How birds weather the weather: avian migration in the mid-latitudes
Kemp, M.U.

Citation for published version (APA):
Kemp, M. U. (2012). How birds weather the weather: avian migration in the mid-latitudes
Simulated nightly altitude distributions of \(pBd \), from our comparison with the analysis of Bruderer et al. (1995), are shown with associated measured distributions of \(pBd \) and \(Tw \) for spring and autumn for altitudes between 0.2 and 4 km in bins of 200 m. On the right of each pair are measured distributions of \(pBd \). Altitude distributions of \(Tw \) (orange line; ms\(^{-1}\)) are shown superimposed on top of the measured \(pBd \) distributions. The range of \(Tw \) values are indicated along the top of the x-axis and a vertical gray line indicates the transition point from negative to positive \(Tw \) values. Simulated distributions of \(pBd \) are shown on the left, with a black line indicating the weighted average distribution of \(pBd \) for that season. The color of the measured and predicted distributions of \(pBd \) indicate the measured intensity of migration on a given night from blue (least intense) through green to red (most intense). Altitude bins in the simulated distribution shown in transparent gray do not have a predicted value due to missing predictor variables. The numeric value given in parentheses next to the label “Measured” indicates the percentage of nights from that season with less-intense migration. The first value next to the label “Simulated” indicates the Spearman’s \(\rho \) correlation between the measured and simulated distributions of \(pBd \) and the second value indicates the proportion of variability in the measured distribution of \(pBd \) explained by the simulated distribution of \(pBd \). The title of each plot indicates the night (at sunset) during which the conditions were measured. Note that Appendix D is only available in digital version of this thesis at http://dare.uva.nl/record/421932.
Autumn

- Simulated (0.89 & 67%)
- Simulated (0.76 & 70%)
- Simulated (0.99 & 90%)

- Measured (85%)
- Measured (89%)
- Measured (91%)

- Measured (82%)
- Measured (99%)
- Measured (94%)
- Measured (97%)
- Measured (95%)

- Simulated (−0.29 & 23%)
- Simulated (0.94 & 82%)
- Simulated (0.44 & 51%)
- Simulated (0.73 & 73%)
- Simulated (1 & 88%)

- Simulated (−0.25 & 22%)
- Simulated (0.91 & 81%)
- Simulated (0.43 & 50%)
- Simulated (0.72 & 72%)
- Simulated (0.87 & 86%)

- Simulated (0.88 & 83%)
- Simulated (0.99 & 86%)
- Simulated (0.99 & 93%)
- Simulated (0.94 & 77%)
- Simulated (0.72 & 82%)

- Simulated (0.71 & 81%)
- Simulated (0.98 & 85%)
- Simulated (0.92 & 79%)
- Simulated (0.71 & 75%)
- Simulated (0.86 & 84%)

- Simulated (0.74 & 80%)
- Simulated (0.97 & 88%)
- Simulated (0.93 & 81%)
- Simulated (0.74 & 76%)
- Simulated (0.87 & 86%)

- Simulated (0.74 & 76%)
- Simulated (0.97 & 87%)
- Simulated (0.93 & 82%)
- Simulated (0.74 & 76%)
- Simulated (0.87 & 86%)

- Simulated (0.74 & 76%)
- Simulated (0.97 & 87%)
- Simulated (0.93 & 82%)
- Simulated (0.74 & 76%)
- Simulated (0.87 & 86%)

- Simulated (0.74 & 76%)
- Simulated (0.97 & 87%)
- Simulated (0.93 & 82%)
- Simulated (0.74 & 76%)
- Simulated (0.87 & 86%)