 4.12 shows a
comparison of the DSE results of the Mediabench-trained ("Full Mediabench" in the graph)
and the reference simulation model. The reference model uses ÒexactÓ latencies for the var-
ious computational events as directly obtained by ISS measurements (no latencies that were
obtained using our signature-regression model). Again, the graph only shows the perfor-
mance results of unique mappings, and all mapping instances are sorted based on the perfor-
mance order of the mappings from the reference model. Comparing the Mediabench-trained
model ("Full Mediabench") to the reference model, it is clear that there is a signiÞcant abso-
lute error between the results of these models (an average error of 29.6%, see Table 4.3). But
the trends between the graphs of the two models still is highly similar. This is especially true

1The , , and benchmarks were excluded due to execution problems on the SimIt-
ARM simulator.
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Figure 4.9: Mapping an M-JPEG application to a crossbar-based MP-SoC architecture.
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for the better-performing mapping instances (lower mapping indices). This again implies
that both models Þnd exactly the same optimal mappings and that the model is quite good
at determining the relative performance of the mappings (which is an important property for
early DSE).

To study the sensitivity of the selected benchmark programs that are used for training,
we performed a number of experiments in which we clustered the Mediabench programs ac-
cording to some measure, after which we trained our performance model with the programs
from such a cluster only. As a Þrst experiment, we applied our performance model that
was trained with all Mediabench programs to the operation signatures from the Mediabench
programs themselves. Then, we clustered only those programs that show a good Þt with
the performance model (i.e., removing the outliers). Training the performance model again
with this cluster, gives the results that are tagged with "Outliers removed" in Figure 4.12 and
Table 4.3. The results of this new performance model are slightly better (average error of
24.9%, see Table 4.3) than the model that was trained with all Mediabench programs.

We selected the program size as the second means to cluster our Mediabench training
set. Programs with more than 500 million executed instructions are clustered as "Large
programs", while the remaining programs are clustered as "Small programs". Figure 4.12
again shows the DSE results when training our performance model with one of these clusters.
The cluster with large programs again shows an accuracy improvement, lowering the average
error to 18.6%. Clearly, the cluster with small programs only yields poor results, both in
terms of average error (79.8%) and trend behavior. The latter can even be seen at the lower
mapping indices where some optimal mappings (according to the reference model) are not
considered optimal according to the model trained with small programs only.

Full Outliers Large Small DCT-similar MJPEG-self
Mediabench removed programs programs programs trained

Av. error 29.6% 24.9% 18.6% 79.8% 7.0% 9.2
Std.dev. 3.8 4.4 5.1 2.1 4.5 4.5

Table 4.3: Average error and standard deviation of the various trained models as compared
to the reference model.

Since the DCT process in the M-JPEG encoder is dominant in terms of computational
intensity, our Þnal clustering is based on similarity with the DCT process (in terms of AIS
opcode distribution). We again trained our model with these DCT-similar programs. The
DSE results of this cluster show again considerable improvement with an average error of
only 7%, which is even slightly better than a model that is trained the MJPEG application
itself (last column of 4.3).

4.7.1 Related work

Model calibration is a well-known and widely-used technique in many modeling and simu-
lation domains. In the computer engineering domain, the calibration of performance models
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is mostly applied in cycle-accurate modeling of system components like processor simu-
lators, e.g., [13, 72]. So far, the calibration of high-level performance models that aim at
(early) system-level design space exploration has not been widely addressed yet. The work
in [67] proposes a so-called vertical simulation approach that shows similarities with our
calibration approach. It is unclear, however, whether or not vertical simulation has ever been
realized. In [14], a high-level communication model is discussed which is calibrated using
a cycle-true simulator.

The back annotationtechnique is closely related to model calibration. In back anno-
tation, performance latencies measured by a low-level simulator are back annotated in a
higher-level model. For example, an un-timed behavioral model could be back annotated
such that it tracks timing information for a speciÞc implementation. So, rather than calibrat-
ing a Þxed set of performance model parameters, back annotationaddsarchitecture-speciÞc
timing behavior (usually by means of code instrumentation) to a higher-level model. Back
annotation is a widely-used technique for (high-level) performance modeling of software
[38]. In the context of system-level modeling, various research efforts (e.g., [7, 16, 15])
also refer to back annotation as a technique for adding more detailed timing information to
higher-level models in the case lower-level models are available. But these efforts generally
do not provide much insight of how back annotation is applied during the early stages of de-
sign where lower-level models typically are not abundant. In a way, our calibration methods
can be considered as a form of back annotating the latency tables in SesameÕs architecture
models using results from ISS simulation and/or automated component synthesis.

Related to our on-line calibration technique, much work has been performed in the
Þeld of mixed-level HW/SW co-simulation, mainly from the viewpoint of co-veriÞcation.
This has resulted in a multitude of academic and commercial co-simulation frameworks
(e.g., [2, 1, 3, 42, 32, 10]). Such frameworks typically combine behavioral models, ISSs,
bus-functional models or HDL models into a single co-simulation. These mixed-level co-
simulations generally need to solve two important problems: i) making the co-simulation
functionally correct by translating any differences in data and control granularity between
simulation components, and ii) keeping the global timing correct by synchronizing the sim-
ulator components and overcoming differences in timing granularity. The functionality issue
is usually resolved using wrappers, while global timing is typically controlled using either
a parallel discrete-event simulation method [31] or a centralized simulation backbone using
e.g. SystemC [32, 10]. Synchronization between simulation components usually takes place
with the Þnest timing granularity (i.e. lowest abstraction level) as the greatest common
denominator between components. E.g., system-level co-simulations with cycle-accurate
components are typically synchronized at cycle granularity, causing high performance over-
heads. Besides the performance overheads caused by wrappers and time synchronization,
the IPC mechanisms often used for communication between the co-simulation components
may also severely limit performance [55], especially when synchronizing at cycle granular-
ity.

In the mixed-level co-simulation that results from our on-line (trace-)calibration tech-
nique, we take the opposite direction with respect to maintaining global timing. Instead of
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synchronizing simulation components at the Þnest timing granularity, it maintains correct
global timing at the highest possible level of abstraction, being the level of SesameÕs ab-
stract architecture model components. As shown in [105], the performance overhead caused
by wrappers and time synchronizations is in that case reduced to a minimum. Our on-line
calibration technique shows some similarities with the trace-driven co-simulation technique
in [55]. However, the latter operates at a lower abstraction level and is applied in a classical
HW/SW co-simulation context.

In particular with respect to the signature-based calibration technique, we note that much
work has been performed in the area of software performance estimation [8], including meth-
ods that use proÞling information, typically gathered at the instruction level. For example,
in [9] a static software performance estimation technique is presented which uses proÞling
at the instruction level and which includes the modeling of pipeline hazards in the timing
model. In [38], a source-based estimation technique is proposed using the concept of "vir-
tual instructions". These are similar (albeit a bit more low level) to our AIS instructions,
but which are directly generated by a compiler framework. Software performance is then
calculated based on the accumulation of the performance estimates of these virtual instruc-
tions. The idea of convolving application and machine signatures, where the signatures
contain coarse-grained system-level information, has also been applied in the domain of
performance prediction for high-performance computer systems [92].

As In [24], a workload modeling approach based on execution proÞles is discussed for
statistical micro-architectural simulation. Because they address micro-architectural simula-
tion, their proÞles include much more details (such as pipeline and cache behavior), while
we address the system level at a higher level of abstraction. In [50], the authors suggest to
derive a linear model from a small set of simulations. This method tries to model the per-
formance of a processor at a mesoscopic level. For example, cache behavior and pipeline
characteristics are taken into account. The signiÞcance of all cache and pipeline related
parameters is determined by simulation-based linear regression models. This may be com-
parable with the ÔweightÕ vector discussed in Section 4.6.2. Another interesting approach
is presented in [93], in which the CPI for in-order architectures is predicted using a Monte
Carlo based model. The Milan framework [70] deploys a design pruning approach using
symbolic (instead of analytic) analysis methods to reduce the design space that needs to be
explored with simulation.

4.8 Conclusion

In this chapter, we have presented an efÞcient mixed-level co-simulation technique, called
trace calibration, which improves SesameÕs abstract models by poviding more accurate val-
ues for use in the architectural model componentsÕ latency tables. This technique has been
prototyped within our Sesame modeling and simulation framework, which targets efÞcient
system-level design space exploration of embedded multimedia systems. To evaluate trace
calibration, we have used a Motion-JPEG case study in which we incorporated up to four
external instruction-set simulators into SesameÕs abstract performance models. These ex-
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periments show that trace calibration only requires minor modiÞcation of the incorporated
simulators and that performance overheads due to co-simulation are very low. It was also
demonstrated that distributed co-simulation Ð which is easy and transparent in trace calibra-
tion Ð allows for effectively reducing the slowdown due to the incorporation of lower-level
simulators.

A disadvantage of the trace calibration method is that it has to be performed anew for
each application. The signature-based calibration technique is aimed at Þnding a charac-
teristic ÒsignatureÓ that summarizes in an application independent way the computational
capacity of a processor component. Experiments showed that although signature-based per-
formance models accurately represent relative performance behavior, achieving correct ab-
solute performance behavior is more difÞcult. The latter requires very careful selection of
benchmarks to train the model. This is, however, not a major objection, since in the early
stages of system design, determining relative performance of different design options is of-
ten more important than absolute performance.

In summary, both trace-calibration (on-line and off-line) and signature based calibration
techniques can be effectively used to create system-level performance models with relative
ease. Choosing the right technique for a given design problem depends on the required
speed-accuracy trade-off, the availability of suitable lower-level simulators and the ability to
create good training sets. Encouraged by the results of the on-line trace-calibration method,
we have started work on a co-simulation technique where event trace measurements are
performed on actual hardware, instead of an ISS. The technique is completely analogous
to the on-line trace calibration method, but now the API functions transfer data and cycle
measurements (Section 4.3) directly to a process running on an FPGA prototype platform.
An advantage of this Òhardware-in-the-loopÓ co-simulation is that the measured execution
latencies are 100% accurate, whereas an ISS-simulator often is still an approximation of the
actual target processor. However, our initial results showed that synchronization overhead
is larger than in the case of on-line trace-calibration with ISS, due to the communication
mechanism with the stand-alone FPGA board. Nevertheless, we will report on this method
in future work, since it is likely to provide yet another valuable option for the designer with
respect to the speed-performance trade-off.
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Figure 4.10: Histogram with the various AIS opcode counts of the Mediabench training set.
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Chapter 5

Multi-application modeling

5.1 Introduction

In Chapter 1 we described the many ways in which modern embedded systems are becom-
ing increasingly complex. It can be argued that this trend is driven for the most part by
the increasing requirements of the end-user of the system. Apart from increasing reliabil-
ity, performance and quality requirements, possibly the most challenging requirement is the
integration of many functionalities on the same device. Where previously embedded sys-
tems were dedicated to a single task or a small set of tasks, modern embedded systems need
to support an increasing variety of tasks. A good example is the modern mobile phone,
which in addition to its primary communication function now also supports functions such
as photo and video capturing, music playing, gaming, as well as browsing and ofÞce appli-
cations. The latter functions previously belonged to the domain of dedicated devices such
as cameras, mp3 players, or the domain of console or desktop computing. It is a major
challenge to combine all these functionalities together with additional non-functional design
requirements for (mobile) embedded systems, such as power usage, cost and form factor.

So far, Sesame has only supported the mapping of a single application onto an architec-
ture model at the time. But since modern multimedia embedded systems are increasingly
multi-tasking, we need to address the modeling of effects of executing multiple applications
concurrently in our system-level architecture models. In this chapter, we present two multi-
application workload modeling techniques in Sesame. One technique is based on the use
of synthetic application workloads while the second technique deploys only real application
workloads to model concurrent execution of applications. Synthetic application workloads
are particularly useful in the early design stages, since they enable (partially) parallel devel-
opment of the application and architecture model. For example, the architecture model can
already be tested for functional correctness while the application model is still being Þnal-
ized. As will be shown in later sections, another beneÞt of synthetic workloads is that their
parameters can be easily adapted to test the behavior of the system under speciÞc workload
conditions.

Additionally, in this chapter we will propose some ideas to combine multi-application
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workloads in such a way that they contain dynamic behavior. Dynamic behavior within
application models may exist at two levels: at the level of applications, or within the appli-
cation at the level of processes. We refer to the former as inter-application scenarios and the
latter as intra-application scenarios. Both types of scenarios need to be studied, since they
can have a great impact on the workload which is to be processed by the underlying system
architecture.

This chapter is organized as follows. Section 5.2 presents the two proposed multi-
application workload modeling techniques for Sesame. First a synthetic multi-application
model is introduced, followed by a multi-application model consisting of real applications.
In Chapter 3 we discuss how various features in Sesame help the designer to create multi-
application models with relatively little effort. Subsequent Sections 5.4.1 and 5.4.2 deal
with the modeling and representation of dynamic inter and intra-application workloads in
Sesame. Experiments showing the various techniques presented throughout the chapter are
in Section 5.5. Related work is in Section 5.6 and we conclude the chapter in Section 5.7.

5.2 Multi-application workload modeling

As mentioned before, Sesame has up to now only supported the mapping of a single appli-
cation onto an architecture model at the time. Modern multimedia embedded systems are
however increasingly multi-tasking. Therefore, we need to address the modeling of effects
of executing multiple applications concurrently in our system-level architecture models. To
this end, we propose two multi-application workload modeling techniques. One technique,
which we will discuss Þrst, is based on the use of synthetic application workloads while the
second technique deploys only real application workloads to model concurrent execution of
applications.

5.2.1 Synthetic multi-application workload modeling

Multi-application modeling using synthetic application workloads is illustrated in Figure 5.1.
Note that the FIFO buffers between virtual processors are not depicted in Figure 5.1 for
the sake of simplicity. On the left-hand side, a Sesame system-level model with a single,
primary application is shown. The three processes in this application are mapped onto two
processing cores (P0 and P1) in the underlying architecture. Since processes A and B are
mapped onto the same resource, a scheduler named Local-Scheduler (or L-Scheduler) is
used for scheduling the workloads (i.e., application events) from both processes. However, a
second level of scheduling hierarchy is added by introducing so-called Global-Schedulers (or
G-Schedulers). These global schedulers are basically equivalent to local schedulers in terms
of functionality but instead of intra-application events they schedule application events from
different applications. Evidently, the local and global schedulers can also deploy different
scheduling policies. When, for example, the interleaving of processes inside an application
is statically determined at compile time, the local scheduler can model this by ÔmergingÕ the
events from the event traces according to this given static schedule. At the same time, the
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global scheduler can schedule application events from different applications in a dynamic
fashion based on, for example, time slices, priorities, or a combination of these two. Here,
we would like to note that although the schedulers support preemptive scheduling, this can
only be done at the granularity of application events. The simulation of a single application
event is atomic and thus cannot be preemted in Sesame. Furthermore, we currently do not
model any overheads caused by the context switching itself (e.g., OS overhead, cache misses,
etc.). This is considered as future work.
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Figure 5.1: Multi-application modeling
using synthetic application workloads.

In synthetic multi-application modeling, the
application events external to the primary ap-
plication (see Figure 5.1) are generated by a
stochastic event generator. Hence, this event
generator mimics the concurrent execution of
one or more application(s) besides the primary
application. Based on a stochastic applica-
tion description, which will be discussed later
on, the application generator generates traces
of EX(ecute), READ and WRITE application
events and issues these event traces to special
virtual processors, indicated by VPS in Fig-
ure 5.1. Multiple instances of these event gener-
ators, each with their own stochastic application
description, can be used to model concurrent ex-
ecution of more than two applications.

The virtual processors (VPS) used for the
trace events from the stochastic event generator are special in the sense that they, unlike nor-
mal virtual processors, are not connected to each other according to the application topology
(see Section 3.2.3 in Chapter 3). Rather than explicitly modeling communication synchro-
nizations, a VPS models synchronization behavior stochastically. To illustrate the interac-
tions between the event generator, a VPS and a global scheduler of a system-level model,
consider Figure 5.2. The Þgure shows these interactions in the case an "EX(A) , EX(B) ,
READ , WRITE " event sequence is generated by the event generator. At (simulation) time
t0, the EX(A) event is consumed by the VPS. The VPS immediately forwards this event to
the global scheduler it is connected to, and waits for an acknowledgment from the scheduler.
After the EX(A) event has been scheduled for execution on the architectural resource (taking
T(sched) time units) and the actual execution (taking T(A) time units), control is returned
to the VPS by sending it an acknowledgment. Hereafter, the VPS can consume another ap-
plication event again. In the case of the example in Figure 5.2, the VPS now consumes the
EX(B) event which is handled in an identical fashion as the EX(A) event. However, VPS
handles the READ and WRITE events, which are consumed at times t2 and t3 respectively,
in a slightly different way. Instead of directly forwarding these events to the global sched-
uler, like is done with EX events, VPS now Þrst models a synchronization latency. This
latency refers to the time the read and write transactions need to wait for data or room in the
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buffer from/to which is read/written. The synchronization latency, indicated by T(sync) in
Figure 5.2, is a stochastic parameter of VPS, as discussed below.
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Table 5.1: Parameters for the synthetic application workload generation.
Stochastic event generator parameter Description

AEx Set of possible Ex(ecute) application events

PExi , with "
i&AEx

PExi = 1 Probabilities of the different events in AEx

rcomp:rcomm Computation to communication ratio
rread:rwrite Read to write ratio

M Set of possible message sizes

PMi , with "
i&M

PMi = 1 Probabilities of the different message sizes

NP Number of communication ports

Pporti , with
NP

"
i= 0

Pporti = 1 Probabilities of the different port usages

VPS parameter Description

SyncRead Mean synchronization latency for reads
#Read Standard deviation of read latencies

SyncWrite Mean synchronization latency for writes
#Write Standard deviation of write latencies

Table 5.1 lists the parameters used by the stochastic event generator as well as a VPS.
These parameters can be speciÞed both globally Ð describing the behavior for all traces (for
the event generator) or ports (for a VPS) Ð and on a per-trace/per-port basis. Descriptions on
a per-trace/per-port basis overrule global descriptions, in the case there is an overlap of both
types of descriptions. The parameter AEx speciÞes the set of possible EX events that can be
generated. For example, AEx = { DCT,VLE} speciÞes that EX(DCT) and EX(VLE) events
can be generated. PExi describe the probabilities of the events in AEx.
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The ratioÕs rcomp:rcomm and rread:rwrite specify the computation to communication ratio
and read to write ratio, respectively. So, for example, by increasing the rcomp:rcommratio, the
application behavior can be made more computationally or communication intensive. The
parameter M speciÞes the set of possible message sizes that can be used in communications.
In multimedia applications, application data is often communicated in Þxed data chunks
(e.g. pixel blocks) from one application phase to the other. PMi specify the probabilities
of the different message sizes. NP denotes the number of communication ports for which
read and write transactions can be generated. Pporti are the probabilities of the different port
usages. Again, all of the above parameters can be speciÞed globally (valid for all event
traces) or on a per-trace basis.

The VPS parameters SyncRead and SyncWrite specify the mean synchronization latency
for read and write transactions, respectively.#Readand#Write contain the standard deviations
of the two aforementioned means. By default, a VPS uses an Erlang distribution to determine
synchronization latencies. These VPS parameters can again be speciÞed globally (valid for
all communication ports of a VPS) or on a per-port basis.
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Figure 5.3: Multi-application modeling using realistic application workloads.

5.2.2 Realistic multi-application workload modeling

In our second multi-application workload modeling technique, we realistically model the
concurrent execution of multiple applications. That is, multiple Kahn application models
are actually executed concurrently, as shown in Figure 5.3, and produce realistic event traces
that are again scheduled on the underlying architectural resources using the global sched-
ulers. In contrast to synthetic workload modeling, the secondary KPNs use normal virtual
processors in the mapping layer. Hence, synchronization behavior in the parallel applications
is modeled explicitly for all participating KPN applications (i.e., there is no difference be-
tween primary and secondary applications). This implies that, when considering Figure 5.2,
the T(sync) now refers to the actual synchronization times between application processes.
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Moreover, the secondary KPNs also require L-schedulers to ÕmergeÕ (i.e. schedule) event
traces when multiple application tasks are mapped onto a single architecture resource. Nat-
urally, the policies of the L-schedulers can vary between the different KPN applications
taking part in the system simulation. When considering Figure 5.2, we now have T(sched) =
T(L-sched) + T(G-sched) for all participating KPNs.

5.3 Multi-application modeling: a designerÕs perspective

In the previous sections (as well as the remainder of this chapter) different modeling tech-
niques are discussed that extend SesameÕs modeling capabilities. In this section we discuss
how these modeling extensions can be implemented in Sesame in such a way that the im-
plementation effort is minimal. As we are targeting models for use in the early stages of
system design, it is important that all techniques can be used in an easy and straightforward
way, in order not to slow down the design process. In this section we will describe some of
the ways our tools can support reduction of the modeling effort for the previously proposed
techniques.

In Chapter 3 the different layers within a Sesame model and their respective role in the
system model were shown in detail. It was described in Section 3.2.3 that the virtual layer
is automatically instantiated before the start of the simulation. This instantiation process
usestemplateswhich are associated with each processing or communication component in
the architecture model. The application mapping (which maps tasks and channels to their
respective targets: processing and communication resources in the architecture layer) has
an additional parameter to specify which template to use for each component in the vir-
tual layer. In this way, different synchronization behaviors can be contained in different
templates and the virtual processors will be automatically instantiated with the right syn-
chronization behavior. Since they implement a special kind of alternative synchronization
behavior, stochastic virtual processors (i.e. VPS in Figure 5.1) are implemented as templates
too. In Figure 5.1, the details of the stochastic event generator are not shown, but it does in
fact consist of multiple (stochastic) processes (just like a regular KPN). Therefore, mapping
stochastic processes is as easy as mapping ordinary processes, with the only addition that the
VPS parameters need to be speciÞed (see Table 5.1. Moreover, when the designer uses the
model speciÞcation GUI (Section 3.3.5), the designer can simply drag-and-drop a generic
processor component from the library, which already includes a VPS template.

Secondly, we discuss the process of creating a stochastic application model. In Figure
5.1, the stochastic application event generator is shown without details such as individual
stochastic processes and their channels. Creating the internal topology of the stochastic
application event generator is currently a manual process: using the GUI, the designer can
drag stochastic processes onto the canvas and connect them with channels in any topological
structure. Again, the designer then only needs to Þll in speciÞc values for the latency tables
which can be done either globally or on per-port/per-trace basis (Table 5.1). There can be
situations where the designer wants to quickly instantiate a KPN without detailed control
over the topology. For this purpose we envision a new tool for the GUI that instantiates a
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topology according to a few parameters, such as the number of synthetic processes and the
average number of channels per process. Using only a few parameters, various (a)cyclic, low
or fully connected KPN topologies can be instantiated which the designer can further tailor
to need. Instantiation of stochastic virtual processors is again done automatically, using the
template mapping as mentioned before.

The Þnal tool-related issue that we address here concerns the parameters for the stochas-
tic virtual processors (Table 5.1). In particular we propose a way to automatically derive
initial values for the VPS parameters. As observed before in Section 3.2.3, the synchroniza-
tion latencies of virtual processors consist of all kinds of delays. Eg. when a READ event
is blocked this may be due to the fact that the writing process is waiting for some processes
that are occupying shared resources (eg. processors or memories). A possible initial set-
ting for the VPS parameters is to base the mean synchronization latency on the workloads
of all other processes that share the same resource. For example, we could use the average
of all EX event latencies for processes that share the same resource. As an alternative to
the stochastic virtual processor, we propose an auto-tuning stochastic virtual processor that
ÒlearnsÓ an acceptable set of synchronization latencies during a trial-run simulation. Ini-
tially, for each channel connected to the virtual processor an initial synchronization latency
of 0 is used. This value is automatically adjusted at model runtime by counting the workload
and frequency of EX events that share the same resources. For example, the SyncReadvalue
of a process is auto-tuned to the average workload of the process that writes to that channel.
Note that there are various sources of inaccuracy in the auto-tuning method. For example,
there may be other latencies in the architecture model (other than the EX events) that con-
tribute to the synchronization latency. Despite such inaccuracies, the auto-tuning synthetic
virtual processors provide initial values for the VPS parameters, which can be reÞned by the
designer.

We conclude that the designer has a range of options available to create a stochastic ap-
plication model in the early stages of design with a relatively small engineering effort. Ad-
ditional effort is necessary only in cases where if the designer wants more detailed control of
the stochastic applicationÕs properties or when the designer wants the stochastic application
to match the behavior of a primary (real) application model. An automatic topology genera-
tor and auto-tuning synthetic virtual processors were introduced as future Sesame extensions
to reduce even further the effort to create synthetic models.

5.4 Dynamic application behavior

In this section we discuss how SesameÕs real and synthetic application models can be adapted
to represent dynamic application behavior. We distinguish two types of dynamic application
behavior: inter-application behavior (between applications) and intra application behavior
(between processes within a single application KPN). A variation of the dynamic inter-
application behavior presented in the Þrst subsection below, has been used in a case study
that considers a partially dynamic reconÞgurable architecture (see Section 6.5). Dynamic
intra-application behavior is already available in some of the realistic application models
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that we use in Sesame. However, the synthetic application generator from Section 5.2 does
not explicitly support this. In Section 5.4.2, we propose a method to add dynamic intra-
application behavior to stochastic Sesame models.

5.4.1 Dynamic inter-application behavior

A multi-application model in Sesame consists of two or more disjunct KPNs, which have no
dependencies other than being mapped onto shared resources. Although this is a perfectly
valid Sesame application model, it is unable to capture important dynamic inter-application
behavior that is particularly relevant to modern embedded systems where tasks may enter and
leave the system at any given time. For example: when a mobile-phone user takes a picture,
the camera application tasks will put a temporary additional load on the systemÕs resources.
In this way, application loads can be generated with a huge dynamic range: an additional
application can for example double the workload on the underlying architecture. These types
of workloads are sometimes called user-scenarios, since the arrival of a new application
is often (but not necessarily) initiated by the user or the environment. We will refer to
them as inter-application scenarios to distinguish them from intra-application scenarios (the
topic of the next section). In the following, we will shortly discuss two methods that allow
the modeling of dynamic inter-application workloads in Sesame. Some of the problems
that need to be solved are 1) KPNs are not naturally suited for modeling dynamic/reactive
behavior at the inter-application level and 2) KPN is an untimed model of computation which
complicates the speciÞcation of the arrivaltimeof a sporadic application.

!"#$%&&&&&&&&&'
"(%&&&&&&'
)!*+"%#'
)!*+"%,'
!"#$%&&&&&&&&&'
-&-&-

./01234/546/

./01234/546/

78904:69

;<

#

,

= $

;> # ,

./01234/546/

< >
<?@

A?@B?@

C?@

!"#$%&&&&&&&&&'
"(%&&&&&&'
)!*+"%#'
!"#$%&&&&&&&&&'
-&-&-

./01234/546/

./01234/546/

78904:69

Figure 5.4: Example of a multi-application workload with dynamic inter-application behav-
ior using a Markov-model orchestrator node.

Here we will assume that each KPN in our multi-application model has one or more
"source" nodes as this is common in our targeted streaming media application domain.
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Source nodes have no initial dependencies on other nodes and are therefore immediately
runnable. An example source node is a node that feeds raw input data into the application
(either from a framebuffer memory, a Þle, or a raw data stream: camera, or microphone,
etc.). Therefore, the KPN is usually alive for as long as the source node feeds data into the
KPN.

Now, suppose we create a multi-application model in Sesame consisting of two or more
KPNs with source nodes as described above. SesameÕs application simulator will start run-
ning all KPNs concurrently and therefore, by default, we can only model the single scenario
where all applications start running at the same time (though possibly with different priori-
ties as speciÞed in the G-schedulers in the virtual layer. In the Þrst method to model dynamic
multi-application workloads, we remedy this situation by introducing anorchestratornode
as shown in Figure 5.4. The purpose of the orchestrator node is to put an artiÞcial (read)
dependency on each source node such that each of the KPNs can only start according to
a scenario deÞned by the orchestrator. Note that in this way the orchestrator can not only
introduce applications to the scenario, but also remove them. For example, let us assume
that the second application in Figure 5.4 is a video encoder and that source node S2 (after
the orchestrator dependency READ (Orchestrator) reads out a framebuffer (represented by
the EX(function) event) and passes it as macroblocks to node A. The orchestrator can include
the application in the current scenario by sending a token on its corresponding output con-
trol channel. Vice versa, it can exclude the application by not sending the token. Using the
control tokens, the orchestrator can create those scenarios and scenario transitions that are of
interest to the designer. We propose here to use a Markov chain to represent the transitions
between scenarios where each state represents a scenario (each with its respective control
tokens) and transitions are given by probabilities in the normal way (see Figure 5.4).

One problem with the orchestrator approach described above, is that it is impossible to
deÞne transitions between user-scenarios at certain time intervals. This would be necessary
to implement the behavior where the system reacts to externally timed events such as the
occurrence of interrupts (e.g., a user presses a button on the TVÕs remote control after which
teletext is started as a picture-in-picture application on the screen). Since KPNs are an
untimed model of computation, it is not possible to express the behavior "waitn time units
and then start applicationX". For this purpose, we deÞne a special ÔSLEEP(N)Õ application
event, which basically indicates that an application process is not active during a period ofN

time units. TheSLEEPevent is created by a special event annotation in a Kahn process and
it takesn as its only argument. As with all events, it is passed to the virtual layer, where it
is consumed by a virtual processor (it is not passed on later to the architecture model). The
virtual processor exists in the same timed simulation domain as the architecture model, so
that we can implement the desired behavior. In the virtual processor, theSLEEPevent causes
the virtual processor to sleep (i.e. block in virtual time) for the speciÞed period. While the
virtual processor is blocked in this way, it will be unable to continue its normal processing
of EX, READ , and WRITE events, thus effectively suspending the application process. Note
that by suspending one process in the KPN of an application, the other processes will soon
stall because of (in)direct unmet dependencies on the suspended process. We can prevent
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suspending the application mid-stream (with unprocessed data before or after the suspended
process) by issuing sleep events only to the source nodes (this situation is shown in Figure
5.5).
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Figure 5.5: Example of a multi-application workload with dynamic inter-application scenar-
ios implemented using theSLEEPapplication event.

Evidently, theSLEEPevents provide the opportunity to freeze the issuing of application
events for a while, which basically mimics sporadic or periodic execution behavior of appli-
cations. The sleep event technique will work transparently for both realistic and stochastic
application workloads alike. Compared to the sleep-event technique, the orchestrator tech-
nique has the advantage that the scenarios and use-cases can be deÞned in a single location in
the model. These two techniques enable the designer to assess a variety of different scenarios
or use cases [36]. A technique based on the orchestrator approach will be used in Chapter
6 to create a pseudo-dynamic workload for an architecture with dynamic reconÞguration
capabilities.

5.4.2 Dynamic intra-application behavior

The stochastic application workload proposed in Section 5.2 consists of stochastic processes
(and stochastic virtual processors) which use a parameterizable, yet Þxed event generation
distribution. In realistic non-trivial applications, it is often the case that the application (and
its separate processes) move through different execution phases. We would like the synthetic
trace event generator to create events according to a unique probability distribution in each
of those phases. We refer to each possible combination of simultaneously occurring process
phases as an intra-application scenario. They differ from user scenarios (or inter-application
scenarios) as they occur at the process (task) level within applications and are typically not
directly related to any action by the user.






















































































































































































































