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Decades of research and development have allowed liquid chromatography (LC) 
to become the reliable and robust technique that we know today. This has paved 
the way for the development of increasingly advanced two-dimensional LC (2D-LC) 
methods with increased peak capacities, better use of mass spectrometry (MS), 
and new opportunities such as in-line reactions (1). For complex samples a 2D-LC 
method can be much faster than a one-dimensional (1D)-LC counterpart (2,3).

The development of 2D-LC has largely been driven by the growing 
interest of society and industry in understanding the increasingly complex 
and diverse samples, each with their own challenges associated. 

The need to implement more powerful separation technologies is growing 
faster than the number of qualified users of multidimensional chromatography. 
The leading cause hampering further proliferation is the considerable amount 
of resources required for method development. This task is ever more 
daunting as method parameters are numerous and often interdependent, 
increasing the experience required to use all capabilities effectively. 

This is illustrated in Figure 1, where the technological complexity (that is, the cost) 
is sketched against the information density (the benefit). There is a disproportionate 
increase in resources required to obtain further information. State-of-the-art separation 
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Liquid chromatography (LC) is the single largest analytical field in terms of people involved and money spent.  
LC is crucial for almost all public and private sectors and the technique has seen tremendous technological 
advancements. Nevertheless, separations are often performed under suboptimal conditions and technological 
capabilities remain unused. Because expert knowledge and method development time are increasingly scarce, 
methods are often inefficient. Exploiting the full technological capabilities of liquid-phase separation technology 
requires deep knowledge and great time investments. Method optimization strategies that can simultaneously 
optimize the large number of parameters involved are therefore of great interest to chromatographers.  
This review examines different workflows that have been designed and used to facilitate and/or automate 
method development. In particular, focus is paid to the implementation of computer-aided workflows for the 
optimization of kinetic and thermodynamic parameters in LC, as well as on the possibilities to conduct this in a 
closed‑loop fashion. Finally, the opportunities to use machine learning to achieve these goals is addressed.

KEY POINTS
•	 Computer-aided method 

development is essential to 
fully exploit the technological 
capabilities of 1D- and 2D-LC.

•	 Automated LC method 
development workflows are 
rapidly advancing through the 
implementation of chemometric 
and machine learning algorithms.

•	 Progress towards closed-loop 
interpretive method development 
algorithms is discussed.
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technology such as 2D-LC can only make 
an impact if it can be efficiently employed. 

To facilitate this, researchers worldwide 
have been designing strategies with 
software to simplify method development 
(4–6). These and other method 
development and optimization strategies 
capitalize on theoretical understanding to 
simplify the method development process, 
as well as maximize its potential— 
similar to the motto “work smarter, not 
just harder” (7). This review will map 
the method development process 
and identify categories of parameters 
that can be targeted. Different method 
optimization approaches that simplify or 
even automate sections of this workflow 
will then be examined. Finally, the 
opportunities to use machine learning to 
achieve in this context will be addressed.

Objectives of Chromatographic 
Method Development
Chromatographic method development 
is affected by the aim of the method. The 
optimization approaches for LC method 
development can be roughly classified 
as targeted and untargeted (8). Targeted 
approaches focus on specific analytes, 
whereas untargeted methods attempt to 
characterize the entire sample. This article 
will focus on untargeted methods, as 
targeted methods tend to have dedicated 
goals that cannot easily be generalized.

Generally, an analyst will start method 
development by using any information 
available on the sample chemistry, for 
example, Giddings’ sample dimensions 
(9), literature, and other resources 
to select an initial column (often a 
general-purpose column available in 
the laboratory) and generic method 
parameters (a generic linear gradient).

After the initial instrument parameters 
are established, the method can be 
evaluated based on its ability to provide 
the required critical information. When 
the method does not provide this 

information, method parameters can 
be adjusted to improve the method. 
This process is generally termed 
optimization. In chromatographic 
literature, the term optimization often 
represents divergent intentions based 
on the objective and the stage of the 
method development process. Indeed, 

“optimization” can refer to sample 

preparation (10), kinetic parameters 
that affect efficiency (11), the selection 
of a suitable stationary-phase chemistry 
(12), a reduction in analysis time (8), 
and so on. The common denominator 
in each case is that method 
parameters are adjusted with the aim 
of obtaining the desired information 
more effectively. Typically, this 
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is evaluated through metrics that quantify the quality 
of separation, also known as quality descriptors.

To maximize the ability of a method to characterize  
a sample, untargeted approaches are often driven  
by such quality descriptors. For example, in the case  
where an analyst encounters a chromatogram saturated  
with peaks, maximization of the peak capacity (that is,  
the number of peaks that can be separated by the 
method) can be employed as a quality descriptor.

Untargeted optimization suffers from the vast number 
of adjustable parameters and the large interdependence 
between these. It is inherently difficult to predict whether a 
change in parameters will result in an improved method. 
Improving one metric (analysis time) may result in worsening 
another metric (resolution). Computer-aided development of a 
chromatographic method thus requires a balanced approach.

Resolution to Adjust a Chromatographic Method: 

One useful quality descriptor that quantifies the 
degree of separation, yet also instructs on possibilities 
to improve it, is the resolution (equation 1):

RS = 
tR,2 – tR,1

2σ1 + 2σ2
                                  [1]

Here, the separation between analytes 1 and 2 is 
expressed with tR and σ representing the retention time 
and peak standard deviation. When assuming that both 
analytes experience a similar column efficiency (that is, 
N1 = N2), we can re-write equation 1 as follows (13):

RS = •
N
2

•
α–1
α+1

k
1+k                               [2]

Now, we have resolution quantified as the product of 
three contributions: efficiency (N), selectivity (α), and 
average retention factor (k). Equation 2 demonstrates 
that the only means to adjust the separation is to change 
something within either of these three parameters.

At this point, it is important to acknowledge the significance 
of sample preparation and the crucial effect this has on the 
method development workflow. Sample preparation tends 
to be highly sample dependent, and it has been extensively 
treated elsewhere (14,15). It is outside the scope of this review. 

Equation 2 can be schematically expressed in the context of 
method development workflows as depicted in Figure 2, which 
represents a typical case often faced by chromatographers. After 
having used their experience to select an appropriate column and 
initial method parameters, chromatographers are recommended 
to first adjust the method conditions by altering thermodynamic 
parameters that affect retention and selectivity. For example, they 
may change the gradient program or—if necessary—adjust 
the selectivity dramatically by selecting a different column or 
mobile-phase chemistry. Finally, they may opt to improve the 
efficiency or analysis time of the method by regarding the kinetic 
parameters. Different approaches that have been developed 
to facilitate method development through automated workflows 
or chemometrics will be reviewed in the following sections.

Kinetic Parameters
Improving the efficiency (that is, the theoretical plate 
number) of the separation provides a clear metric relevant 
to method optimization, as it increases the peak capacity 
for the separation and decreases the likelihood of coelution. 
For 1D-LC it is possible to predict how different parameters 
will affect the efficiency. Another method is the use of kinetic 
plots (16). However, the square-root dependence of Rs on 
N implies a rapidly diminishing return on investment.

In comprehensive two-dimensional liquid chromatography 
(LC×LC), kinetic optimization schemes can be applied to 
substantially improve the method. This is attributed to the 
additional parameters, including the second-dimension (2D) 
column dimensions, and phenomena such as under-sampling 
(of the 1D effluent) and 2D sample-dilution (17). Vivo-Truyols et al. 
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FIGURE 1: Sketch illustrating the disproportionate increase 
in technological complexity (cost) to acquire more information 
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proposed the use of sample-independent 
Pareto optimization (PO) for LC×LC (18). 
In this chemometric-driven approach, 
multiple method parameters (column 
dimension, flow rates, gradient slope) 
were varied and the effects thereof were 
evaluated using (theoretically related) 
quality descriptors such as peak capacity, 
analysis time, and dilution factor.  
The authors demonstrated that optimizing 
the kinetic parameters can be highly 
rewarding and that this approach is suited 
to deal with trade-offs between different 
objectives. The PO method provided 
optimal values for a large number of 
parameters, including 1D and 2D particle 
sizes and column diameters, while taking 
into account pressure restrictions. 

This work was extended by the group 
of de Villiers (11,19,20), who applied the 
PO strategy for the chromatographic 
separation of a phenolic red-wine extract 
(19), implemented a predictive kinetic-
optimization tool for a hydrophilic interaction 
liquid chromatography×reversed-
phase liquid chromatography 
(HILIC×reversed‑phase LC) separation 
of procyanidins (11), and used the 
same tool to compare reversed‑phase 
LC×HILIC and HILIC×reversed-phase 
LC for phenolic analysis (20). In all 
cases, optimization of kinetic parameters 
provided higher peak capacities and 
produced valuable knowledge on the 
influence of under-sampling, dilution 
factors, and band broadening. 

Thermodynamic Parameters
Selectivity in liquid chromatography 
is influenced by the thermodynamic 
parameters related to analyte interactions 
with the mobile and stationary phases. 
Changes in mobile phase composition, 
gradient program, stationary phase 
chemistry, pH, or temperature can 
significantly affect the distribution of peaks 
in a chromatogram. While modifying 
the mobile phase, pH, or temperature is 

relatively straightforward in theory,  
in practice this may not suffice to meet the 
objectives of the separation. Changing 
the stationary phase in principle requires 
a re-optimization of the mobile phase, 
making it more expensive in terms of effort 
(apart from the column cost), but generally 
provides broader changes in selectivity. 

Various strategies and workflows 
have been described to select 

appropriate chemistries for both 
the mobile and stationary phases 
in LC. One such strategy involves 
optimizing the parameters through a 
Design‑of‑Experiments (DoE) workflow, 
in which sets of parameters (for example, 
mobile phase, temperature, pH) are 
varied and an extensive screening is 
performed, often on multiple columns, 
to determine the optimum approach. 
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Similar approaches are commonly 
used in the industry (21). They may be 
efficient in terms of manpower required, 
but can be quite inefficient in terms 
of numbers of measurements, time, 
solvents, and instruments required. 

For column selection, stationary phase 
characterization methods aim to simplify 
the end user’s choice of stationary 
phases based on characterizing the 
physicochemical interactions with 
small-molecule probes. For an extensive 
review the reader is referred elsewhere 
(22). The best-documented example 
is the hydrophobic subtraction model 
(HSM) developed by Snyder, Dolan, and 
co-workers, which may be used to select 
columns with different selectivity (23). 

Recently, workflows have emerged 
related to selectivity screening for 2D-LC 
method development. For example, 
Zhang et al. developed a multiple 
heart‑cut 2D-LC setup for pharmaceutical 
purity testing that enabled automated 
screening of the 2D selectivity (24).  
In other work, Wang et al. (25) used an 
automated column screening framework 
for analyzing chiral and achiral impurities, 
with online multiple heart-cutting 2D-LC; 
in a similar study, Zhang and co-workers 
described fast chiral and achiral profiling 
of compounds with multiple chiral centres 
by an LC–multicolumn-LC approach 
(26). Together with automated data 
acquisition, these workflows constituted 
a step forwards, but interpretation and 
processing of the data are still dependent 
on manual input and user experience.

Interpretive Automation
In an ideal scenario, a method 
development workflow must be capable 
of integrating all previously discussed 
parameters and optimizing these in an 
automated and interpretive manner.  
In this context, the word interpretive 
implies that the chromatograms are 
interpreted as a result of the elution of 

the individual analytes. In the workflow 
the peaks should be tracked and simple 
models may be established for each 
analyte—all of this in an unsupervised 
and automated manner. Based on the 
analyte models, many chromatograms 
can be simulated and the objective 
function can be optimized. Such a method 
development workflow has the potential to 
minimize manual input and the expertise 
required for developing complex methods.

Bos et al. developed the AutoLC 
approach, in which the mobile phase 
gradient was optimized in a closed‑loop 
fashion (27). Based on an earlier 
theoretical LC×LC proof-of-principle 
study (28), and the pioneering work 
of Dolan and co-workers (29), Bos et 
al. designed an algorithm that could 
accommodate different chemometric 
optimization strategies. Two examples 
were presented: one using empirical 
retention modelling, and one using the 
machine-learning Bayesian optimization 
technique. In both cases, the algorithm 
developed multi-segment gradient 
programs to optimize the retention 
and selectivity of separations of a 
monoclonal antibody digest by LC–MS. 

The examples above demonstrate the 
possibility of including computer‑assisted 
optimization strategies for kinetic 
and thermodynamic parameters 
in automated workflows. However, 
despite the significant progress made, 
three major challenges remain that 
need to be addressed to achieve a 
closed-loop, interpretive algorithm for 
developing LC methods in a completely 
unsupervised and automated manner. 

The first and arguably most important 
challenge is to define quality descriptors 
that can assess the quality of a separation. 
The success or failure of the optimization 
process critically depends on the 
objective function. The latter depends 
on quality descriptors that, in turn, may 
depend on chemical and physical 

parameters. The objective function serves 
as the primary driving force for every 
algorithm. Single-number descriptors, 
known as chromatographic response 
functions (CRFs), have been developed 
to quantify the critical information that 
the method is intended to provide. 
Various CRFs have been proposed in 
the past (30). Although many CRFs exist 
for 1D-LC, few are available for 2D-LC 
(31–36). Alvarez-Segura and co-workers 
recently included peak prominence in 
their CRF (33,34), Huygens et al. (35) 
introduced a CRF for 2D-LC based 
on peak purity, and Boelrijk et al. (36) 
presented a CRF based on connective 
components in graph theory to assess 
both separation quality and time. It has 
also been demonstrated that the selection 
of inappropriate quality descriptors 
can lead to suboptimal separations 
(27). Therefore, it is crucial to create 
CRFs that can effectively weigh quality 
descriptors, while the program provides 
quantitative information regarding various 
practical aspects of analytical queries, 
such as method time and sensitivity. 

The second challenge is related to 
the data processing. The quality of the 
output of an algorithm relies strongly on 
the input data and the data processing. 
Any error in background correction, peak 
detection, or peak tracking can lead 
to cascading errors in later iterations 
(27). While MS provides information 
to reduce the errors in 1D-LC, data 
processing remains a significant 
challenge for LC×LC. This is especially 
the case for peak tracking, where an 
algorithm must establish the location 
of each analyte across multiple signals 
and account for incorrect clustering of 
coeluting peaks (37,38). In addition, it 
is difficult to quantitatively compare the 
performance of the large number of data 
processing approaches available (27,39). 

The third challenge concerns the 
computation costs associated with the 
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large number of simulations and the 
number of parameters that need to be 
optimized. Improving the performance 
of the algorithm either requires more 
measurements or more simulated 
data that resemble the experiments 
more closely. The former increases 
the amount of time and solvent 
needed, while the latter requires more 
computational power. Machine learning 
techniques may be employed to reduce 
the computation time required.

Machine Learning 
Interest in machine learning methods 
is rapidly gaining momentum in the 
field of chromatography (7). The 
increasing computational power 
available, combined with the demand 
for advanced simulation tools, has led 
to the exploration of machine learning 
approaches for accelerated method 

development (40,41). Machine learning 
has the potential to enhance various 
stages of the chromatographic-analysis 
workflow, including baseline and 
noise correction (42), retention-time or 
retention-index prediction (43–45), peak 
detection (46,47), peak annotation (48), 
and classification (49). This section 
will focus on the utilization of machine 
learning to optimize the gradient 
program, which frequently relies on 
several of the aforementioned stages.

One type of machine learning is  
artificial neural networks (ANNs).  
The application of neural networks in 
chromatography has been explored 
in the past (50–53). In a recent study, 
Kensert et al. (42) investigated the 
potential use of reinforcement learning 
for selecting optimal isocratic scouting 
runs for retention modelling. The neural 
network was trained on simulated data 

using a Q-Learning algorithm and 
evaluated based on the accuracy of the 
retention predictions for 57 small-molecule 
analytes in situ experiments. While the 
work is promising, the algorithm from this 
study has only been tested on isocratic 
data for a specific reversed-phase LC 
setup with a limited number of simplistic 
molecules. A downside of the use of 
artificial neural networks is that they 
require a large amount of data for training. 
This can be mitigated with simulated 
data, but this carries a risk of the model 
not capturing the actual chromatographic 
space with sufficient accuracy (46). 

Several authors have explored the 
potential of evolutionary algorithms 
to optimize gradient profiles (35,54). 
In particular, Hao et al. (54) used a 
genetic algorithm to optimize multi-linear 
gradient profiles for the separation of 
lignin‑degradation products.  
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They validated their simulations 
by comparison with experimental 
measurements and found good 
agreement. Huygens et al. (35) 
investigated evolutionary strategies 
for optimizing 1D and 2D separations 
through in silico experiments of an 
LC×LC separation of 100 experiments. 
Their genetic algorithm required 
less than 100 experiments to reach 
a better CRF than a grid search of 
625 experiments. This suggests 
that evolutionary algorithms have 
the potential to guide search‑based 
method development, accelerate 
computational model-based 
method development, and deal with 
many parameters simultaneously. 
However, the authors simplified 
the experimental conditions by 
assuming perfect orthogonality, 
equal concentrations, and perfect 
Gaussian peaks. This raises concerns 
over the risk of oversimplification 
and the underutilization of 
the full range of variations in 
chromatographic conditions, as can 
also occur with neural networks.

One of the biggest limitations 
of applying machine learning is 
the required amount of data. An 
emerging optimization method that 
is less dependent on the amount of 
input data is Bayesian optimization, 
a type of machine learning tool that 
can optimize expensive‑to‑evaluate 
functions (expensive in terms of 
computation cost), even when there 
is a low amount of data available. 
Due to the compatibility with black 
box functions, only the score itself 
needs to be ascertainable, while the 
underlying mechanics or processes do 
not necessarily need to be understood 
or known. Boelrijk et al. investigated 
the potential use of Bayesian 
approaches for LC×LC in silico (36); 
they developed an unsupervised 

closed-loop algorithm to predict 1D-LC 
gradient profiles for a complex dyestuff 
mixture (55) and compared Bayesian 
optimization to retention modelling 
for automated method development 
(27). These studies demonstrated the 
versatility of Bayesian approaches and 
highlighted their applicability in method 
development workflows, with the added 
benefit of being less reliant on retention 
models and peak tracking. However, a 
potential limiting factor for LC×LC is 
the maximum number of parameters 
that can be optimized simultaneously. 
Due to the multivariate nature of the 
method, the number of necessary 
measurements for each additional 
parameter increases exponentially. 
The authors emphasized that the 
efficiency of Bayesian optimization is 
heavily dependent on the accurate 
definition of the objective function. 

Machine learning approaches show 
tremendous potential to optimize 
the gradient program, yet the most 
advanced applications often have 
limitations that render them unsuitable 
for widespread use. This is partly due 
to the fact that these models can only 
handle scenarios that were present 
in the training data. Insufficient data 
can stem from a lack of appropriate 
standards or from insufficient 
resources to perform all the necessary 
measurements. One way to alleviate 
this issue is by employing simulated 
data, but this approach only works 
effectively if the simulated data closely 
resemble real‑world situations, which 
is frequently not the case. With the 
rapid advancements in the field 
of machine learning, the issues 
currently encountered are expected 
to be addressed in the near future. 

The Need for a Combined Effort
Driven by the ever-increasing need 
for more information, separation 

technology is advancing faster than 
our ability to use it to its full potential. 
Despite the enormous size and 
importance of the field, separations 
are often performed under suboptimal 
conditions and technical capabilities 
remain unused. For advancements 
in LC, such as 2D‑LC, to make a 
significant impact, it is imperative 
that our community develops tools 
to fully exploit the current potential.

To this end, the chromatographic 
community must continue to deepen 
its understanding of fundamental 
concepts. This review has underlined 
the huge benefits and impressive 
advancements by scientists who have 
developed tools to streamline method 
development, focusing on kinetic or 
thermodynamic parameters—or both. 
Many of these advances are expressed 
as improved method development 
workflows that capture the experience 
and knowledge of the chromatographer.

However, the chromatographic 
community cannot do it alone. Indeed, 
we need the help of computers and 
information sciences. Automated 
LC method development workflows 
are rapidly advancing through the 
implementation of chemometric 
and machine learning algorithms. 
Nevertheless, despite the potential and 
promise of such algorithms to expedite 
method development, the challenges 
are still daunting and require a 
combined effort by the chromatographic 
and chemometric communities. Better 
ways must be found to mathematically 
express the chromatographic end 
goals, improve data analysis (peak 
detection), and invent smart algorithms 
that can interpret chromatographic 
data and combine these with 
fundamental kinetic (kinetic plots) 
and thermodynamic (retention 
models) concepts to create better 
methods. Meanwhile there is also the 
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continuous need for chromatographers 
to deepen the understanding of 
physicochemical interactions of 
analytes inside our columns. The 
use of machine learning has recently 
been demonstrated by several groups 
to show great promise (35,55). 

From the above-mentioned strategies 
it is clear that optimization workflows, 
especially for selectivity, remain heavily 
dependent on prior knowledge of 
the sample dimensionality or a trial-
and‑error approach. New machine 
learning algorithms should be able 
to optimize more parameters without 
needing unreasonable amounts of 
data. Other approaches may entail 
optimizing subsets of parameters at 
a time to lower the dimensionality of 
the problem or combining retention 
modelling with machine learning; in 
that way, aspects that can be well 

described do not need to be captured 
in the machine learning models. The 
practical challenges are mostly on the 
required number of measurements 
or computations. Every optimization 
process is quicker when starting with 
a good setup. By scanning various 
columns at the start, a good estimate 
can be made of which columns 
show potential and are candidates 
for orthogonal separation in 2D-LC. 

Computer-aided method development 
for LC has been under development 
for some four decades and it has 
failed to become common practice. 
However, with the rapid advances in 
LC, the gap between contemporary LC 
practice and potential has grown to a 
point where computer-aided method 
development is becoming a must. This 
need, in combination with the enormous 
growth in computational power and 

the dramatic advances in artificial 
intelligence, suggests that the time 
has come for computers to outperform 
analysts in LC method development.
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