Tools and techniques for efficient system-level design space exploration
Thompson, M.

Citation for published version (APA):
Thompson, M. (2012). Tools and techniques for efficient system-level design space exploration

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgements
3

1 **Introduction**
1.1 Design constraints and trade-offs
1.2 Current state of technology
1.3 Platform-based design
1.4 System-Level Design
1.5 Navigating the design space
1.6 Scope and contribution of this thesis
1.7 Thesis layout
9

2 **Daedalus: design flow**
2.1 Introduction
2.2 The Daedalus framework
2.3 Parallelizing applications
2.4 Design Space Exploration
2.5 System-level Synthesis
2.6 The Daedalus Design-flow Infrastructure
2.7 Related Work
2.8 Conclusion
23

3 **Sesame: modeling and simulation**
3.1 Introduction
3.2 Overview
3.2.1 The application model
3.2.2 The architecture model
3.2.3 Mapping
3.3 Implementation Aspects
3.3.1 Model specification
3.3.2 The application model
3.3.3 The architecture model
3.3.4 The virtual/mapping modeling layer
3.3.5 Graphical user-interface
3.4 Setting up the Design Space
33

CONTENTS

3.5 Model and design space evaluation 54
3.6 Conclusion ... 56

4 Model calibration ... 57
4.1 Introduction ... 57
4.2 Model calibration .. 58
4.3 Off-line model calibration ... 60
4.4 On-line trace calibration .. 62
4.5 Trace calibration experiments ... 65
4.6 Signature based model calibration 68
 4.6.1 Application requirements ... 68
 4.6.2 Processor capacity and performance estimation 70
4.7 Signature-based calibration experiments 71
 4.7.1 Related work ... 73
4.8 Conclusion ... 75

5 Multi-application modeling ... 79
5.1 Introduction ... 79
5.2 Multi-application workload modeling 80
 5.2.1 Synthetic multi-application workload modeling 80
 5.2.2 Realistic multi-application workload modeling 83
5.3 Multi-application modeling: a designer's perspective 84
5.4 Dynamic application behavior 85
 5.4.1 Dynamic inter-application behavior 86
 5.4.2 Dynamic intra-application behavior 88
5.5 A preliminary case study .. 90
5.6 Related work ... 91
5.7 Conclusion ... 93

6 Modeling dynamically reconfigurable systems 95
6.1 Introduction ... 95
6.2 Modeling dynamically reconfigurable systems 96
 6.2.1 Dynamic allocation of model components 96
 6.2.2 Resource management .. 97
 6.2.3 Mapping strategy .. 99
 6.2.4 Event trace clustering .. 101
 6.2.5 Reconfiguration points .. 103
6.3 The molen reconfigurable platform 104
6.4 Sesame molen model ... 105
 6.4.1 Mutual exclusion of GPP and RP 106
 6.4.2 Mapping strategies ... 107
 6.4.3 Application pipelining .. 108
 6.4.4 Component interaction .. 109