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Abstract

Fitness is the central concept in evolutionary theory. It measures a phenotype’s

ability to survive and reproduce. There are different ways to represent this mea-

sure: Malthusian fitness and Wrightian fitness. One can go back and forth

between the two, but when we characterize model properties or interpret data,

it can be important to distinguish between them. Here, we discuss a recent

experiment to show how the interpretation changes if an alternative definition

is used.

Fitness measures a phenotype’s ability to survive and pro-

duce offspring that eventually become reproductive

(B€urger 2000; Rousset 2004; Grafen 2007; Orr 2009).

There are two common ways to define fitness. Malthusian

fitness m refers to the exponential growth rate. With a

population of size N(t) at time t, that implies
_NðtÞ ¼ mNðtÞ. Wrightian fitness w is the average num-

ber of offspring, and is defined by N(t + 1) = wN(t). For

Malthusian fitness, the solution is N(t) = exp (mt)N(0),

and for Wrightian fitness, it is NðtÞ ¼ wtNð0Þ. Time is

naturally continuous if we use Malthusian fitness, while it

is discrete for Wrightian fitness. Both models, however,

lead to exponential growth in this most basic form. The

relation between the two ways to define fitness is given by

m = ln (w) (Crow and Kimura 1970; B€urger 2000; Orr

2009). For slow growth (corresponding to weak selec-

tion), a Taylor expansion of m = ln w for w � 1 leads

to m�w � 1.

In experiments, one may want to measure fitness over

a range of manipulations in order to draw inferences

about its determinants. The relationship between Malthu-

sian and Wrightian fitness, which is linear under weak

selection, m�w � 1, becomes nonlinear under stronger

selection. In general, Malthusian fitness is the logarithm

of Wrightian fitness, and therefore the difference between

the two options is the difference between using log-trans-
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formed and untransformed data of Wrightian fitness. Also

for the interpretation of the results, it can make a differ-

ence which of the two is used, which suggests that it is

worth investigating the implications of either choice.

As an example, we consider a study describing an

experimental microbial system (smith et al. 2010). When

starved of amino acids, Myxococcus xanthus cells aggregate

to form a fruiting body. A small portion of cells develop

into stress-resistant spores, while the majority die. Some

strains sporulate super efficiently, and are therefore

referred to as “cheaters", while strains with normal sporu-

lation efficiency are referred to as “cooperators". Cheater

strains spread efficiently when rare, but do so poorly

when in high abundance. In the experiment, the sporula-

tion efficiency r is used as fitness (smith et al. 2010). The

sporulation efficiency is the ratio between the number of

cells surviving as spores and the total number of cells,

and corresponds to the Wrightian fitness.

The experiment was performed on agar, where the popu-

lation is mixed, and what is manipulated is the initial fre-

quency of cooperators. It turns out that the Wrightian

fitness r of both cheaters and cooperators is almost expo-

nential in the frequency of cooperators. smith et al. (2010)

argue that this strong nonlinearity calls for a generalization

of Hamilton’s classical rule (Hamilton 1964; van Veelen

2007). However, Malthusian fitness, that is ln r, is almost

linear in the frequency of cooperators. In this note, we

focus on how the interpretation of such an experiment,

that is the need to generalize Hamilton’s rule, can be chan-

ged by adopting an alternative definition of fitness.

As a preparation, we explore what the implications

would be if Malthusian fitness were considered and it

happened to be linear in the frequency of cooperators. An

example close to the experimental data of smith et al.

(2010) is the case in which the Malthusian fitness of a

cooperator f1 and a cheater f2 are

f1 ¼ �3:48x � 11:13ð1� xÞ
f2 ¼ �0:10x � 15:20ð1� xÞ; (1)

where x is the frequency of cooperators. Equivalently, in

terms of game theory (Turner and Chao 1999; Nowak

2006), the payoff matrix M reads

! Cooperator Cheater

Cooperator �3:48 �11:13

Cheater �0:10 �15:20
; (2)

where Mij refers to the growth rate of i when the abun-

dance of j in the population approaches 100%. In this case,

the Malthusian fitness function is linear in the frequency of

cooperators and the average fitness of the whole popula-

tion, xf1 þ ð1 � xÞf2, is quadratic. The average Malthu-

Wrightian fitness
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Figure 1. In smith et al. (2010), Wrightian fitness is employed. The Wrightian fitness from an experiment is log transformed, and a quadratic fit

is performed. Then, a Taylor expansion of the function (solid curves in the left panels) is done, showing a maximum in the Taylor coefficients for

defectors. In this case, there can be infinitely many nonvanishing Taylor coefficients. If the Wrightian fitness, however, is fitted directly by a

polynomial, there are at most six nonvanishing Taylor coefficients (the dashed curves), as there are six distinct sample points with different

frequencies of cooperators. In such a case, the result is dramatically different. Notably, even though there are infinitely many Taylor coefficients

for exponential Wrightian fitness, it is still not a perfect fit in the sense that errors can actually be reduced even further. The dashed curve does

that: it is a perfect fit that passes through all the means of the untransformed data points of the Wrightian fitnesses (left bottom panel).

However, if the Malthusian fitness is used, (the right panels), there is no need to transform the data any longer, as it is almost “linear" already.
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sian fitness of the whole population reaches its maximum

when the population consists of cooperators only.

Both Malthusian fitness functions are of the form

fi ¼ a0 þ a1x. We can transform this to Wrightian fit-

ness; r ¼ wi ¼ expðfiÞ. A similar approach has been

proposed in Traulsen et al. (2008), because it is often eas-

ier to deal mathematically with such exponential func-

tions. smith et al. (2010) proposed to perform a Taylor

expansion of the Wrightian fitness function with respect

to the frequency of cooperators to explore its nonlinear-

ity. In the case of linear Malthusian fitness, we obtain for

the Wrightian fitness

wi ¼ expða0 þ a1xÞ ¼
X1
k¼0

expða0Þ a
k
1

k!|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gk

xk; (3)

where Gk is the kth order of the Taylor coefficient of the

Wrightian fitness function of a cheater or cooperator. The

difference between two consecutive Taylor coefficients is

Gk � Gk�1 ¼ expða0Þ a
k�1
1

k!
ða1 � kÞ: (4)

Thus, for exponential growth (a1 > 0), Gk is increasing

when k is smaller than a1 and decreasing when k is

greater than a1. In other words, Gk has a unique maxi-

mum around k ¼ a1. This unique maximum is a direct

consequence of the assumption that Wrightian fitness is

exponential and independent of the fitted values. The

Taylor expansion of the Malthusian fitness is trivial in

this case; if the Malthusian fitness is linear in the

frequency of cooperators, the Taylor coefficients of the

Malthusian fitness will all be zero, except for the first

two. The Wrightian fitness function, on the other hand,

will be nonlinear, and its Taylor coefficients will always

come in the shape of a hump; they increase until a1 and

decrease thereafter.

smith et al. (2010) find that the Wrightian fitness func-

tions of both cheaters and cooperators are not exponen-

tial, but only almost exponential in the frequency of

cooperators, see Fig. 1. Because they are close to exponen-

tial, the authors log transformed the data and per-

formed an ordinary least squares fit on those transformed

data. But because the fitness functions are not exactly

exponential, they minimize the squared differences

between the data and a quadratic function,

a0 þ a1x þ a2x
2, rather than between the data and a lin-

ear function, a0 þ a1x. This results in estimates â0, â1
and â2, which translates into a Wrightian fitness function

as follows: f ðxÞ ¼ eâ0 þ â1xþ â2x
2
. Finally, a Taylor expan-

sion of this function is made, up to the 30th order, and a

maximum with respect to the order of the Taylor coeffi-

cients is found. However, the calculations above and in

the Appendix show that the shape of this curve is deter-

mined by the function chosen for the fit, and not by the

data.

Why the final answer is expressed in terms of 30 Taylor

coefficients is not immediately clear. Taylor expansions are

local approximations useful for theoretical exercises, where

a simpler expression is desired. For example, when the

intensity of selection is small, complicated expressions can

be linearized and become much easier to handle. A Taylor

expansion in the present context suggests that we would like

to approximate the Wrightian fitness function with a poly-

nomial in the abundance of cooperators. That is remarkable,

because one would expect (and we agree) that there were

very good reasons why the functional form

f ðxÞ ¼ ea0 þ a1xþ a2x
2
was chosen in the first place. But, if we

were interested in a good match with a polynomial, we

could achieve a perfect fit by going to polynomials directly

with the untransformed data. Note that there are only six

different frequencies of cooperators, which implies that we

can choose a Wrightian fitness function that minimizes the

squared differences with only six parameters. That can be

done with any polynomial with a constant term and five

additional nonzero Taylor coefficients. However, one may

want to impose the constraint that these polynomials should

be nonnegative. Overall, the procedure to first process the

data with only three degrees of freedom, and then produc-

ing 30 Taylor coefficients seems to be questionable. Also,

the calculation of the first 30 moments of a distribution with

a support of only six points is problematic, but we acknowl-

edge that the authors aim to prove a principle rather than

propose a way to analyze such data. In the Appendix, we

show that if the exponential quadratic term a2 is sufficiently

small compared with the linear one a1, then the hump shape

in the sequence of Taylor coefficients remains.

In this note, we point out that it can be important

which kind of fitness is chosen. It has been noted that the

deviation of weak selection may lead the fitness away from

linearity (Van Dyken and Wade 2012). However, these

authors do not discuss what type of fitness is addressed,

but the work of smith et al. (2010) shows that this

becomes an issue whenever selection is nonweak. In fact, if

fitness effects are small, or the selection intensity is weak,

then the difference between Wrightian fitness (close to 1)

and Malthusian fitness (close to 0) does not matter. In this

case, we have m � w � 1. That implies that there is

hardly any difference in linearity between a fitness effect in

Wrightian terms and Malthusian terms. But if fitness

effects are really large, as they are in the experiment of

smith et al. (2010), then there can be an enormous differ-

ence. The goal of smith et al. (2010) is to generalize Ham-

ilton’s rule for a nonlinear fitness function, or to bridge

the gap between the nonlinear fitness data and the previ-

ous theory (Van Dyken et al. 2011). Fitness, however,

reduces to be linear as in equation (1), by replacing the
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Wrightian with the Malthusian fitness. This suggests that

for this experiment, it seems unnecessary to use the gener-

alized Hamilton’s rule, if instead the Malthusian fitness is

adopted. In other words, the Wrightian fitness approach

calls for a generalization of Hamilton’s rule, whereas the

Malthusian fitness approach does not (or at least not in a

drastic way, as Malthusian fitnesses are almost linear in

the frequency of cooperators). However, there are of

course cases in which fitness is neither exponential nor

linear. Bacterial populations are growing continuously.

Typically, generation times are short, suggesting that Mal-

thusian fitness may be the better option (Lenski et al.

1991). Employing Malthusian fitness implicitly seems to

suggest an exponential growth and death of the popula-

tion. In addition, the development of Myxococcus xanthus

consists also of a lag period and stationary regime (Kra-

emer et al. 2010). In all these cases, the log transformation

from Wrightian to Malthusian fitness is also valid, that is,

for shrinking populations or constant population size.

While we criticise these mathematical issues, we are con-

vinced that smith et al. (2010) aim into the right direction:

to incorporate the nonlinearities characteristic of biology

into social evolution, we may have to extend and generalize

the approach of inclusive fitness. It would be beautiful if

such a generalization would ultimately include Hamilton’s

original rule as a special case in which nonlinearities van-

ish, as in the work of smith et al. (2010).
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Appendix

Here, we are addressing the expression for the kth order

Taylor coefficient Gk of the function expða0 þ
a1x þ a2x

2Þ, and then investigate the monotonicity of

Gk. By using the analytical expression of the exponential

function, making use of the binomial theorem, and rear-

ranging the terms, we obtain

expða0þa1xþa2x
2Þ¼ expða0Þexpða1xþa2x

2Þ

¼
X1
k¼0

expða0Þ 1
k!
ða1xþa2x

2Þk

¼
X1
k¼0

expða0Þ 1
k!

Xk
j¼0

k

j

� �
ða1xÞk�jða2x2Þj

¼
X1
k¼0

Xk
j¼0

expða0Þ
k!

k

j

� �
a
k�j
1 a

j
2x

kþj:

(A1)

Let k � j = l and k + j = m. Then we have

expða0 þ a1x þ a2x
2Þ

¼
X1
m¼0

expða0Þ
X
l2Sm

1

ðmþl
2 Þ!

mþl
2

m�l
2

 !
al1a

m�l
2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gm

xm; (A2)
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where Sm is the set of all the odd integers ranging from

1 to m, if m is odd, and is the set of all the even integers

ranging from 0 to m, if m is even.

Or, explicitly

Gm¼ expða0Þ
Pk

s¼0
1

ðsþkÞ!
kþs
k�s

� �
a2s1 a

k�s
2 if m¼2k

expða0Þ
Pk

s¼0
1

ðsþkþ1Þ!
kþsþ1
k�s

� �
a2sþ1
1 ak�s

2 if m¼2kþ1.

(

(A3)

To investigate the monotonicity of Gm, we only need

to evaluate the difference between Gm and Gm�1. Since

there are different expressions of Gm for even m and odd

m, we need to address G2kþ1 � G2k as well as

G2k � G2k�1. For G2kþ1 � G2k, we have

G2kþ1 � G2k ¼
Xk
s¼0

expða0Þ
ðk� sÞ!ð2sþ 1Þ! a

2s
1 a

k�s
2 ða1 � ð2sþ 1ÞÞ:

(A4)

When a2 is sufficiently small compared to a1, the

right side of equation A4 is determined by the term

without a2, and the above difference can be approxi-

mated by

G2kþ1 � G2k � expða0Þa2k1
ð2kþ 1Þ! ða1 � ð2kþ 1ÞÞ; (A5)

Similarly, we have that G2k � G2k�1 � expða0Þa2k�1
1

ða1 � 2kÞ=ð2kÞ! These are consistent with equation 4.

Therefore, by the same arguments, Gm has a maximum

around a1, provided the linear term a1 is positive and the

quadratic term a2 is much smaller than a1.
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