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Chapter 1

Introduction

In todayOs world, many devices that traditionally operated on purely mechanical or analog
electro-technical principles, are enhanced and extended with small, integrated digital com-
puter systems. These so-calleshbedded systeneither replace or accompany traditional
components as part of the updated design of the device, thereby extending its functionality
or reducing the cost. Examples of such embedded systems are close at hand: modern TVs
contain one or multiple computer systems in order to handle functionality such as decoding
the input signal, performing various image enhancements techniques as well as displaying
and updating live information (e.g., program guide or weather forecast). Cars depend on
embedded systems to do anything from braking to fuel injection and deploying airbags. The
use of embedded systems is however by no means restricted to consumer electronics: in
industrial, medical or defense applications they are equally pervasive. In fact, it is estimated
that embedded systems now outnumber more commonly known computer types (desktop
PCs, game consoles, etc.) by two orders of magnitute. This can partially be explained by
the fact that embedded systems bear the promise to improve existing products (in terms
of functionality, usability, interoperability, etc.) and to enable the development of entirely
new products and devices that were previously inconceivable. Additionally, the fabrication
process technology for embedded computing systems is now at a point where they can be
produced at relatively low prices.

In addition to the increasing demand for embedded systems, there is also a clear trend to-
wards more complex systems that combine different functions into a single device. Consider
for example mobile phones that integrate more and more functions such as (video) camera,
GPS-based navigation and internet browsing capabilities. Moreover, new generations of
these products have to be released in shorter time frames. By recognizing and extrapolat-
ing this trend, the notion of ubiquitous computing has been developed: small, yet powerful
interconnected computer systems that are unobtrusively integrated in our everyday objects
and activities, augmenting our natural cognitive, sensory and communication capabilities.
In face of the excitement of such a prospect (be it positive or negative), one would almost
forget the enormous technical challenges that need to be solved for even the current and next
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10 CHAPTER 1. INTRODUCTION

generation of OcommonO embedded systeihss clear that improved methodologies and

tools are needed in order to design the next generation of embedded systems that meet the
requirements of the future. In the remainder of this chapter, we describe the background of
the embedded systems pbeld, discuss the motivation of the work presented in this thesis, and
address the main research questions.

1.1 Design constraints and trade-offs

The design and engineering of embedded systems makes for an interesting Peld of study
because it not only deals with the issues already present in commodity-computer system de-
sign (e.g., functionality, performance), but it deals with additional constraints as well. For
example, the issue of power consumption is of relatively small concern for desktop com-
puter systems. But for a mobile, battery operated embedded system, high power usage can
mean complete design failure and render the device practically useless (e.g. a mobile phone
that discharges within a day). Reliability is often also a concern for embedded systems,
since they may be part of continuously operating devices (set-top boxes, surveillance sys-
tems), or safety-critical systems such as Ry-by-wire systems of an airplane. Other design
requirements that are typically associated with embedded systems are cost, physical size,
redundancy and Rexibility (the ability to use or reuse the system in multiple applications).
These requirements result in a set of so-catledign constraintsa list of requirements

that have to be met by any candidate system design in order to be considered successful.
Even the development time of an embedded system can be considered a design constraint,
since updated or innovative systems have to enter the market before the competition. It is
commonly accepted that design constraints are inherently non-orthogonal: improving the
system according to one constraint may decrease the value of another. For example, per-
formance can be increased by adding additional processing components, which typically
reduces power efbciency and increases cost. Performance and power usage can be improved
by using ASICs instead of programmable processor components, but this in turn reduces the
Rexibility of the system and increases design time in case of custom ASICs.

In the beld of embedded systems, it has traditionally been the case that a systemOs func-
tionality was quite Pxed and therefore [Rexibility was not a major design concern. However,
these days Rexibility is a very important design criterium. As embedded systems are becom-
ing increasingly complex, such as mobile communication and media devices that may be
required to run software that was not envisioned at design time, or alternatively, the device
was designed to be adapted and updated during its lifetime. The latter makes sense from a
design perspective, since embedded systems are pervasive in all kinds of applications, and
there may be great cost involved in updating or Pxing such systems. Take as an example the
embedded systems in use in the automotive industry: post-production errors may require a
recall of all cars of a specibc model in order to bPx the problem. The total cost of the recall

INot to mention the non-technical challenges which include human-computer interaction, privacy, environ-
mental and safety concerns
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can be reduced if the bPx is a simple software or Prmware upgrade by the brand dealer instead
of an expensive repair that requires replacement parts and labor.

A different concern related to Rexibility exists in those consumer product areas where
a system is used for a relatively short time and new devices are released frequently, thus
increasing pressure on the design process. A good example where product lifetime (and
therefore design cycles) are reduced is the mobile consumer electronic market of mobile
phones, media players, navigation systems, etc. The result is that there is too little time to
re-design the system between generations, and therefore, large parts of the design have tc
be reusable. In these cases, but the design process itself needs to be Rexible in order to be
reused for the next generation of products.

There is no generic solution to the problem of non-orthogonal design constraints, so that
trade-offs have to be considered carefully for each system individually. In traditional design
methodologies, a system designer would often make trade-offs implicitly, guided only by
his expert knowledge and experience (Othe art of system designO). As the complexity of
embedded systems increases, there is a trend towards more explicit declaration of design
constraints, which enables methods and tools to (semi-)automatically help the designer to
search for designs that meet the design constraints in the best possible way. The aim of such
methods and tools is always to reduce the complexity of embedded system design, which in
turn should increase quality and reduce design time.

1.2 Current state of technology

Modern embedded systems are built using the wide range of component, process and pack-
aging technologies that are available today. Typically, a system consists of one or multiple
CPUs (e.g., microprocessor, DSP, or ASIC), memory (ROM, RAM, etc.), interconnects, tim-
ing sources and counters as well as external interfaces (USB, Ethernet, UART, etc.). Many
options are typically available for each type of component, each of which has different prop-
erties that will push the design constraints one way or another. For example, using an ASIC
implementation to perform a certain (bPxed) functionality generally improves performance
and reduces power consumption as compared to execution on a microprocessor. On the
other hand, the use of an ASIC reduces the Rexibility as compared to a microprocessor and
it may increase the cost of a system because of increased packaging cost or intellectual
property (IP) licensing fees. In addition, there exists an entire range of processor options
in between generic microprocessor and ASIC, each with different properties (consider for
example ASIPs or DSPs). Determining which combination of components is suitable for a
particular system is a non-trivial problem.

For many embedded applications a better trade-off in the design criteria can be found by
combining different lfeterogeneoygypes of cores in system, where each core is optimized
for a particular part of the operation of the whole system. This is the reason that embedded
systems were the earliest mass-produced multi-processor systems, far before the brst gen
eral purpose multi-processor PC systems (IBM Power4, 2001). The embedded system peld
was particularly suitable for this development, because initially embedded systems were not
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designed with Rexibility in mind and therefore design trade-offs could be Pne-tuned to the
limited set of requirements for a particular application. As we mentioned before, this is
completely different for current and future generations of embedded systems.

There are different methods to combine the various components for a heterogeneous
embedded system. In addition to the traditional printed circuit board (PCB), components can
now be joined together as a System-in-Package (SiP), Package-on-Package (PoP), System-
on-Chip (SoC), or using a combination of these techniques. Each technique has different
pros and cons with respect to the manufacturing process, which again results in a system of
trade-offs. For example, a processing/memory combination as a PoP allows a manufacturer
to develop the components separately or, alternatively, to allow some waiting time to buy an
off-the shelf component at a good price point. A System-on-Chip does not have this benebt,
because for a SoC all components are manufactured onto the same silicon die. However,
SoC has the added benebts of increased performance (lower latencies between components),
lower system-assembly cost and may work out cheaper if produced in sufpcient volume.

Improvements in lithographic process technologies continually increase the density of
on-chip resources. The result is that many embedded systems now make use of multi-
processor SoC (MPSoC) technology. Indeed, MooreOs law seems to be alive and well, pre-
dicting a doubling of transistors on chip every two years. Next generations of high-end
commodity processors will consist of a few billion of transistors and it is likely this will be
tens of billions in the near future. The result is that the predominant research question in
both the embedded and the commodity processor design Pelds is now: how to to put these
enormous amounts of available resources to efpcient use? There is a general consensus that
there exists aimplementation gapthat is: transistors are now so plentiful that traditional
design methods fail to efbciently use them all. In the commodity processor beld the (stop-
gap) solution has been to use the resources to replicate existing designs by doubling the
number of cores or by increasing the L2 cache size. However, such a homogeneous solution
does not bt well with the embedded design Peld which (for the reasons mentioned in the
previous section) looks towards inherently heterogeneous designs.

In recent years, MPSoC system development based on reconbgurable technologies (such
as FPGASs) have received increasing attention from both research and industry. This is not
surprising, as the cost of FPGAs goes down and gate count goes up, driven by the improve-
ment of manufacturing technology. Modern FPGASs consist of hundreds of millions of gates,
which is sufbcient to implement complex MPSoC systems consisting of tens or hundreds of
processing components as well as memories and on-chip interconnection networks. FPGA
technology Plls a niche in the (embedded) system design market as it has different cost and
performance properties compared to traditional ASIC-based system design. System devel-
opment on FPGA does not need the same time-consuming and expensive fabrication process
as ASICs, making FPGAs an interesting solution for system prototyping, especially in re-
search and low-volume applications. Compared to ASICs, the unit cost of FPGA solutions
is relatively high, and the performance is generally rated to be lower than ASICs [59] for
systems based on similar hardware design. But in some computational domains FPGA tech-
nology seems actually to be catching up; e.g., it has been reported in [108] that the increase
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in peak performance per year is higher for FPGAs than for commodity CPUs. However, the
major point in favor of FPGAs is their Rexibility: the logic design of the FPGA system can
be adapted to and optimized for a specibc application or workload. We will frequently refer
to and use this technology throughout this thesis.

1.3 Platform-based design

Platform-based design has become one of the major approaches in recent years to overcom
the challenges for embedded system design. A platform is a partial debnition of a system
encompassing hardware and software components, interfaces, APIs and (sometimes) a too
suite with compilers and debugging tools or an integrated development environment (IDE).
On the one hand, the hardware part of a platform (in contrast to a fully custom-designed
system), is debPned with Rexibility in mind so that it is suitable for a range of applications
or products. Flexibility comes from the inclusion of programmable cores (microprocessor,
DSP) or reconbgurable hardware (FPGA) in the platform. On the other hand, platforms typi-
cally also contain more static architectural features (such as ASICs) which are optimized for
specibc applications. In this way, platforms aim to strike a balance by combining Rexibility
with application specibc optimization, which can ultimately result in systems that meet e.g.
power and performance requirements. The challenge for the designer is to make the remain-
ing design decisions offered by the platform, in order to create the systenplaff@m
instancefor use in a given application.

There are different implementation and fabrication possibilities for platforms: on a sin-
gle IC-die, as a collection of interoperable components, entirely on reconbgurable fabric,
or even as a mix of these. Moreover, platform-based design can have a positive impact on
the economic trade-offs that are inherent to manufacturing. For example, the increasing
non-recurring engineering cost (e.g., mask creation) for custom-built ICs can be mitigated
as multi-purpose platform ICs can achieve larger production volumes. Single-die IC-based
platforms are typically released as a family of platform products, where each type offers dif-
ferent conbgurations (e.qg., different memory size or integrated ASICs to accelerate particular
applications). These platform families can reuse large parts of the platform design, which
reduces design cost. Later on in this thesis we will consider (multi-processor) platforms im-
plemented entirely on the reconbgurable fabric provided by an FPGA. Here, platform based
design takes the form of composing the platform from a pre-debned library of components
which contains both programmable and dedicated hardware cores. As we will see however,
the methods and techniques presented in this thesis are equally applicable to all types of
platforms, irrespective of implementation or manufacturing technology.

Another benebt of platform-based design is that it provides a certain level of standardiza-
tion, which is conductive to the development of the software stack running on the hardware
as well as the development of software tools. In this way, libraries, (real-time) operating sys-
tems, compilers and debugging tools can reach a level of maturity that benebts development
on that platform.

In summary: a platform bxes most technology parameters (and some of the other design



14 CHAPTER 1. INTRODUCTION

parameters) and provides a stable development environment that may not be readily available
for custom ICs. However, a platform is only the starting point of a design process, and many
problems still need to be solved. Finally, we consider that the platform itself has to be
designed, which is perhaps the most complex design problem of all, due to the requirement
of having to be useful for many different purposes.

1.4 System-Level Design

In order to manage the increasing complexity of modern embedded systems, designers are
forced to view the system from a higher level of abstractiSystem-level desigams to

provide a path from system specibcation to system implementation in such a way that the
resulting system meets the design requirements and the design effort is efbcient in terms of
time and cost. The system level viewpoint considers the system as a modular collection of
software and hardware components, without the need to debPne every detail of every com-
ponent at the early design stages. In practice this means that the design process is divided
in a number of (more or less) distinct phases that a designer traverses one by one. In each
subsequent phase, the system specibcation is extended with additional details, so that the
Pnal phase results in a fully specibed, implementable system specibcation.

An example design process that starts at the system level is given in Figure 1.4. The
width of the pyramid shape indicates the relative number of design options in each stage of
the design: the high-level stages have less options, since they omit the lower level details of
the system; the base of the pyramid represents all the possible system implementations. The
design process starts at the top with the high-level system requirements and the platform
specibcations.The brst design stage includes the pen-and-paper designs and very simple
spreadsheet models which are common design practice to conbrm the designerOs initial in-
tuitive solutions and to debne initial design space boundaries. It is unfortunately the case
that the next design stage too often is the cycle accurate or RTL model, as they are currently
the most available and best understood models. Particularly the use of RTL-level models
is common, because it is offered by industrial design tools, which are geared towards im-
plementation and debugging and provide very little system-level design support that support
design decisions in the very early stages. This is in fact a manifestation of the aforemen-
tioned implementation gap from the perspective of system design: there exist no mature
methodologies, techniques, and tools to effectively and efpciently convert system-level sys-
tem specibcations to RTL specibcations. We propose a smoother transition by adding an
intermediate stage