Trade-offs to win-win
Krishnaswami, V.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of acronyms

1. **ADC**: Analog to digital converter
2. **AIM**: Active (or adaptive) illumination microscopy
3. **AOTF**: Acousto-optic tunable filter
4. **AOM**: Acoustic optical modulator
5. **AU**: Airy unit
6. **CCD**: Charge coupled device
7. **CGF**: Conversion gain factor
8. **CLEM**: Controlled light exposure microscopy
9. **CLSM**: Confocal laser scanning microscopy
10. **CRLB**: Cramer-rao lower bound
11. **CS**: Compressed sensing
12. **DMD**: Digital micromirror device
13. **DSLM**: Digital Scanned Laser Light-Sheet Fluorescence Microscopy
14. **EMCCD**: Electron multiplying charge coupled devices
15. **ENF**: Excess noise factor
16. **FA**: Feedback active
17. **FF**: Fill factor
18. **FLIM**: Fluorescence lifetime imaging measurement
19. **FPN**: Fixed pattern noise
20. **FPGAs**: Field programmable gate arrays
21. **HDR**: High dynamic range
22. **HyDs**: Hybrid detectors
23. **ICs**: Integrated circuits
24. **MLE-PAM**: Minimized light exposure programmable array microscope
25. **NA**: Numerical Aperture
26. **PALM**: Photoactivated localization microscopy
27. **PAM**: Programmable array microscope
28. **PDE**: Photon detection efficiency
29. **PDP**: Photon detection probability
30. **PID**: Proportional integral derivative
31. **PL**: Power limited
32. **PSF**: Point spread function
33. **QE**: Quantum efficiency
34. **RCM**: Rescan confocal microscopy
35. **REScue STED**: Reduction of excitation and signal suppression cycles
36. **RF**: Redistribution factor
37. **ROS**: Reactive oxygen species
38. **SCIM**: Spatially-controlled illumination microscopy
39. **sCMOS**: Scientific complementary metal oxide semiconductor
40. **sGFP**: Superfolder green fluorescent protein
41. **SF**: SCIM factor
42. **SIM**: Structured illumination microscopy
43. **SLM**: Spatial light modulator
44. **SNR**: Signal-to-noise ratio
45. **SPAD**: Single-photon avalanche diode array
46. **SPIM**: Selective Plane Illumination Microscopy
47. **STED**: Stimulated emission depletion
48. **STORM**: Stochastic optical reconstruction microscopy
49. **TIRF**: Total internal reflection fluorescence
50. **TLS-SPIM**: Tiling Light-Sheet Selective Plane Illumination Microscopy
Summary

“Seeing is believing” is a popular idiom, coined in the 17th century. Microscopy enables the visualization of entities that are not visible to our naked eye. The world’s first microscopes were built in The Netherlands during the period between 16th-17th century, notably by Zacharias Janssen, Hans Lippershey, Jan Swammerdam, and Antonie van Leeuwenhoek. At that time, images were manually sketched, by microscopists to study the underlying structures which were visualized with a microscope. Today, microscopy has grown leaps and bounds with the development of optics, sensors and computer technology.

There are two main branches in microscopy, namely electron microscopy and optical microscopy. In optical microscopy, light is used for imaging. It can be combined with fluorescence imaging, where fluorescent probes are tagged onto specific structures of biological specimens. Consequently, imaging of living and fixed biological specimens can be performed with a high degree of specificity. Imaging is performed by illuminating the specimen to cause excitation of fluorescent molecules that leads to the generation of fluorescence emission signal. This signal is captured by a sensitive camera or detector to obtain an image that represents the fluorescence distribution in the specimen. The image quality is determined by the amounts of signal captured during imaging. Therefore, greater amounts of fluorescence excitations leads to improved image quality. The flipside of greater fluorescence excitations is the occurrence of photodamage, which includes both phototoxicity and photobleaching. Photodamage occurs when toxic reactive oxygen species are created.
during imaging, reacts with the fluorescent specimen leading to loss in fluorescence signal and/or death of the specimen. This leads to a trade-off between image quality and photodamage. This can be addressed by improving imaging sensitivity which enables the extraction of the spatial information of the specimen with optimal number of fluorescence excitations during imaging.

Conventional fluorescence imaging methodology involves the application of spatially-uniform illumination with a fixed intensity level. Therefore, number of unnecessary fluorescence excitations can occur during imaging. For example, fluorescence excitations that occur outside the focus plane for imaging can be deemed unnecessary. Such excitations do not contribute to image quality but can lead to the occurrence of photodamage. With little control of the illumination process, the overall amounts of fluorescence excitations can either be increased or decreased by changing the fixed intensity level used for illumination. Therefore, a more ‘smart-imaging’ paradigm can be useful for fluorescence imaging.

In this thesis, chapter 2 reviews the concepts of ‘spatially-controlled illumination microscopy’ (SCIM) which adopts the application of spatially-variable illumination with multiple or fixed intensity levels for imaging. Using this technique, the overall illumination levels and hence the fluorescence excitations can be reduced to limit photodamage without compromising the image quality.

Chapter 3 and 4 of this thesis focuses the implementation of SCIM in rescan confocal microscopy (RCM) for improving imaging sensitivity. RCM
is an improved confocal microscopic technique, that is capable of achieving optimal lateral resolution with an open pinhole configuration thereby enabling greater amounts of signal detection. Therefore, imaging can be performed with reduced illumination levels. In combination with SCIM, the illumination levels and hence the fluorescence excitations can be further reduced, without any compromise in the image quality. Hence, with constructive combination of SCIM and RCM imaging sensitivity can be improved.

Chapter 5 of this thesis demonstrates the applicability of SCIM imaging to not only limit photodamage, but also improve the image quality. Here, illumination levels are spatially-increased or spatially-decreased at different regions of the fluorescent specimen. The extent upto which the illumination levels are increased or decreased can be controlled by the user. It is shown that with spatial-control of illumination optimal amounts of fluorescence excitations can be achieved to both improve image quality and limit photodamage at the same time.

Chapter 6 of this thesis focuses on scope for improvements in detector/sensor technology for improving imaging sensitivity. The use of digital photon counting detectors, with single-photon sensitivity and zero read-out noise, its application for fluorescence microscopy, particularly in the context of super-resolution imaging is discussed.

Finally, in chapter 7, a discussion of SCIM technology, its advantages, limitations and future prospects are outlined.
Samenvatting

"Seeing is believing" is een populaire idioom, gecreëerd in de 17e eeuw. Microscopie maakt visualisatie mogelijk van entiteiten die niet zichtbaar zijn voor ons blote oog. De eerste microscopen ter wereld werden in de 16-17e eeuw gebouwd in Nederland, voornamelijk door Zacharias Janssen, Hans Lippershey, Jan Swammerdam, and Antonie van Leeuwenhoek. Op dat moment werden beelden nog vaak handmatig geschetst door microscopisten om de onderliggende structuren te bestuderen die de microscoop visualiseerde. Tegenwoordig is microscopie sterk geëvolueerd aan de hand van de ontwikkeling van optica, sensoren en computertechnologie.

Er zijn twee hoofdtakken in microscopie, namelijk elektronenmicroscopie en optische microscopie. Bij optische microscopie wordt licht gebruikt voor beeldvorming. Het kan gecombineerd worden met fluorescentie beeldvorming, waar fluorescerende labels specifieke structuren van biologische samples aankleuren. Hierdoor kan beeldvorming van levende en gefixeerde biologische samples met een hoge mate van specificiteit worden uitgevoerd. Beeldvorming wordt uitgevoerd door het sample te belichten waardoor excitatie van de fluorescerende moleculen wordt veroorzaakt die leiden tot een fluorescent emissiesignaal. Dit signaal wordt gemeten door een gevoelige camera of detector voor het verkrijgen van een afbeelding die de fluorescentieverdeling in het monster vertegenwoordigt. De beeldkwaliteit wordt bepaald door de hoeveelheid signaal dat wordt opgevangen. Daarom leidt een grotere hoeveelheid fluorescentie excitaties tot verbeterde beeldkwaliteit. De keerzijde van
veel fluorescentie-excitaties is het optreden van fotoschade, die zowel fototoxiciteit als fotobleking omvat. Fotoschade treedt op wanneer toxische zuurstofradicalen worden gevormd. Deze reageren met het fluorescerende sample en leidt tot verlies in fluorescentiesignaal en/of dood van het levende biologische sample. Dit leidt tot een afweging tussen beeldkwaliteit en fotoschade. Dit kan worden aangepakt door een nieuwe methode die gebruikt maakt van de ruimtelijke verdeling van de fluorescentie, waardoor een optimaal aantal fluorescentie-excitaties tijdens beeldvorming mogelijk is.

In dit proefschrift beschouwt hoofdstuk 2 de concepten van 'ruimtelijk gecontroleerde belichtingsmicroscopie' (SCIM) over de toepassing van ruimtelijk-variabele belichting met meerdere intensiteitsniveaus in beeldvorming. Met behulp van deze techniek wordt het totale belichtingsniveau en dus de fluorescentie-excitaties worden verminderd.
waardoor fotoschade wordt beperkt zonder de beeldkwaliteit in gevaar te brengen.

Hoofdstuk 3 en 4 van dit proefschrift richten zich op de toepassen van SCIM in ‘Rescan’ Confocale Microscopie (RCM) om de beeldgevoeligheid nog verder te verbeteren. RCM is een verbeterde confocale microscopische techniek, die in staat is om een optimale laterale resolutie te bereiken met een open ‘pinhole’ configuratie waardoor een grotere hoeveelheid signaal detectie mogelijk is. Hierdoor kan beeldvorming worden uitgevoerd met verminderde belichtingsniveaus. In combinatie met SCIM kunnen de belichtingsniveaus en dus de fluorescentie-excitaties verder worden verminderd, zonder verlies in de beeldkwaliteit. Dus met een constructieve combinatie van SCIM en RCM beeldgevoeligheid kan worden verbeterd.

Hoofdstuk 5 van dit proefschrift toont aan dat SCIM imaging niet alleen toepasbaar is om fotoschade te beperken, maar ook om de beeldkwaliteit te verbeteren. Hier worden de belichtingsniveaus ruimtelijk verhoogd of ruimtelijk verlaagd in verschillende gebieden van het fluorescerende sample. De mate waarin de belichtingsniveaus worden verhoogd of verlaagd, kunnen door de gebruiker worden bepaald. Het blijkt dat bij ruimtelijke controle van belichting een optimale hoeveelheid fluorescentie-excitaties kan worden bereikt die tegelijkertijd de beeldkwaliteit verbeteren en fotoschade beperken.

Hoofdstuk 6 van dit proefschrift richt zich op mogelijkheden voor verbeteringen in detector/sensor technologie voor het verhogen van
beeldgevoeligheid. Het gebruik van een digitale fotonentellers, met een gevoeligheid van één foton en zonder ruis, wordt getest in fluorescentiemiicroscopie, in bijzonder in het kader van super-resolutiebeelden.

Ten slotte worden in hoofdstuk 7 een discussie over SCIM-technologie, de voordelen, beperkingen en toekomstperspectieven uiteengezet.
Acknowledgements

In accordance to the ancient Indian saying, “माता, पिता, गुरु, देवम्”, I offer my first salutations to my mother, father and advisors for their guidance over the years. I express my profound gratitude to Dr. Ron Hoebe for his trust, time, advice and efforts to help me grow as a scientific researcher. Our cordial working-relationship has been marked with patience, encouragement and discussions where scientific agreements and disagreements have always resulted in constructive conclusions. I am always indebted to you for entrusting me to pursue research after my post graduation. Many thanks for establishing a positive, free-thinking research environment for me. I thank Prof. Ron van Noorden for his faith in me, encouragement and feedback on a consistent basis during the course of my research. The timely inputs that I have received for all my manuscripts and thesis chapters have been invaluable. I specifically thank you for your support and patience during the finalization of my thesis. I thank Dr. Erik Manders for monitoring the progress of my research and ensuring adequate permissions, financial grants to support my research work. I am also grateful to you and Dr. Matt Fishburn for helping me pick up my presentation skills. I thank Prof. Fred Brakenhoff, Dr. Hans van der Voort, Dr. Sjoerd Stallinga, Dr. Bernd Rieger, Prof. Kees Jalink, Prof. Edoardo Charbon, Dr. Claudio Bruchcini, Dr. Matt Fishburn, Dr. Yuki Maruyama, Dr. Shingo Mandai, Dr. Eric Reits and Dr. Ard Jonker for their suggestions during the course of my research. I thank Dr. Mark Hink for giving me an opportunity to take part in teaching activities for the advanced microscopy course at University of Amsterdam. I thank Dr. Ingeborg Klaassen for giving me timely opportunities to present my research work at Tuesday morning meetings. I thank Casper Huijser, Laura Wind, Aly Eekhof, Nicole Vastenhout, Nienke Strik, Claudia Rhebergen and Monique Arendse for timely processing of my papers related to my employment contract, travel, visa and work permits.

I have also been fortunate to enjoy healthy collaborations with Ronald Breedijk, Giulia De Luca and Christiaan Zeelenberg at Science park. Ronald, you have been a source of knowledge and the man with the answers for numerous problems that I encountered during the course of my experiments. I’m afraid, that I just cannot thank you enough for all the help. Giulia, it has been my pleasure to know you well and work with you for SCIM-RCM. Credit to you for all the hard work, efforts and successful collaboration for SCIM-RCM. My best wishes and support are always with you and Tom. Christiaan, thank you for all the wonderful samples you
readily provided to me and more importantly the warm and friendly chats. All the very best for your thesis. Special thanks to Ron Hoebe, Jan Stap, Henk van Veen, Nicole van der Wel, Anita Grootemaat, Przemek Krawczyk, Carel Vanoven, Jacob Aten, Jakub Kohan, Emilie Desclos, Lianne Vriend and Irene van Dijk for all their support and stimulating conversations over a wide range of topics, during lunch time. Jan, you are a true source of inspiration. Your words of encouragement and motivation during the initial phase of my research is something that will always be etched in my memory. You are a very patient listener and I am thankful to you for helping me learn about the Dutch way of life, with a casual and friendly approach. This is something that I will take with me forever, so thank you very much. Henk, I have enjoyed a lot of conversations with you over the years. Thanks a lot for the sailing experience and pushing me to learn swimming. Nicole and Anita I will always remember your support during my tough times and also for the warm conversations, so thank you very much. Przemek, it has always been my pleasure to interact with you and thanks for all the BBQs. Carel, it was so wonderful to explore The Netherlands with you from steam trains across the country, thank you for the company.

Kuba and Emilie, you guys are great paranymphs. Kuba, your support especially during the last phase of my research has been invaluable. Thank you for being there as a true friend, giving me your honest opinions, both good and bad. I particularly enjoyed the stimulating scientific and non-scientific discussions we have had over the last few months. I will certainly cherish your friendship for long. Emilie, I would like to specifically thank you for your enthusiasm and inputs as my paranymph. It was really nice to learn about your travel and work experiences, particularly about wine. Lianne and Irene, thank you for making M3-132 a very special place for me, filled with loads of conversations and memories that last forever. Lianne (Dr.doc), you have been a good friend, thanks for convincing me to drink tea with water, papernoten, all the ‘lekker ei-vrij taarten’ and many more. Irene (Miss Misschien), thanks for all your support and encouragement since the beginning of my research. Marcel Teunissen, Arthur Kammeyer, Wikky Tigchelaar, Jannet Pankras, Alicia Sanz Sanz, Bahar Arik, Karen Sap, Sabina Krom, Anne Jansen, Jolien Jansen, Anna eva van der Wijk, Fumei redeker and Julia Raaijman, thank you for all the chitchats, mostly during our walks to the train station or deperatment events, it has been my pleasure. Daisy, thank you for all the help, warm and friendly chats. Per, thank you for bringing in chocolates and more importantly the laughs. Notably, thanks for pulling me out of water at the polder! I also thank all the other members of the department for their warm and friendly smiles.
Katrine Tvede, Lina Bartels, Nishant Kumar and Mi Nyungen, thank you for being a part of all my memorable moments here in Amsterdam. Our fun-filled journey from ‘Ondersp’ to the innumerable number of outings and activities have been such a pleasure, so cheers for our friendship. Fitsum Emha, Eyuel Debebe, Rufael Mekuria, Oriol Lloberas Valls, Nishant Kumar, Nijesh James, Ahmad Shazad, Angelo Romano, Giacomo Bonicelli, Abilash Ravi, Matteo De Pastena, Laurens, Aravindhan Varadharajan, thank you for all the support. Fitse, Eyyul and Rufael, you guys have always stood by me especially during my difficult times. I am always grateful to you guys for that. Ahmad bhai, Angelo and Giacomo thank you for all the pleasant conversations at Ennemaborg. Abilash and Matteo, what a wonderful time we had, courtesy the legendary Arsene Wenger, the long cooking sessions, Sherlock and many more, so thank you for all that. Uday Balasubramanian, you are perhaps the best South Indian cook that I know in Amsterdam. Thank you for all those awesome cooking and movie nights!

Daryl Savio, Krishna Teja, Raghavendran Sivakumar, Badri Narayanan, Vaibhav Kumar, Vishwas Jain, Meenal Jain, Nimitt Bhatt, Mansi Bhatt and Nishant Kumar, we are so often in contact and have known each other for several years, that I do not find the need to explicitly say “thank you”. You guys will always have my highest regard for everything you are and do, may the friendship last forever! I also thank my friends at TU Delft, Dmitry Burlyaev, Venkatasubramanian Viswanathan, Srinivasan Yadhunathan, Chokkalingam Veerappan and Aravindh Vasudevan for their support. I thank all my friends at SASTRA University-the RLV gang, for their support. I express my gratitude to the teachers at my school who have been instrumental in my younger days. In particular, I thank James sir and Pragash sir for inspiring me to pursue a career in engineering and research during my younger days. I thank Dr. Venkatesh Seshan and my cousin Dr. Venkatraman Iyer for mentoring and guiding me over the years on several fronts and advice on resolving complex issues.

I have been quite fortunate to be a part of a family where I can afford to take their never ending support for granted. I express my deep sense of regards and good wishes particularly to my younger brother, Chidambaressan whose relentless support has and will continue to be the pillar of my strength. Salutations to my late, dear grandparents who have been very influential in my life. I thank all my relatives, members of the extended family and friends for all the unconditional love, affection and blessings they have showered on me over the years. Finally, I thank all those names that I may have unknowingly missed in this acknowledgement for their support and good wishes.
List of publications

