How birds weather the weather: avian migration in the mid-latitudes

Kemp, M.U.

Publication date
2012

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Appendix E: Results of GAM model predicting avian altitude distributions

Measured nightly altitude distributions of \( pBd \), \( Tw \), \( SH \), \( Cp \), and \( T \) (only the freezing point) along with associated altitude distributions of \( pBd \) predicted by our final GAM models for spring and autumn are shown for altitudes between 0.2 and 4 km in bins of 200 m. On the right of each pair are measured distributions of \( pBd \). Altitude distributions of \( Tw \) (orange line; ms\(^{-1}\)) and \( RH \) (purple line; \%) are shown superimposed on top of the measured \( pBd \) distributions along with a light blue horizontal line at the altitude at which freezing temperatures occurred. The range of \( Tw \) and \( RH \) values are indicated along the top of the lower x-axis and along the upper x-axis, respectively, and a vertical gray line indicates the transition point from negative to positive \( Tw \) values. Predicted distributions of \( pBd \) are shown on the left, with a black line indicating the weighted average distribution of \( pBd \) for that season. The color of the measured and predicted distributions of \( pBd \) indicates the measured intensity of migration on a given night from blue (least intense) through green to red (most intense). In between the predicted and measured distributions of \( pBd \) is a graphical representation of the value of \( Cp \) (\%) for each altitude bin, with white indicating no \( Cp \) and black indicating 100\% \( Cp \). Altitude bins in the predicted distribution shown in transparent gray do not have a predicted value due to missing predictor variables, and missing values of \( Cp \) are indicated by an ‘X’. The numeric value given in parentheses next to the label “Measured” indicates the percentage of nights from that season with less-intense migration. The first value next to the label “Predicted” indicates the Spearman’s \( \rho \) correlation between the measured and predicted distributions of \( pBd \) and the second value indicates the proportion of variability in the measured distribution of
$pBd$ explained by the predicted distribution of $pBd$. The title of each plot indicates the night (at sunset) during which the conditions were measured. Note that Appendix E is not available in the print version of this thesis; however, it is available in its entirety at [http://dare.uva.nl/record/421932](http://dare.uva.nl/record/421932).
Spring
Spring (cont.)