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Exploring instabilities of bad

metals with optical spectroscopy.

What happens when a near in�nity of electrons is con�ned to a periodic potential, inter-

acting with each other under the in
uence of the Coulomb interaction? This question

has captivated generations of condensed matter physicists, from both the experimental

and theoretical persuasion, and the answer appears to be `unpredictable'. In the past

century, the condensed matter community has discovered that many di�erent `ordered'

states can emerge out of the quantum soup made from interacting electrons.

Famous examples of such ordered quantum states are magnets and superconductors.

Magnets are probably most easily imagined by the human mind and are microscopi-

cally often represented as a pattern of small magnets, all lined up periodically in space.

Quantum mechanically, this description is already not completely correct as the `order-

ing' often really takes place in momentum space. In non-magnetic metals there is an

equal fraction of electrons with spin-up and spin-down. In magnets such as iron, a small

fraction of the electrons preferentially occupy momentum states with one particular spin

direction under the in
uence of the Coulomb repulsion. This results in a net magnetic

moment for the crystal as a whole, but the key point is that the electrons are in fact

completely delocalized over the entire crystal. The order of a superconductor is even

more di�cult to describe. In this case the electrons form so-called Cooper pairs (bound

states of two electrons) and the ordering takes place in the quantum mechanical phase

of the macroscopic wavefunction describing the whole ensemble of Cooper pairs.

In the �rst decade of the twenty-�rst century we have witnessed a remarkable turn in

our understanding of `order' and have possibly found a new method to classify elec-

tronic states of matter in general. Borrowing concepts from the mathematical theory

of topology (a framework to describe knots and twists using the abstract language of

mathematics), we have learned that macroscopic wavefunctions can be distinguished

using so-called topological invariants. In this language, variations of ordered states are

distinguished by di�erent values of such invariants. The most famous example of this is

the quantum Hall state, where abrupt changes in the topological invariant with magnetic

�eld result in sudden jumps in the conductivity.
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Summary

The importance of topological order and the role it plays in the formation of new ground

states of interacting electron systems is not exactly known, but is an active topic of

research and underlies the research presented in this thesis. In the past four years, I

have used optical spectroscopy to investigate two classes of materials that display phase

changes as function of temperature. Chapter 4 describes the optical properties of Co-

doped BaFe2As2, a member of a family of high temperature superconductors, known

as the iron-pnictide high Tc's, while chapter 5 concerns the correlated, and possibly

topological, Kondo insulator: SmB6.

The (low temperature) groundstate of these two materials is completely di�erent, but

at high temperature they are in some sense similar: both materials feature a strongly

temperature and frequency dependent optical response that has become known as a `bad

metal'. In `clean' metals one would expect a so-called Drude response for the optical

conductivity at low energy. The Drude response can be characterized by a frequency

and temperature independent scattering rate; an average time between collisions that

does not depend on temperature, indicating that the electrons behave as a gas of freely

moving particles. Instead, bad metals feature a strong temperature and frequency de-

pendent scattering rate indicative of residual interactions between the electrons. In such

materials, a careful analysis of the optical response not only provides �ngerprints of the

interactions responsible for the bad metal behavior, but also of the key driving forces

behind the instabilities that lead to the ordered electronic states at low temperature.

In this thesis I discuss how optical spectroscopy (Chapter 2) can be e�ectively used

(Chapter 3) in the study of instabilities of interacting electron systems. For the study

of the iron-pnictides (Chapter 4), I developed a new method to visualize the complex

optical response of the normal state. This allows me to demonstrate that the metallic

state is in fact very close to being a Fermi liquid. In the �nal chapter (Chapter 5), I

discuss a careful reexamination of the changes that take place in the optical response of

SmB6 as it changes from a bad metal to a Kondo insulator. This analysis provides new

evidence that the Kondo insulating state is formed under the in
uence of the Coulomb

interaction and that the Kondo state is therefore adiabatically connected to a simple

hybridized band insulator.
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Exploring instabilities of bad

metals with optical spectroscopy.

Wat gebeurt er als een praktisch oneindig aantal, met elkaar wisselwerkende elektronen

opgesloten wordt in een periodieke potentiaal? Deze vraag heeft generaties experimenteel

en theoretisch geori•enteerde vaste stof fysici gefascineerd en het antwoord lijkt `onvoor-

spelbaar' te zijn. In de afgelopen eeuw heeft de gecondenseerde materie gemeenschap

ontdekt dat vele verschillende `geordende' toestanden kunnen ontstaan uit een quantum

soep getrokken uit wisselwerkende electronen.

Beroemde voorbeelden van zulke geordende toestanden zijn magneten en supergeleiders.

Magneten spreken waarschijnlijk het meest gemakkelijk tot de verbeelding en worden

op microscopische schaal vaak voorgesteld als een patroon van kleine magneetjes die

allemaal dezelfde richting op wijzen. Quantum mechanisch gaat deze beschrijving al

vrij snel mank, aangezien de orde meestal in de impuls ruimte plaatsvindt. In niet-

magnetische metalen is het aantal elektronen met spin omhoog in balans met het aantal

elektronen met spin omlaag, waardoor er geen netto magnetisatie is. In bekende mag-

netische materialen, zoals ijzer, ontstaat onder invloed van de Coulomb wisselwerking

een kleine onbalans in bezetting van impuls toestanden waardoor een netto magnetisatie

optreedt. Een belangrijk punt hierbij is dat deze elektronen zich in quantum toestanden

bevinden die volledig uitgesmeerd zijn over het kristal en dat er dus geen sprake is van

kleine `lokale' magneetjes. De orde waaraan supergeleiders onderhevig zijn laat zich nog

moeilijker beschrijven. In dit geval vormen de elektronen zogenoemde Cooper paren

(gebonden toestanden van twee elektronen) en treedt de orde op in de quantum mech-

anische fase van de macroscopische gol�unctie die het hele ensemble van deze Cooper

paren beschrijft.

In het eerste decennium van de eenentwintigste eeuw hebben we een belangrijke omkeer

meegemaakt in ons begrip van `orde' en wellicht een manier ontdekt om elektronische

toestanden in het algemeen te classi�ceren. Met concepten geleend uit de mathema-

tische theorie van de topologie (een raamwerk dat knopen en wendingen beschrijft in

de abstracte taal van de wiskunde) hebben we geleerd dat macroscopische gol�uncties

onderscheiden kunnen worden met behulp van zogeheten topologische invarianten. In
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Samenvatting

deze taal re
ecteren variaties in de orde van elektronische toestanden zich door discrete

veranderingen in de waarden van de topologische invarianten. Een beroemd voorbeeld

hiervan is de quantum Hall toestand, waarin abrupte variaties van de topologische in-

varianten als functie van aangelegd magnetisch veld zich manifesteren in plotselinge

sprongen in de geleiding.

Hoe belangrijk topologische orde is en de rol die het speelt in de formatie van nieuwe

grondtoestanden van wisselwerkende elektronen systemen is niet precies bekend, maar

het is een actief nieuw onderzoeksgebied en vormt de basis voor het werk beschreven

in dit proefschrift. In de afgelopen vier jaar heb ik met behulp van optische spectro-

scopie twee klassen van materialen onderzocht waarin fase veranderingen als functie van

temperatuur plaats vinden. Hoofdstuk 4 beschrijft de optische eigenschappen van Co

gedoteerd BaFe2As2, een lid van een familie van hoge temperatuur supergeleiders die

bekend staan als de ijzer-pnictiden, terwijl hoofdstuk 5 de gecorreleerde, en mogelijk

topologische, Kondo isolator SmB6 behandelt.

De (lage temperatuur) grondtoestand van beide materialen is compleet verschillend,

maar bij hoge temperatuur vertonen ze overeenkomsten. In beide gevallen is de optis-

che respons sterk temperatuur en frequentie afhankelijk; een e�ect dat bekend is komen

te staan als karakteristiek voor een `slecht' metaal. In `schone' metalen zou men bij

lage frequenties een zogeheten Drude response verwachten in de optische geleiding. The

Drude response wordt gekarakteriseerd door een frequentie en temperatuur onafhanke-

lijke verstroo•�ngs-tijd; een vaste, gemiddelde verstrooings-tijd die niet van temperatuur

afhangt is een teken dat de elektronen zich als een gas van vrije elektronen gedragen.

Slechte metalen daarentegen laten vaak een verstroo•�ngs-tijd zien die sterk van energie en

temperatuur afhangt en dit duidt op wisselwerkingen tussen de elektronen. In dit soort

materialen leidt een nauwkeurige analyse van de optische eigenschappen niet alleen tot

de vingerafdrukken van de wisselwerkingen tussen de elektronen, maar ook tot een beter

begrip van de drijvende krachten achter de instabiliteiten die leiden tot de geordende

toestanden bij lage temperatuur.

In dit proefschrift laat ik zien hoe optische spectroscopie (Hoofdstuk 2) e�ectief gebruikt

kan worden (Hoofdstuk 3) in de studie van instabiliteiten van wisselwerkende elektronen

systemen. Voor de studie van de ijzer-pnictiden (Hoofdstuk 4) heb ik een nieuwe manier

ontwikkeld om de complexe optische response van de normale toestand weer te geven.

Dit stelt mij in staat om te laten zien dat de normale toestand in feite heel veel weg

heeft van een Fermi vloeistof toestand. In het laatste hoofdstuk (Hoofdstuk 5) geef

ik een gedetailleerde beschrijving van de temperatuur afhankelijke veranderingen in de

optische response van SmB6, die plaats vinden in de overgang van slecht metaal naar

Kondo isolator. Deze analyse laat zien dat de Kondo toestand gevormd wordt onder

invloed van de Coulomb wisselwerking en dat de Kondo toestand dien ten gevolge gezien

moet worden als een adiabatsch gerelateerde versie van een band isolator.

viii



Contents

Summary v

Samenvatting vii

List of Figures xii

1 Introduction 1
1.1 Bad metals and their instabilities. . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Nuts and bolts of optical spectroscopy. 6
2.1 Components of the Bruker VERTEX 80V spectrometer . . . . . . . . . . 6
2.2 The Fourier transform spectrometer . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Monochromatic light source . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Polychromatic light source . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Determination of the optical path di�erence . . . . . . . . . . . . . 14
2.2.4 Integration limits and apodization . . . . . . . . . . . . . . . . . . 15

2.3 The construction of the cryostat . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Re
ectivity experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Basic experimental procedures . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Evaporation of reference materials . . . . . . . . . . . . . . . . . . 20
2.5.3 Accurate determination of re
ectivity spectra . . . . . . . . . . . . 22

2.6 From re
ectivity data to optical properties . . . . . . . . . . . . . . . . . . 23
2.6.1 KK-constrained variational dielectric functions . . . . . . . . . . . 24

3 A window on topological and correlated electrons. 28
3.1 The classical description of the interaction of light and matter. . . . . . . 28

3.1.1 The polariton wave equation. . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Dielectric function or optical conductivity? . . . . . . . . . . . . . 30
3.1.3 The Drude-Lorentz model . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Quantum description of the electronic structure of solids . . . . . . . . . . 33
3.2.1 Many-body Hamiltonian and Born - Oppenheimer approximation . 33
3.2.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Optical transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 The relation between electronic structure and optical properties

of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



Contents

3.4 Correlation driven phase transitions and the underlying topological order. 39
3.4.1 Topological classi�cations. . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 The renormalization group approach. . . . . . . . . . . . . . . . . . 40
3.4.3 The integer quantum Hall e�ect. . . . . . . . . . . . . . . . . . . . 42
3.4.4 The rise of graphene and topological order. . . . . . . . . . . . . . 47
3.4.5 Topological insulators in two and three dimensions. . . . . . . . . . 50

3.5 Experimental signatures of topological and correlated electrons. . . . . . . 53
3.5.1 Edge states in optical experiments? . . . . . . . . . . . . . . . . . . 53
3.5.2 Probing correlated electrons with optical spectroscopy. . . . . . . . 56

4 Fermi liquid like groundstate in an iron-pnictide superconductor. 61
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Iron-pnictide superconductivity. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Discovery of a new family of high temperature superconductors. . 62
4.2.2 The versatility of the iron-pnictide crystal structure. . . . . . . . . 63
4.2.3 General features of the electronic structure of iron-pnictides. . . . 65
4.2.4 Signatures of Fermi liquid behavior in the optical response. . . . . 67

4.3 Optical properties of electron doped iron-pnictide superconductors. . . . . 71
4.3.1 Crystal growth and characterization. . . . . . . . . . . . . . . . . . 71
4.3.2 From re
ectivity to optical conductivity. . . . . . . . . . . . . . . . 71
4.3.3 Optical conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 Spectral weight analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experimental signatures of the Fermi liquid state. . . . . . . . . . . . . . . 75
4.4.1 Extended Drude analysis: interband contributions and range of

validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Extended Drude model: comparison of methods . . . . . . . . . . 77
4.4.3 (!; T )-scaling of the optical response. . . . . . . . . . . . . . . . . 78
4.4.4 Determination of the scaling parameterp. . . . . . . . . . . . . . . 80
4.4.5 Robustness of the scaling collapse and consistency with transport

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Direct observation of Fermi liquid signatures in the optical conductivity. . 81

4.5.1 Zero crossings and the complex optical conductivity. . . . . . . . . 82
4.5.2 Characteristic Fermi liquid properties of Co-doped BaFe2As2. . . . 84

5 From bad metal to Kondo insulator: temperature evolution of the
optical properties of SmB 6. 87
5.1 From mixed-valent to topological Kondo insulator . . . . . . . . . . . . . 87
5.2 Theoretical description of SmB6 . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 From �rst principle band structure to tight binding models . . . . 88
5.2.2 Kondo insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Topological Kondo insulators . . . . . . . . . . . . . . . . . . . . . 92

5.3 Experimental signatures of the topological Kondo insulator. . . . . . . . . 94
5.3.1 Transport measurements . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Complexity of the SmB6 surface . . . . . . . . . . . . . . . . . . . 95
5.3.3 Angle-resolved photoemission spectroscopy studies of SmB6 . . . . 97
5.3.4 Trivial surface states in SmB6 . . . . . . . . . . . . . . . . . . . . . 98
5.3.5 Topological surface states in SmB6 . . . . . . . . . . . . . . . . . . 100

x



Contents

5.3.6 Quantum oscillations vs. ARPES . . . . . . . . . . . . . . . . . . . 100
5.4 Optical properties of SmB6 . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5 High resolution optical study of the Kondo to bad metal transition. . . . . 103

5.5.1 Re
ectivity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 Re
ectivity extrapolations . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.3 Complex optical response functions of SmB6 . . . . . . . . . . . . 108
5.5.4 Spectral weight transfer . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.5 Spectral weight transfer in a simple tight-binding model. . . . . . . 112
5.5.6 Error estimate of the observed spectral weight transfer . . . . . . . 115
5.5.7 Concluding remarks and summary . . . . . . . . . . . . . . . . . . 116

Bibliography 119

Acknowledgement 133

xi



List of Figures

1.1 Comparison of properties of BaFe2� xCoxAs2 and SmB6 . . . . . . . . . . 2

2.1 Overview of the VERTEX 80V . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Ranges of use of spectrometer components. . . . . . . . . . . . . . . . . . 8
2.3 Black body spectra for the various energy ranges, . . . . . . . . . . . . . . 9
2.4 Schematic of a Michelson-Morley interferometer . . . . . . . . . . . . . . . 11
2.5 Interferogram of a monochromatic wave . . . . . . . . . . . . . . . . . . . 12
2.6 Simple spectra and corresponding interferograms. . . . . . . . . . . . . . . 13
2.7 Experimental interferogram and its Fourier transform . . . . . . . . . . . 14
2.8 Examples of apodization functions. . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Schematic picture of reference material evaporator. . . . . . . . . . . . . . 17
2.10 Various re
ectivity spectra of reference materials used. . . . . . . . . . . . 18
2.11 Block diagram for a typical experiment. . . . . . . . . . . . . . . . . . . . 19
2.12 Schematic picture of reference material evaporator. . . . . . . . . . . . . . 20
2.13 Interface of a LabView subroutine used for reference evaporation. . . . . . 21
2.14 Example of Hagen-Rubens extrapolations. . . . . . . . . . . . . . . . . . . 22
2.15 Re
ection and transmission at an interface. . . . . . . . . . . . . . . . . . 23
2.16 An example of modeling in RefFit software. . . . . . . . . . . . . . . . . . 25
2.17 Comparison between Lorentz and triangular oscillators for variational �t-

ting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Illustration of an optical transition . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Changes in momentum space and the D.O.S. in magnetic �elds. . . . . . . 43
3.3 Experimental quantum Hall e�ect and renormalization group 
ow. . . . . 44
3.4 The Laughlin argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 The Brillouin zone of graphene and possible Pfa�ans. . . . . . . . . . . . 49
3.6 Edge states and theZ2 invariant for cubic crystals. . . . . . . . . . . . . . 51
3.7 ARPES spectrum of Bi2Se3 edge states. . . . . . . . . . . . . . . . . . . . 54
3.8 Relation between surface and bulk carrier density. . . . . . . . . . . . . . 55
3.9 Optical conductivity and sumrule in optimally doped Bi 2Sr2CaCu2O7+ � . 58

4.1 Iron-pnictide crystal structures. . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 BaFe2As2 crystal structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 DFT bandstructure of BaFe2As2 and schematic Fermi surface . . . . . . . 66
4.4 ARPES intensity map of BaFe1:83Co0:17AAs2 and measured Fermi surface 68
4.5 Transport and magnetization measurements of BaFe2As2. . . . . . . . . . 71
4.6 Re
ectivity data of the two pnictide crystals. . . . . . . . . . . . . . . . . 72
4.7 Optical conductivity of electron doped BaFe2As2. . . . . . . . . . . . . . . 73

xii



4.8 Decomposition of the optical conductivity in Drude-Lorentz terms. . . . . 73
4.9 Frequency dependent spectral weight analysis and determination of plasma

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.10 Frequency dependence of dielectric interband response. . . . . . . . . . . . 76
4.11 Modeling the impact of interband transitions on scattering rates. . . . . . 76
4.12 Memory functions for di�erent interband transition subtraction methods. 77
4.13 Experimental determination of Fermi liquid behavior in electron doped

BaFe2As2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.14 Minimum p values as function of temperature. . . . . . . . . . . . . . . . . 80
4.15 Robustness of scaling analysis of annealed data. . . . . . . . . . . . . . . . 81
4.16 Fermi liquid behavior of the optical conductivity: theory vs. experiment. . 85
4.17 Self-energy, mass enhancement and Fermi liquid properties of as-grown

BaFe1:8Co0:2As2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 LSDA+U electronic structure calculations for SmB6. . . . . . . . . . . . . 89
5.2 Simpli�ed picture of band hybridization. . . . . . . . . . . . . . . . . . . . 91
5.3 3D Brillouin zone for a cubic lattice. . . . . . . . . . . . . . . . . . . . . . 93
5.4 Resistivity of SmB6 crystals used in this work. . . . . . . . . . . . . . . . 95
5.5 Crystal structure and ARPES and LEED of SmB6 . . . . . . . . . . . . . 96
5.6 ARPES spectra of B6- and Sm-terminated surfaces. . . . . . . . . . . . . 98
5.7 The re
ectivity spectra of SmB6. . . . . . . . . . . . . . . . . . . . . . . . 105
5.8 Crystal structure and IR active phonon modes of SmB6 . . . . . . . . . . 106
5.9 Drude-Lorentz �ts of SmB6 re
ectivity spectra. . . . . . . . . . . . . . . . 107
5.10 Dielectric function and optical conductivity spectra of SmB6. . . . . . . . 108
5.11 Low energy"1(!; T ) and � 1(!; T ) spectra of SmB6. . . . . . . . . . . . . . 109
5.12 Temperature dependence of spectral weight transfer in SmB6 . . . . . . . 111
5.13 Calculated optical response resulting from hybridization . . . . . . . . . . 114
5.14 Error estimate of spectral weight transfer in SmB6. . . . . . . . . . . . . . 116



.



Chapter 1

Introduction

1.1 Bad metals and their instabilities.

The physics of strongly correlated systems is one of the most prominent areas of con-

densed matter physics. It deals with materials where the total kinetic energy (or band-

width) of the relevant electronic degrees of freedom is smaller than the Coulomb in-

teraction. As a result, the latter plays an intricate role in de�ning the macroscopic

properties of the system. This is believed to be the source for the exotic properties of

heavy-fermion compounds, Kondo insulators, high-Tc superconductors and many of the

transition metal oxide materials. The di�culty presented by these materials rests in

the lack of a complete theoretical framework to describe and understand their behavior,

while at the same time they continue to surprise us with novel electronic states that

could potentially be relevant for applications. This makes the �eld of strongly corre-

lated electron physics of fundamental importance and at the same time challenging and

exciting.

In this thesis, the focus is on the iron-pnictide high-Tc superconductor BaFe2� x CoxAs2

(BFCO) and the proposed topological Kondo insulator SmB6. Fig. 1.1 summarizes

some of the similarities and di�erences between the two materials. As indicated, the

high temperature electronic state of these materials is a so-called \bad metal" state;

a seemingly normal metal where correlation e�ects are mostly washed out by thermal


uctuations and only an enhanced resistivity remains. However, for a material to be

called a bad metal one needs more than just an enhanced resistivity. The resistivity

itself is determined by the carrier density and the scattering rate (or equivalently the

mean free path length). Bad metals are characterized by a mean free path length that

apparently becomes smaller than the smallest typical length scales in the crystal, e.g.

the lattice spacing. This characterization does not provide a rigorous condition, but it
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Chapter 1. Introduction

Figure 1.1: Comparison between some of the relevant features of the two materials studied in
this thesis.

does result in a generally accepted criterion for a material to be called a bad metal. This

criterion is known as the Mott-Io�e-Regel condition [1, 2]. In most metals the resistivity

will increase with temperature and eventually saturate when the mean-free path becomes

of order of the lattice spacing. However, in the correlated materials considered in this

thesis, the mean-free path seemingly becomes smaller than the lattice spacing, signaling

a breakdown of the free electron picture. The bad metal state is therefore intimately

tied to enhanced electron-electron correlations. Although the resistivity is often used

as a clear signature of the bad metallic state, spectroscopic techniques provide much

more insight in the origins of correlation e�ects. For example, the breakdown of the free

electron picture is accompanied by energy (or frequency) dependent renormalizations

of the electronic structure of the material that can be directly observed with optical

spectroscopy, angle resolved photoemission spectroscopy (ARPES) or scanning tunneling

spectroscopy (STS).

In optical spectroscopy, correlation e�ects display themselves as changes in the frequency

dependence of the free charge response. For free electrons one expects a so-called Drude

peak in the optical conductivitywith a ! � 2 dependence, while this exponent can be

signi�cantly di�erent for correlated materials. At higher energy it is also possible to ob-

serve new structures or backgrounds [3] in the optical response, although it is not always

clear how such features can be disentangled from the `normal' interband transitions that

can also be present. These spectroscopic probes allow us to more clearly compare the

role played by correlations in BFCO and SmB6, as listed in Fig. 1.1. For example, in
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BFCO one observes a somewhat narrower bandwidth in ARPES as compared to the

one predicted by DFT calculations. One expects this to be a consequence of additional

correlation e�ects that are not captured in the current approximations to band theory.

The e�ects of interactions on the optical response will be discussed in more detail in

chapter 3.

Although both BFCO and SmB 6 are bad metals at elevated temperatures (and therefore

in some sense similar), their low temperature groundstates are fundamentally di�erent.

This points to a sensitivity of the bad metallic state to the nature of the electronic states

that dominate near the Fermi level. As indicated in Fig. 1.1, the relevant electronic

degrees of freedom for SmB6 are derived from the Sm 5d and 4f orbitals [4], while for

BFCO they derive mostly from the Fe 3d orbitals [5], with the As 4p orbitals playing

a minor role. As temperature is decreased, thermal 
uctuations diminish and quantum


uctuations take over. In this low temperature regime the e�ects of correlations become

more prominent, eventually resulting in an instability of the bad metal state. The new

order that forms is however completely di�erent for the two materials studied in this

thesis: in BFCO a phase transition to an ordered electronic state takes place, while in

SmB6 a crossover to a correlated Kondo insulating phase takes place. As will be discussed

in chapter 4, the nature of the low temperature phase in the iron-pnictides sensitively

depends on the �lling of the Fe 3d orbitals and can change from anti-ferromagnetic

to superconducting order or even a previously unknown (and currently not completely

understood) order dubbed \nematic order". The Kondo insulating state that forms in

SmB6 is theoretically much better understood. The spectacular new feature here is the

prediction of so-called topological surface states that are expected to appear in the gap

that opens when thed- and f -bands hybridize. As will be discussed in chapter 5, there

are contradicting reports on whether these states have been observed.

In this thesis I will use optical spectroscopy as an experimental tool to answer some of

the open questions indicated in Fig. 1.1. The advantage of this technique over other

spectroscopies is its bulk sensitivity and its very high spectral resolution. Moreover,

optical spectroscopy is a powerful tool that can be used to obtain a global overview of

the electronic structure, but also provides access to the charge dynamics. This latter

aspect provides the window on the impact of correlations on the electronic structure. The

optical conductivity or, equivalently, the dielectric function serves as a good platform

from which one can test theoretical models. A crucial aspect that sets the work presented

in this thesis apart from other optical groups is that our experimental setup allows us

to perform optical measurements not only with high frequency resolution, but also an

equivalent resolution in temperature.
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In the study of the iron-pnictide related in this thesis I will mainly focus on the prop-

erties of the normal state. The interactions responsible for the instability of the bad

metal phase are perhaps more easily studied starting from the framework of an interact-

ing Fermi liquid. In chapter 4 I will show that an analysis of the optical conductivity,

measured on carefully annealed single crystals, clearly demonstrates deviations from

the Drude law expected for non-interacting electrons. The usual \extended Drude"

model that is used to establish these deviations cannot be used in complicated multi-

band systems [6, 7] and I will therefore introduce a new method to demonstrate these

deviations. The method relies on the high temperature resolution available in our ex-

periments and enables me to compare directly to calculations of the optical conductivity

where electron-electron interactions are taken into account.

Despite the fact that SmB6 has been thoroughly investigated in the past (see Chapter 5

for a detailed discussion), the recent improvements in crystal quality have motivated new

optical measurements. Using a high-quality crystal combined with our high frequency

and temperature resolution, our optical measurements provides new insight into the

formation of the Kondo insulating state. Our optical data provide clear signatures of

the mixed valence nature of this material. More importantly, I will present a detailed

analysis of the optical spectral weight and will show that the spectral weight lost at low

energy due to the opening of the hybridization gap, is not recovered over the entire energy

range of our optical data. This is an indication that the formation of the Kondo state is

accompanied by a reshu�ing of the electronic structure over an energy range comparable

to the Coulomb interaction, con�rming an old idea that SmB 6 can be understood as a

strongly correlated cousin of a band insulator [8].

1.2 Scope of this thesis

ˆ Chapter 2 describes some aspects of the experimental techniques used. I start

with a description of the experimental setup and provide a brief explanation of the

physical principles underlying Fourier transform spectroscopy. I will also describe

some of the key components of the cryostat, the sample preparation and I will

provide a detailed description of the experimental procedures used. I will conclude

with a brief discussion of how the optical response functions (e.g. the conductivity

or dielectric function) are related to measured quantities (i.e. the re
ectivity) and

I will explain the methodology of the data analysis.

ˆ Chapter 3 presents a general theoretical description of the optical properties of

solids. I will �rst brie
y discuss the \classical" Drude-Lorentz model, followed by

a quantum mechanical interpretation of the optical processes in a material. Since
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response functions are intimately tied to excitations starting from the groundstate,

electronic band structure, I will brie
y discuss the basis for density functional

theory and how it determines the optical response of a solid. I will then provide a

general introduction to the relatively new �eld of topological order and conclude

with a brief discussion of the signatures of electron-electron correlations in optical

response functions.

ˆ Chapter 4 describes my results on the iron-pnictide superconductor BFCO. After

a limited overview of some general features of iron-pnictide superconductivity, I

will discuss how the optical conductivity demonstrates that the normal state can

be characterized as approximately Fermi liquid. The original results presented in

this chapter were published in Ref.[9].

ˆ Chapter 5 describes the experiments performed on the Kondo insulator SmB6.

Here I will describe the theory of the many-body Kondo insulating state and how

topological states emerge in the Kondo gap. I will subsequently discuss some of

the experimental results related to the possible observation of topological surface

states. This will be followed by a detailed discussion of the frequency and tem-

perature dependence of the optical response. I will describe in detail the changes

that take place as the Kondo insulating state is formed and will demonstrate how

the Coulomb interaction is involved in these changes. The results presented in this

chapter were published in Ref.[10].
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Chapter 2

Nuts and bolts of optical

spectroscopy.

The experiments presented in this thesis were performed using a Bruker VERTEX 80V,

Fourier transform infrared (FTIR) spectrometer. In this chapter, I will �rst describe

the basic components of the FTIR spectrometer (section 2.1), followed by a description

of the physical principles by which the spectrometer works (section 2.2). Section 2.3

contains a description of the construction of the cryostat. In section 2.4 the procedure

for sample preparation is described. The key steps for a typical experiment is presented

in section 2.5. The last section, 2.6, discusses globally the steps in the data analysis

which were used in this thesis.

2.1 Components of the Bruker VERTEX 80V spectrome-

ter

A schematic of the FTIR spectrometer is shown in �gure 2.1. The spectrometer covers

the electromagnetic spectrum from the far-infrared (2 meV) up to the ultraviolet (5

eV). In this thesis, I will refer to the units wavenumbers (! in [cm� 1]) or photon energy

(~! in [eV]), which can be converted from one to another using the conversion factor:

1 eV = 8065 cm� 1. In the following I will brie
y describe the individual components

indicated in Fig. 2.1.

Light sources

To enable the re
ectivity to be measured across the entire range from far-infrared (FIR)

to ultraviolet (UV), the spectrometer includes di�erent light sources. These are: Hg-arc
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Figure 2.1: 1 - Internal source, 2 - the aperture wheel, 3 - external ports for light beam, 4 -
interferometer, 5 - automatic beamsplitter changer, 6 - HeNe laser, 7 - electronics compartment,
8 - possible positions for liquid He cooled bolometer, 9 - detector compartment, 10 - removable
compartment (position for the connection to the cryostat), 11 - sample position for transmitting
measurement, 12 - the liquid He cooled bolometer (picture adapted from the Bruker manual
[11]).

(FIR), a Globar source for the mid-infrared (MIR) energy range, tungsten for the near-

infrared (NIR) and the visible (VIS) photon energy ranges and a deuterium source for

the UV photon energy ranges. All light sources are unpolarized and non-coherent and

produce a spectrum of photon frequencies. The light sources are indicated in Fig. 2.1

with label 1 and 3.

Beamsplitters

Each beamsplitter is optimized for a speci�c photon energy range. Four beamsplitters

are used and listed below together with an indication of the spectral range in which they

can be used:

ˆ A 50�m Mylar is used in the FIR region from 3 meV to 10 meV. Mylar is a

trademark for a polyethylene terephthalate (PET) �lm and for this beamspitter

its thickness is 50� m.
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Figure 2.2: Table with the combination of light source, beamsplitter (BMS) and detector
(DET).

ˆ A polymer-based multilayer made from a 6� m Mylar layer supporting a Ge metal

thin �lm is used in the FIR region from 6 meV to 80 meV.

ˆ A KBr beamsplitter is used in the 50 meV - 800 meV spectral range.

ˆ A CaF2 beamsplitter is suitable for 300 meV - 5 eV, thus is used for the NIR, VIS,

UV regions.

Detectors

For the FIR region, a bolometer is used to measure the infrared radiation. The bolometer

is labelled as (12) in Fig. 2.1. It consists of a thermistor (detection element), which is

cooled to liquid He temperatures, in order to increase its sensitivity. Incoming thermal

radiation changes the temperature, which causes a change of the thermistor resistance.

The resistance of the thermistor is ampli�ed and measured as a voltage di�erence. The

bolometer consists of two thermistors and two cut-on type �lters. One �lter cuts the

incoming light at 800 cm� 1 and another at 100 cm� 1.

A DLaTGS (Deuterated Lanthanum TriGlycine Sulphate) detector is used for measure-

ments in the MIR energy range. The detector element is a pyroelectric crystal, which

responds to temperature changes in the form of an alteration of its electrical polariza-

tion, which is measured as a voltage change by electric contacts placed on the detector

element surface. The major disadvantage of the DLaTGS detector is that it is less

sensitive than the other detector types covering di�erent energy regions.

InGaAs and mercury cadmium telluride (MCT) detectors are used for the experiments

in the NIR energy range. The major advantage of this detector type is higher sensitivity.
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Figure 2.3: Black body spectra for the di�erent energy regions measured with various detectors
and beam splitters. All spectra are normalized to unity for ease of comparison.

The MCT detector must be cooled to low temperatures with liquid nitrogen and the

coolant has to be re�lled every eight hours.

In the visible and UV energy ranges, silicon and GaP diodes are used to detect the

signal. These detectors (including the InGaAs and the MCT detectors described above)

are of the semiconductor type. The working principle of these detectors relies on the

excitation of electron - hole pairs from the valence band to the conduction band following

absorption of the incoming radiation. Absorbed radiation produces electron-hole pairs,

whose number is proportional to the radiation intensity. Excited electrons travel to the

electrodes resulting in a pulse that is measured in an outer circuit.

In Fig. 2.2 all possible combinations of light sources, beamsplitters and detectors are

summarized with respect to the energy range where they are used.

Computer

The spectrometer has a fast analogue to digital converter (ADC) which sends digitized

detector output to the computer. This output is then processed using OPUS, a software

package supplied together with the Bruker VERTEX 80V spectrometer. This software

allows the user to control the spectrometer parameters, calculate the Fourier transform

of the signal and store the data. The �nal spectrum I (! ) is then presented for interpre-

tation and further analysis as described in section 2.5.
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Apertures

The spectrometer includes an aperture wheel with 12 positions. The aperture can be

chosen from 0.25 to 8 mm so that the light spot can be adapted to the sample size.

Other aspects of the spectrometer include a vacuum system (3 mbar), necessary to record

spectra free from the absorption lines of atmospheric water vapor (with absorption bands

between 1350 - 1850 cm� 1 and 3400 - 3900 cm� 1) and carbon dioxide (667 cm� 1 and

2350 cm� 1). The vacuum environment is also important for some optical elements. For

example, the KBr beamsplitter is hygroscopic, meaning that it easily reacts with water

from the atmosphere. Over time the oxidized layer will start to absorb part of the

incoming light [12] and this process is slowed down signi�cantly in vacuum.

To �nd optimal setup parameters for the detector/beamsplitter combination, test mea-

surements were performed for each photon energy range. For this purpose, an evaporated

�lm (Au or Al) was used as a test sample. Figure 2.3 depicts normalized spectra for all

frequency ranges with the intensity normalized to unity. Figure 2.3 shows the spectral

overlap of the di�erent beamsplitter/detector combinations, which allows the user to

accurately stitch together di�erent re
ectivity measurements into a single re
ectivity

spectrum over the entire range.

2.2 The Fourier transform spectrometer

The Bruker spectrometer is basically a Michelson interferometer. A schematic diagram

of such an interferometer is shown in Fig. 2.4. The central element of the Michelson

interferometer is a semi-re
ecting beamsplitter (2), which divides an incident light beam

(1) into re
ected and transmitted beams of approximately equal intensity. One beam

hits a mirror (M 1) which has a �xed position, while the other beam hits a movable

mirror (M 2). The distance between the beamsplitter and mirror (d1 and d2) is referred

to as an arm length of the interferometer. The beams re
ect back from the mirrors and

recombine again on the beamsplitter and then follow the same path to the sample (3)

and to the detector (4) [12].

2.2.1 Monochromatic light source

The derivation in this section is taken from the book of Tkachenko [13] (Eq. (2.1)-

Eq. (2.5)) and the notes by Homes [14] (Eq. (2.6)-Eq. (2.12)). To understand the prin-

ciple behind FTIR spectroscopy, we �rst show how the output intensity of the interfer-

ometer can be found. This intensity is proportional to the square of the electric �eld
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Figure 2.4: Schematic layout of a Michelson interferometer that forms the heart of a FTIR
spectrometer. 1 - light source, 2 - beamsplitter, 3 - sample position, 4 - detector position, M1 -
�xed mirror, M 2 - movable mirror, d1 and d2 - arms of the interferometer.

generated by two light beams re
ected from the mirrors M1 and M2 (see Fig. 2.4). The

incoming monochromatic electromagnetic wave has an angular frequency! or wavenum-

ber ~k, where j~kj = 2�
� = !

c , where � is the wavelength andc is the speed of light. The

beamsplitter divides incident light in two beams in the ideal case with equivalent inten-

sity. Considering that both light beams are following the same direction to the detector,

the electric �elds of each of these beams can be written as [13]:

~E1 = ~E0(! )ei (!t � ~k�~r � � 1 ) (2.1)

~E2 = ~E0(! )ei (!t � ~k�~r � � 2 ) (2.2)

where E0 is the amplitude of the electric �eld, � 1 and � 2 are the phases, that depend

on the propagation distance between the beamsplitter and the two mirrors. The phases

can be written as � 1 = ~kd1 = 2 �d 1=� and � 2 = ~kd2 = 2 �d 2=� , where d1 and d2 are

distances from the beamsplitter to the mirrors. After recombination of the two light

beams, the amplitude of the interferometer output can be expressed as:

~E = ~E1 + ~E2 = ~E0(! )ei (!t � ~k�~r ) (e� i 2�d 1=� + e� i 2�d 2=� ) (2.3)

The light intensity is proportional to E � E � , where E � is the complex conjugate. Thus,

the resulting intensity at the position of the detector is:

I = 2 I (! )
�

1 + cos
2� (d1 � d2)

�

�
(2.4)
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where I (! ) is proportional to E 2
0(! ) and (d1 � d2) is called the optical path di�erence

(OPD).

Figure 2.5: Interferogram of a
monochromatic wave. ZPD stands
for zero path di�erence, while OPD stands
for optical path di�erence. At ZPD the
two arms of the interferometer are of
equal length. As the length of the arms
is changed a periodic oscillation of the
output intensity results from destructive
and constructive interference. Figure
adapted from [12].

By putting x = ( d1 � d2) the detector output

takes the form:

I (x) = 2 I (! )[1 + cos(2�x=� )] (2.5)

At zero optical path di�erence, one has a max-

imum in intensity resulting from constructive

interference. As the mirror M2 starts to move,

a phase di�erence develops between the two

arms and the intensity is reduced. When the

optical path di�erence reaches x = �= 2 the

intensity reaches a minimum. As the mirror

moves beyondx = �= 2 the intensity increase

until it reaches a maximum at x = � . The

movement of M2, results in a sequence of min-

ima and maxima. Figure 2.5 shows the output

intensity plotted against the optical path dif-

ference for a monochromatic wave. The resulting intensity vs. path di�erence plot is

called an interferogram.

2.2.2 Polychromatic light source

So far we have considered a monochromatic light source, which produces an interfero-

gram as shown in Fig. 2.6a. When the light source contains more than one wavelength,

the intensity at the detector for each wavelength follows a relation like Eq. 2.5, but with

a wavelength dependent period. Thus, the resulting interferogram can be described as

as sum of cosine functions for all wavelengths in the spectrum. For example, for a light

source that contains two wavelengths the interferogram shows a beating between two

frequencies as shown in Fig. 2.6b. A Fourier transform of this interferogram would reveal

two delta function peak located at the frequencies! 1 and ! 2. The Fourier transform of

the interferogram corresponding to a polychromatic source would therefore resemble the

amplitude of each frequency present in the interferogram. In the case of a continuous

spectrum, constructive interference occurs simultaneously for all wavelengths only at

zero path di�erence, where both mirrors are equal distances from the beamsplitter. At

any other OPD, some wavelengths interfere constructively while others do not, leading

to the interferogram shown in Fig. 2.6c (right-hand panel).
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Figure 2.6: Simple spectra and interferograms. (a): A single wavelength; (b): two wavelength;
(c): broad wavelength spectrum. FT - denotes Fourier transform.

The following section is taken from Ref. [14]. Assuming that the polychromatic source

is a continuous source with frequencies from 0 to some maximum frequency! m , the

intensity as a function of the OPD can be obtained from Eq. (2.5) by integrating over

! :

I (x) = 2
Z ! m

0
I (! )[1+cos(2�!x )]d! = 2

Z ! m

0
I (! )d! +2

Z ! m

0
I (! ) cos(2�!x )d! (2.6)

By setting x = 0, one gets:
I (0)

2
=

Z ! m

0
I (! )d! (2.7)

By combining equations (2.6) and (2.7), an expression for the interferogram obtained

on the detector can be found as:

I (x) �
1
2

I (0) =
Z ! m

0
I (! ) cos(2�!x )d! (2.8)

The interferogram of a source consisting of many wavelengths is shown in the right-

hand panel of Fig. 2.6c. This interferogram has maximum constructive interference
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Figure 2.7: (a): An example of an interferogram; (b): the Fourier transformed resulting
spectrum.

at zero path di�erence, which results in the central peak. For large OPD's (x ! 1 ),

contributions of constructive and destructive interference completely cancel and Eq. (2.8)

integrates to zero. This leads to the relationI (1 ) = 1
2 I (0) [14].

Equation (2.8) shows how the interferogram measured by a spectrometer is related to

the input spectrum. When experiments are done we record interferograms and we would

like to know the spectrum. Therefore we need the inverse transformation of Eq. (2.8):

I (! ) =
Z 1

�1
[I (x) � I (1 )]e2�i!x dx (2.9)

Here we have made use of the fact that12 I (0) = I (1 ) and we have taken the complex

Fourier transform instead. Also, note that we took the integral from �1 to 1 . The

movement of the scanner is continuous, but the measured intensity has to be digitised

before the Fourier transform can be performed. We are therefore unlikely to sample

the maximum in intensity I (0) at zero optical path di�erence. Eq. (2.9) prevents this

problem by replacing I (0) with I (1 ). By taking the complex Fourier transform integral

from �1 to 1 we also circumvent problems introduced by a phase shift resulting from

not accurately determine zero path di�erence (see also section 2.2.3).

An example of a Fourier transform of an interferogram is shown in Fig. 2.7.

2.2.3 Determination of the optical path di�erence

The FTIR spectrometer contains a helium-neon (HeNe) laser as an internal reference

source (label 6 in Fig. 2.1). The laser beam follows the same light path through the

interferometer. Due to the fact that the laser has a single wavelength of light, it produces

an oscillating intensity similar to that shown in Fig. 2.6a. A small diode records the

14



Chapter 2. Nuts and bolts of optical spectroscopy.

HeNe laser intensity at the exit side of the interferometer. The intensity of the diode

oscillates in time, reaching a maximum when the mirror moves 652 nm. When the diode

reaches a voltage larger than some threshold value, a counter increases (with a forward

movement of the scanner) or decreases (with backwards movement). In this way, the

position of the scanning mirror can be determined with very high accuracy.

When the spectrometer is powered on, a �rst initialization takes place. During this

initialization, the mirror is moved over its full mechanical range and the intensity is

recorded. At the same time, the counter value is recorded. The value of the counter

for maximum intensity is recorded and provides the best measure of zero optical path

di�erence. This procedure is repeated whenever the beamsplitter is changed.

2.2.4 Integration limits and apodization

The Fourier transform integral Eq. (2.9) is over a distance from minus in�nity to plus

in�nity, but in practice, it is limited by the �nite length of the interferometer arms. The

mirror M 2 moves over a range 2L centred around the zero optical path di�erence. The

integral is, therefore:

I (! ) =
Z L

� L
[I (x) � I (1 )]e2�i!x dx (2.10)

where the integration limits are imposed by the armlength of the interferometer. The

�nite range of the scanner introduces a serious problem and results in a strongly modi�ed

spectrum. To see the e�ect of a �nite arm length, it is convenient to write Eq. (2.10) as

[14]:

I (! ) =
Z 1

�1
[I (x) � I (1 )]e2�i!x A(x)dx (2.11)

with

A(x) =

8
<

:

0 jxj > L

1 jxj < L
(2.12)

The function (2.12) is known as a boxcar function. We can isolate the e�ect ofA(x) by

making use of the convolution theorem for Fourier transforms (e.g. FT[f �g]=FT[ f ]�FT[ g]).

Figure 2.8a shows the boxcar function (2.12). Its Fourier transformI (! ) is shown in

Fig. 2.8b. The function I (! ) turns out to be a strongly oscillating function of frequency.

Moreover, it extends over a wide range of frequencies. The problem introduced by a

�nite arm length then becomes clear when we imagine a monochromatic source. In this

case, the interferogram will look like that in Fig. 2.6a, while its spectrum is a delta

function. If we measure the interferogram over a �nite range and then Fourier transform

we obtain the spectrum of Fig. 2.8b instead of a single frequency it appears as if we

have a whole range of frequencies.
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Figure 2.8: (a): The plot of the boxcar function; (b): resulting Fourier transform of the boxcar
function; (c): the Blackman-Harris 3-term function [15]; (d): the resulting Fourier transform of
Blackman-Harris 3-term function.

The introduction of the boxcar function is unavoidable. However, Eq. (2.11) suggests

a possible solution: suppose we multiply the measured spectrum with another function

A(x) before taking the Fourier transform. The origin of the oscillations in the spectrum

of the boxcar function comes from the sharp cuto� at jxj = L (remember, it takes an

in�nite sum of cosines and sines to reproduced a step function). The idea is, therefore, to

multiply the measured interferogram with a function A(x) before Fourier transforming

such that the cuto� e�ect is reduced. Such a cuto� function, A(x), is known as an

apodization function.

There are various apodization functions used in the literature [16{19]. These functions

have been extensively compared. From these works, one comes to the conclusion that

a function known as the Blackman-Harris 3-term apodization function provides the

optimal solution between reducing the side-bands of the spectrum while maintaining

spectral resolution. This function is displayed in panel 2.8c.

We can again calculate its Fourier transform and compare its e�ect to that of the boxcar

function (Fig. 2.8d). The Blackman-Harris 3-term spectrum looks somewhat like a

simple gaussian distribution. It has a central peak that is somewhat broader than the

boxcar function and has a lower maximum. On the other hand, the side lobes seen

in panel 2.8b are completely suppressed. The e�ect of the Blackman-Harris 3-term on

the FT of a monochromatic wave interferogram is that the delta-function spectrum is

broadened and its intensity somewhat reduced. The improved apodization, therefore,

comes at the cost of spectrometer resolution. Nevertheless, this disadvantage outweighs

the unphysical spectral features introduced by the boxcar function.
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2.3 The construction of the cryostat

The spectrometer is coupled to a purpose-build, ultra-high vacuum (UHV) cryostat. The

spectrometer-cryostat connection includes a chemical vapor deposition (CVD) grown

diamond window, which is transparent over the entire energy range. The cryostat was

constructed based on a design pioneered by the optical spectroscopy group of Dirk

van der Marel at the University of Geneva and further improved upon in Amsterdam.

The cryostat is constructed such that the sample position is stable as a function of

temperature. This enables quantitatively accurate optical experiments to be performed

as a function of temperature, during which the sample position in the beam remains

�xed across the whole temperature range. The cryostat is cooled with liquid helium,

which is transported from a dewar to the cryostat through a transfer tube. The lowest

temperature that can be reached in the cryostat is 8 K.

To con�rm the sample stability versus temperature, a HeNe laser was re
ected from a

mirror mounted on the sample holder in the cryostat to a screen positioned at 5 meters

distance. The movement of the re
ected beam on the screen was measured upon cooling

down and warming up the cryostat. This test showed that the main sample movement

on changing temperature was a tilt-like rotation around a horizontal axis and that this

was smaller than 0.01 degrees while going from a sample temperature of 300 K to 8 K.

2.4 Sample preparation

Figure 2.9: Schematic of sam-
ple holders used in our cryostat.
1 - sample, 2 - sample holder.

The investigated samples are required to have a 
at and

smooth surface because, in the case of a bent, defect-

rich or textured surface, the light beam would scatter

in di�erent directions. In order to obtain a 
at surface,

the samples were cut along a crystal axis. To properly

orient the sample, Laue di�raction is used before cut-

ting the sample. Another method to obtain a mirror-

like surface for hard samples is to polish using diamond

lapping �lms. In other cases, a shiny surface could be

obtained by cleaving the sample using sticky tape.

The samples are mounted on a sample holder, which

is shaped like a cone, to prevent unwanted re
ections

from the sample holder. An example of the sample holder is shown in 2.9. Its 
at

surface is adapted to match the shape of the sample. This ensures that the part of the
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Figure 2.10: The re
ectivity spectra of the reference metals. Figure is taken from [20]

light beam that does not impinge on the sample surface will be re
ected away from the

detector. The size of the tapered copper cone is adapted to each sample individually, and,

afterwards, the cone has to be cleaned in ethanol and acetone to avoid contamination

of the cryostat.

2.5 Re
ectivity experiments

In order to obtain the re
ectivity spectra of the investigated samples, experimental data

are collected in two steps. In the �rst step, the intensity spectrum I S(! ) of the sample

is measured. In order to obtain the absolute value of the re
ectivity, one also needs a

reference spectrumI R (! ). The re
ectivity can then be calculated as:

R(! ) = I S(! )=IR (! ) (2.13)

The reference intensity can be obtained by placing a mirror on the sample position.

However, this approach can give large experimental errors, because sample and mirror

might have di�erent size and shape. Moreover, it is di�cult to place the mirror in exactly

the same position and orientation as the sample, resulting in large errors. The second

approach is an in-situ evaporation of reference materials. A thin �lm of a reference metal

is then evaporated on the sample surface and acts as a "perfect" replacement mirror for

the sample.

As a reference material, several metals such as gold (Au), silver (Ag) and aluminium

(Al) are used. The re
ectivity spectra of these materials are shown in Fig. 2.10. In the

infrared (IR) range these three metals each give> 99.9% re
ectivity, even in thin �lm

form. However, both Al and Ag have a tendency to slowly oxidise and this may introduce

a time-dependent decrease of the reference spectra. Therefore Au is the most widely used
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Figure 2.11: Schematic block diagram of a typical experiment.

reference material in the IR. On the other hand, Au has a series of interband transitions

in the visible range of the spectrum, resulting in a plasma edge around 1 eV. This results

in a suppression of the re
ectivity starting already around 0.75 eV (see Fig. 2.10). This

makes Au unusable as reference material at higher energies. A good alternative would

be aluminium with a plasma edge in the UV energy range. Unfortunately, Al also has

an interband transition around 1.4 eV (see Fig. 2.10). This brings us to the third

reference, namely Ag. Ag has a higher plasma edge compared to gold extending roughly

to the UV energy range. In the energy range between approximately 0.75 eV and 1.7

eV Ag provides the best reference material. Above 1.7 eV Al is used. A �nal important

remark is that the re
ectivity of Al above 1.7 eV is frequency independent, but only has

a re
ectivity of 90%. Therefore, in order to calculate R(! ) according to Eq. (2.13) we

need to multiply by 0.9. We can obtain a good estimate for the error introduced in this
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way by comparing the resulting re
ectivity spectra in the range around 0.8 eV where

both Al and Ag have been measured and should give equal re
ectivity.

2.5.1 Basic experimental procedures

For each energy range, the temperature dependence ofI S(!; T ) and I R (!; T ) is mea-

sured. For this purpose, a subroutine running in a LabView is used to record simulta-

neously the sample temperature, the pressure in the cryostat and to collect the spectra.

A series of such measurements is then carried out while the sample is being cooled at a

�xed rate followed by a similar warming up cycle.

After each warming and cooling cycle, we compare the temperature dependence to pre-

vious runs. In principle, this should result in a series of identical curves for a given

frequency. After each measurement, we can average the data to obtain a feeling for

the signal-to-noise in the experimental data. This is particularly important at the low-

est and highest frequencies for a given set of detector and beamsplitter. As �gure 2.3

shows, the source intensity is low in the range of overlap between the spectra, we need

to achieve a su�cient spectral/noise ratio also in this range to be able to properly match

the re
ectivity spectra in these ranges. Once we are certain that these factors are su�-

cient, we can prepare the evaporation of the reference material. Figure 2.11 describes

the steps taken to obtain a complete re
ectivity spectrum as function of temperature.

Figure 2.12: Schematic picture
of the evaporator. 1 - reference
material, 2 - tungsten wires.

2.5.2 Evaporation of reference materials

The cryostat includes two evaporators allowing the de-

position of layers of di�erent reference materials, for a

given combination of beamsplitter and detector. The

schematic picture of the evaporator is shown in Fig.

2.12. In particular, two evaporators are required for

the VIS energy range when both Ag and Al reference

layers are used. The necessity of both materials is dis-

cussed above in section 2.5.

The sources of the reference materials are in the form

of a thin wire in the order of a millimeter in diame-

ter. A 4 mm long Au, Ag or Al wire is cut o� for

each evaporation procedure. Afterwards, the piece of

the reference material is wrapped in tungsten wire and

20



Chapter 2. Nuts and bolts of optical spectroscopy.

Figure 2.13: The interface of LabView subroutine written to perform an evaporation procedure.
1 - current in Ampere; 2 - current ramp time in second; 3 - time interval of current 
ow in seconds;
4, 5, 6 - are the time dependence graphs of current, voltage and pressure respectively.

installed into the evaporator (see Fig. 2.12). To make a thin-�lm deposition, a voltage

is applied across the two ends of the tungsten wire; the current 
ows through the wire

and this warms the reference metal su�ciently that it is evaporated and deposited onto

the sample. Evaporation of the reference layer is normally done at room temperature. A

LabView subroutine has been written to perform an evaporation. This routine allows to

control the current, a current ramp rate and check the change of pressure. The interface

of this routine is shown in Fig. 2.13. The current is ramped up to 6 A in a few seconds

(labels 1 and 2 in Fig. 2.13)and then kept constant until the measured spectrum stops

changing due to the deposition of the reference layer. In the case of a similar re
ectivity

of the investigated sample and reference material, the evaporation is conducted until the

evaporator is empty. This is signaled by a change in the resistance of the tungsten coil
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Figure 2.14: An example of Hagen-Rubens extrapolation of investigated SmB6 compound.

and can be viewed as a sharp increase of the voltage. Before and after evaporation of

the reference material a single spectrum is measured in order to get the most reliable

measure of the re
ectivity, which is used further in the data analysis.

2.5.3 Accurate determination of re
ectivity spectra

After the reference layer is deposited, the whole measurement procedure is repeated.

At the end of this �rst set of measurements, we can use Eq. (2.13) to �nally obtain the

re
ectivity of the sample. This whole series of experiments needs to be repeated for each

of the di�erent ranges shown in Fig. 2.3. In principle, these di�erent re
ectivity spectra

should match perfectly in the range of overlap. In practice, this does not always work,

for example as a result of changes in environmental conditions (e.g. temperature of the

laboratory). Another source for mismatches arises when ranges with di�erent reference

materials are compared. Typical error bars introduced in this way are on the order of

� 0.5%. Once the spectra are merged together, we have obtained the full temperature

dependent re
ectivity in the photon energy range from 5 meV to 4.6 eV. After we have

obtained the re
ectivity in the entire frequency range, we can check the calibration of

our re
ectivity data. To do this we make use of the so-called Hagen-Rubens relation

(see chapter 5), which is valid for metals only:

R(! ) � 1 �

r
2!

�� DC
(2.14)

As (2.14) shows, for a metal, the re
ectivity extrapolates to one for ! ! 0. If we plot

our experimental data against
p

! , we should �nd a straight line that extrapolates to

one. Fig. 2.14 shows, as an example, re
ectivity data for SmB6 in the metallic state

(see chapter 5). The dashed lines are linear �ts and demonstrate the good calibration of
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our data. Note that the data deviates from the HR relation at higher energy, indicating

the breakdown of this approximation.

2.6 From re
ectivity data to optical properties

As will be discussed in chapter 5, the ultimate goal of any optical experiment is to

determine the dielectric function �̂ (! ) = � 1(! ) + i� 2(! ). Our re
ectivity experiments

only provide limited access to this complex function, as can be seen by considering the

Fresnel equations.

Figure 2.15: Schematic picture of the in-
cident (E i ), re
ected ( E r ) and transmitted
(E t ) electromagnetic waves traveling from
medium 1 to medium 2. The change in am-
plitude as the wave travels away from the
interface in medium 2 indicates a strongly
absorptive medium. Figure taken from ref.
[21].

The Fresnel equations provide the relation

between an incoming electromagnetic wave,

E i (! ); and the re
ected and transmitted waves

(Er (! ) and E t (! ) respectively) at an interface

between two media (see Fig. 2.15). Here we

only consider the relation betweenEr (! ) and

E i (! ):

E i (! )
Er (! )

=
n̂1(! ) � n̂2(! )
n̂1(! ) + n̂2(! )

(2.15)

with n̂i (! ) the complex refractive index for

medium i .

The left-hand side of Eq. (2.15) is called the re
ectance ^r (! ) and since electromagnetic

waves are complex, ^r (! ) is also a complex function. Eq. (2.15) allows us to determine

the complex refractive index, provided we know ^r (! ). Assuming the incoming wave

travels through vacuum n1(! ) = 1. Therefore ( n̂2(! ) = n̂(! )):

n̂(! ) =
1 � r̂ (! )
1 + r̂ (! )

(2.16)

The main problem that prohibits us from using Eq. (2.16) is that our detectors measure

an intensity, I (! ) = jE (! )j2. This means that we only have access to the magnitude of

the re
ectance, i.e. R(! ) =
p

jr1j2 + jr2j2, where r1 and r2 are the real and imaginary

parts of the complex re
ectance.

The most commonly used solution to this problem is by making use of the so-called

Kramers-Kronig relations. These relations state that the real and imaginary parts of

complex response functions are related by an integral transformation (see also chapter

3). Although the re
ectance is not formally a response function, Eq. (2.16) imposes a
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form of the KK relations on it (since n̂(! ) is a response function). One can show that if

r̂ (! ) is written as,

r̂ (! ) = jr̂ (! )jei �( ! ) (2.17)

the phase �( ! ) can be obtained from jr (! )j according to,

�( ! ) = �
!
�

P
Z 1

0

ln R(! 0)
! 02 � ! 2 d! 0 (2.18)

Therefore, if we measureR(! ) over a wide enough energy range, we can reconstruct

�( ! ). One problem is that formally we need to measure from! = 0 to ! ! 1 and

practically this is impossible. To reconstruct the phase �( ! ) we need low and high-

frequency extrapolations. For metals, one can use the Hagen-Rubens extrapolation

(see chapter 5) to extrapolate to ! = 0, but for insulators, no good approximation

exists. The high energy extrapolation of (2.18) is even more complicated since there

can (and typically are) many unknown interband transitions outside our experimental

range. Fortunately (2.18) depends on (! 2 � !
02) � 1 so that the contribution of high

energy interband transitions is small at low energy! (for which ! << ! 0).

Given these issues, many people have developed di�erent methods to obtain the dielectric

function. This can be done by doing additional experiments. For example, one could

measure the transmission (in the case of insulators) and combine the results or resort

to completely di�erent techniques such as ellipsometry. We follow a di�erent approach,

which was developed by A.B. Kuzmenko [22].

2.6.1 KK-constrained variational dielectric functions

A better method to obtain the optical conductivity from the measured re
ectivity is

introduced in Ref. [22]. The method consists of two steps, both of which are implemented

in the freeware packageRefF it [23]. In the �rst step, a Drude-Lorentz model is used

to �t the measured re
ectivity with a set of oscillators:

� (! ) = � 1 +
NX

k=1

! 2
p;k

! 2
0;k � ! 2 � i!
 k

(2.19)

where ! 0;k is the resonance frequency,! p;k is the oscillator strength, 
 k is the scattering

rate and � 1 is the contribution from high-frequency oscillators outside the experimental

range. The Lorentz oscillator with ! 0 = 0 reproduces the Drude term. An example of the

Drude-Lorentz model, obtained for SmB6 (see chapter 5), is shown in Fig. 2.16. Figure

2.16a depicts both the measured re
ectivity of SmB6 (blue dots) as well as calculated

re
ectivity using Eq. (2.19) with parameters indicated in Fig. 2.16b. The extrapolation
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Figure 2.16: (a): the measured re
ectivity data (blue dots) and model curve of the re
ectivity
(black line); (b): an example of the model window in RefFit software; (c): the low frequency
re
ectivity.

to the low-frequency range is shown in Fig. 2.16c. This extrapolation is calculated

using the analytical form of the Drude-Lorentz model and is, therefore, di�erent from

Hagen-Rubens. Thus, if the calculated re
ectivity well reproduces the experimental data

we can assume that the model gives approximately correct extrapolations outside of the

experimental frequency range [22]. The same holds for the high-frequency extrapolation.

Once a set of oscillators is found that describes the experimental data, in the second step

a variational dielectric function can be added on top of the Drude-Lorentz model, such

that � tot (! ) = � mod(! ) + � var (! ). This � var (! ) should reproduce all detailed features of

the re
ectivity spectrum, including noise.
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Figure 2.17: The real and imaginary part of the dielectric function with Lorentz (a) and
triangular (b) line shape. Figure is taken from [22]

A detailed mathematical representation of the variational dielectric functions is given

in Ref. [22]. The starting point is a re
ectivity spectrum R(! ) in the frequency range

[! min ; ! max ], with a set of datapoints given by f ! exp
i ; Rexp

i g, (i = 1 ; :::; Nexp), where

! exp
1 = ! min and ! exp

N = ! max .

The re
ectivity can be obtained from the real � 1(! ) and the imaginary � 2(! ) part of the

dielectric function of a material as:

R(! ) =

�
�
�
�
�
1 �

p
�̂ (! )

1 +
p

�̂ (! )

�
�
�
�
�

2

(2.20)

Therefore, in order to calculate the re
ectivity, one needs to de�ne the dielectric function.

One of the possible ways is to set Lorentz oscillators� Lor
1;i , � Lor

2;i , shown in Fig. 2.17a,

centred at each experimental frequency! exp
i . The linewidths of the oscillators 
 i is �xed

being 
 i = ( ! i +1 � ! i � 1)=2 on the order of the interval between neighbours frequency

points. However, as can be seen, the Lorentzian line shape has slowly decaying low and

high-frequency tails (indicated by arrows in Fig. 2.17a), which can lead to bad quality

�tting. The problem reveals itself if one considers a material with an energy gap at

! g (thus, � 2(! ) = 0 for frequency ! < ! g). Each oscillator which is introduced above

! g will provide non-zero value of � 2 below ! g due to low-frequency tails of Lorentzians.

Kuzmenko [22] proposed to use a more "local" function, such as the triangular function,

in order to have non-zero value only in close vicinity of! i . Figure 2.17b shows the real

and imaginary part of the dielectric function with the triangular line shape, where a

triangular function has a �nite value only inside the narrow region [ ! i � 1, ! i +1 ]. In this

case, the variational dielectric function can be calculated as a linear superposition of
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triangular functions � �
i (! ) at frequencies! i [22]:

� var (! ) =
NX

i =1

A i � �
i (! ) (2.21)

where the coe�cients A i are free parameters of the variational function. An analytical

expression for� �
i (! ) can be found in Ref. [22]. The free parameters of the imaginary

part of � var (! ) have straightforward physical meaning: they represent the values of� 2 at

every frequency point ! i . The real part of � var (! ) is obtained by using the KK relation,

similar to the one introduced above for a phase (2.18).

� 1(! ) � 1 =
2
�

P
Z 1

0

! 0� 2(! 0)
! 02 � ! 2 d! 0 (2.22)

In the �nal �tting procedure the set of the oscillators of the � mod(! ) are �xed, in order

to reproduce the features of the experimental data, only the parameterA i is kept free.
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Chapter 3

A window on topological and

correlated electrons.

This chapter presents the theoretical background of optical processes in solids. We start

in section 3.1 from the classical electromagnetic theory of the interaction of light and

matter and show how this can be used to derive the so-called Drude-Lorentz model.

In section 3.2 we discuss aspects of the calculation of the electronic band structure,

focusing on density functional theory. This discussion forms the basis for the discussion

of the microscopic description of optical properties of solids in section 3.3. Finally, in

section 3.4 we brie
y discuss correlation driven phase transitions and the relation with

topological classi�cations. This section is concluded with a discussion of the signatures

of electron-electron correlations in experiments.

3.1 The classical description of the interaction of light and

matter.

3.1.1 The polariton wave equation.

Maxwell's equations provide a description of all classical electromagnetic phenomena,

including the interaction between light and matter. Maxwell's equations are given by:

~r � ~E(~r; t ) = 4 �� (~r; t ) (3.1)

~r � ~E(~r; t ) = �
1
c

@~B (~r; t )
@t

(3.2)
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~r � ~B (~r; t ) = 0 (3.3)

~r � ~B (~r; t ) =
1
c

@~E(~r; t )
@t

+
4�
c

~J (~r; t ) (3.4)

where ~E and ~B are the electric and magnetic �elds. The electric charge and current

density are denoted by� and ~J respectively andc represents the speed of light.

We will assume that an electromagnetic �eld is generated well outside the solid and that

its source is not relevant to the response of the solid. This external �eld is typically

assumed to be a plane wave �eld of the form,

~E(~r; t ) = E0ei (~k�~r � !t ) (3.5)

where ~k is the wave vector along the direction of propagation and! is the angular

frequency of the �eld. To describe the interaction of this external �eld with charged

particles inside the solid requires us to properly identify additional sources (i.e.� (~r; t )

and J (~r; t )) of electromagnetic �elds. The sources for the current density in a solid derive

from the response of electrons to the time varying electromagnetic �eld. Typically three

contributions are distinguished. The �rst is the response of nearly free electrons. This

response is equivalent to Ohm's law describing the 
ow of current when one applies a

voltage over a metal wire. However, a second contribution should be considered and

is associated with the changes of the polarization induced by the time variation of the

electric �eld. Finally, there is a third contribution to the current density deriving from

the magnetization induced by the magnetic �eld component. If we assume that the

solid does not charge under the in
uence of the external �eld, we can make use of

charge conservation and the continuity equation to eliminate the charge density from

Maxwell's equation. Furthermore we assume that the applied electromagnetic �eld is

su�ciently weak so that we can make use of the assumption of linear response. Under

this assumption we have that the induced free charge current~J , polarization ~P and

magnetization ~M can be expressed in terms of the applied �eld as:

4� ~P(~r; t ) = ( � � 1) ~E(~r; t ) (3.6)

4� ~M (~r; t ) = ( � � 1 � 1) ~B (~r; t ) (3.7)

~J (~r; t ) = � ~E(~r; t ) (3.8)

� and � in these expressions are the dielectric permittivity and magnetic permeability,

respectively and � is the conductivity. The proportionality constants are chosen such

that the �nal wave equations are simpli�ed somewhat. A second point that should be

made is that we have implicitly assumed that the solid is homogeneous and isotropic.

This is evident from the fact that the proportionality constants are given by a simple
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scalar value as opposed to a position and time dependent tensor that they could, in

principle, be.

By combining Maxwell's equations Eq. (3.2) and Eq. (3.4) and making use of the linear

response equations Eq. (3.6)-Eq. (3.8), one can eliminate all sources and derive a so-

called wave equation for the electromagnetic �elds. For electric �elds we have:

r 2 ~E(~r; t ) =
��
c2

@2 ~E(~r; t )
@t2

+
4���

c2

@~E(~r; t )
@t

(3.9)

This di�erential equation describes the propagation of electric �elds through solids where

the material dependence is captured by the values of the permeability, permittivity and

conductance. A similar wave equation for the propagation of the magnetic �eld can be

derived.

For an in�nite solid we don't have to worry about boundary e�ects and we can assume

that the electric �eld component is equally well described by Eq. (3.5). Taking this as

the solution, we obtain from Eq. (3.9) the so-called `polariton' dispersion relation:

! =
cjkj

q
� (� (! ) + i 4�� (! )

! )
(3.10)

This dispersion relation describes the total set of solutions to Eq. (3.9). In vacuum

(� = 0; �; � = 1), this equation reduces to ! = cjkj as expected. In a medium where

� (! ); � (! ) and � (! ) are �nite, Eq. (3.10) shows that the speed of light, c, e�ectively

is reduced due to the coupling to collective excitations of the solid. Another way of

saying this is that the photons inside the solid get `dressed' by polarization clouds. The

e�ective quasi-particle is also called apolariton. The next step in the description of the

interaction of light and matter requires a description of the material dependent optical

constants.

3.1.2 Dielectric function or optical conductivity?

So far, we have not speci�ed� (! ) and � (! ) introduced in the equations above (in most

solids the magnetic permeability is very small compared to the dielectric response, so

we will set � =1). These two quantities were introduced above as the proportionality

constants of the di�erent responses to applied �elds (e.g. Eq. (3.6) - Eq. (3.8)), but

in modern linear response theory are considered to be two sides of the same coin. We

rede�ne these quantities as� 1(! ) and � 1(! ) and consider them to be the real parts of a

complex function. We now note that the square root in the denominator of Eq. (3.10)
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can be written as a single complex number according to:

�̂ (! ) � � 1(! ) +
4�i
!

� 1(! ) (3.11)

This allows us to identify the imaginary part of a complex dielectric function, �̂ (! ) =

� 1(! ) + i� 2(! ) with � 2(! ) = 4�
! � 1(! ). The real part of the dielectric function describes

the reactive response of the solid to an external perturbation and the imaginary part

the dissipative response. Note that we could have equally introduced a complex optical

conductivity function. Indeed, it is easy to show that these two complex functions are

related according to:

�̂ (! ) = 1 + i �̂ (! )
4�
!

(3.12)

The dispersion relation can now be compactly written as:

! =
ck

p
�̂ (! )

(3.13)

To fully describe the optical response of a solid we need to calculate the complex dielectric

function of the material. Simple semi-classical models were developed at the turn of the

20th century as we will discuss in the next section.

3.1.3 The Drude-Lorentz model

A phenomenological description of the optical response of solids was given by Drude at

the same time as when the �rst hints of quantum mechanics were discovered. Drude

had knowledge of the existence of electrons and atoms, but could obviously not oversee

the implications of the 'quanta' that were discovered by Planck in the same year (1900).

Drude imagined that the electrons in a solid would move under the in
uence of an

applied electric �eld. The model is nowadays still used as an approximate description

of the response of free charge carriers in a metal or semiconductor. However, as we

will show later, interactions and quantum mechanical e�ects can alter the frequency

dependence of the optical response predicted by the Drude model. Drude considered

a gas of charged particles moving under the in
uence of a time-varying electric �eld.

He realized that as the particles moved, they would collide with atoms resulting in an

e�ective frictional or damping force. This led to a Newtonian equation of motion for

the charged particles that was easily solved and provided an expression for the (optical)

conductivity. H.A. Lorentz realized that there could be an additional restoring force

acting on the electrons, resulting in a combined model now known as the Drude-Lorentz

model (it is not clear when Lorentz introduced this idea: wikipedia mentions 1905
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without reference, but Lorentz already mentions this model in his 1902 Nobel lecture

[24]).

There are di�erent derivations of the Drude-Lorentz model possible (see for example,

[21]). We follow the equation of motion approach for a single particle with chargee and

massm, moving under the in
uence of an applied electric �eld ~E. Drude assumed that

the e�ect of collisions experienced by the electron could be captured by a phenomeno-

logical force,F = � � m~v, that describes a damping force. Here � = 1=� is known as the

scattering rate. The � in Drude's model describes the average time between collisions

of the particle with atoms. The extension to the model proposed by Lorentz involves

adding an additional restoring force F = � K~x , acting on the electrons. This force

describes the approximate spring like force experienced by electrons as they move away

from the oppositely charged nucleus. The equation of motion is completed by adding

the force resulting from the electric �eld, F = � e~E(t) (note that we ignore the Lorentz

force; the prefactor of this force is proportional to 1/c and can be ignored). Newton's

law, F = ma thus gives us:

m
d2~x(t)

dt2 = � m�
d~x(t)

dt
� K~x (t) � e~E(t) (3.14)

The di�erential equation is easily solved by introducing the Fourier expansion of ~E(t)

and ~x(t), resulting in a relation between the Fourier components:

~x(! ) =
� e~E(! )

m(! 2
0 � ! 2 � i! �)

(3.15)

where ! 2
0 � K=m is known as the resonance frequency. Next we consider an ensemble

of such charges with densityn. The current density is given by ~j (t) = � en~v(t) and

after another Fourier expansion we �nd a relation between the Fourier components of

the current and the electric �eld:

~j (! ) =
ne2

m
i!

i! � � (! 2
0 � ! 2)

~E(! ) (3.16)

Comparing with Eq. (3.8) we immediately obtain an expression for ^� (! ):

�̂ (! ) =
! 2

p

4�
i!

i! � � (! 2
0 � ! 2)

(3.17)

where we introduced the plasma frequency! 2
p � 4�ne 2=m. The Drude expression for

the free charge is obtained when the spring constant is set to zero (i.e. for! 0 ! 0):

�̂ (! ) =
! 2

p

4�
1

� � i!
(3.18)
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Surprisingly, the Drude-Lorentz model is still used to this day. For the Drude model

this is due to the fact that the e�ective description of nearly-free electrons in terms of

non-interacting quasiparticles, as proposed by Landau, happens to be equivalent to the

Drude's description of a gas of charged particles. Similarly, it turns out that the proba-

bility for transitions between di�erent quantum mechanical states follows a dependence

on energy that can be described approximately by the functional form of a Lorentz

oscillator. The full optical conductivity in a solid can be written as,

�̂ (! ) =
! 2

p

4�
1

� f � i!
+

X

i

i!f 2
i

i! � i � (! 2
0;i � ! 2)

+
X

ph

i!f 2
ph

i! � ph � (! 2
0;ph � ! 2)

(3.19)

where f i=ph are called the oscillator strength. The �rst term approximately describes

the contribution to the response due to non-interacting quasi-particles. The second

term describes electronic optical transitions and the last term describes the excitation of

lattice vibrations in the solid. Other terms are in principle possible (for example, due to

spin 
ip excitations or due to a contribution from excitons), but these are not relevant

for the results presented in this thesis.

3.2 Quantum description of the electronic structure of solids

In this section, the basic theory behind the calculation of the band structure of solids

is presented. We will start from the general expression for a many-body Hamiltonian,

which is followed by the Born - Oppenheimer approximation. The band structure cal-

culation is introduced through density functional theory.

3.2.1 Many-body Hamiltonian and Born - Oppenheimer approxima-

tion

The discussion presented in the following section is taken from the book by Salasnich,

Ref. [25]. Let us considerN atoms; we therefore have a system consisting ofNP nuclei

with massesM P and electric chargeZP e and Ne electrons with massm and charge� e.

Thus, the Hamiltonian for such system is given by [25]:

Ĥ = ĤP + Ĥe + V̂P e (3.20)

where Ĥe and ĤP are the Hamiltonians describing the electrons and nuclei, respec-

tively and V̂P e is the Coulomb interaction between the nuclei and the electrons. The
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Hamiltonian of the electrons Ĥe is given by:

Ĥe = �
NeX

i =1

~2

2me
r 2

i +
1
2

NeX

i =1

NeX

j 6= i =1

e2

j~ri � ~rj j
(3.21)

where~ri is the position of the i -th electron. The �rst term describes the kinetic energy

and the second term describes the electron-electron interaction. Similarly, the Hamilto-

nian for the nuclei reads:

ĤP = �
NPX

P =1

~2

2M P
r 2

P +
1
2

NPX

P =1

NPX

Q6= P

ZP ZQe2

j ~RP � ~RQ j
(3.22)

where ~RP is the position of the P-th nucleus. The last term of Eq. (3.20) can be written

as:

V̂P e = �
1
2

NeX

i =1

NPX

P 6= i

ZP e2

j~ri � ~Rpj
(3.23)

The stationary Schr•odinger equation for the full many-body system reads:

Ĥ (r1; :::; rNe ; R1; :::; RNP ) = E (r1; :::; rNe ; R1; :::; RNP ) (3.24)

where  (r1; :::; rNe ; R1; :::; RNP ) is the full, many-particle wavefunction for all electrons

and ions in the solid.

It goes without saying that the calculation of the ground-state energy and the wave-

function of the system with (Ne + NP ) particles is a hopelessly complicated procedure.

In order to make the �rst simpli�cation, the Born-Oppenheimer approximation is often

used. This approximation is based on the fact that the mass of an atomic nucleus is

much larger than the mass of an electron and therefore the dynamics of the nuclei and

electrons takes place on very di�erent time scales. This allows us to separate the wave-

function in Eq. (3.24) into the product of two wavefunctions; one for the electron motion

and the second for the nuclear motion. Another consequence of the Born-Oppenheimer

approximation is that the potential term, Eq. (3.23), can be treated as a static poten-

tial through which the electrons move. The Schr•odinger equation for electrons moving

through a static potential landscape generated by the ion background can then be writ-

ten as [25]:

 

�
NeX

i =1

~2

2me
r 2

i + Vee(~r) + VP e(~r; ~R)

!

 e(~r) = Ee( ~R) e(~r) (3.25)

where  e(~r; ~R) and Ee( ~R) are the electronic wavefunction and the eigenenergy respec-

tively. Thus, Eq. (3.25) describes an electronic eigenstate for a particular con�guration
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of atomic positions. However, even after making the Born-Oppenheimer approximation,

the Hamiltonian is still quite complicated, and it has to be further simpli�ed by making

the single particle approximation. This approximation replaces the complicated sum

of potentials by a single e�ective potential leading to the following expression for the

Hamiltonian:

Ĥ i = �
~2

2me

X

i

r 2
i + Uef f (r i ) (3.26)

where Uef f (~r) is an approximate expression that re
ects the potential landscape (or

mean �eld) generated by all nuclei and electrons through which a single electron moves.

This expression forms the basis for the so-called tight binding approach that we learn in

solid state textbooks. A more advanced method, based on Eq. (3.25), provides a better

picture of the electronic structure of solids and is known as density functional theory.

This method is the subject of the next section.

3.2.2 Density functional theory

This section is based on the discussion provided in Ref. [26]. Density functional theory

(DFT) is based on the Hohenberg-Kohn theorems. These theorems state that the ground

state properties of a system are determined by a unique functional of the ground state

electron density � (~r). This approach reduces theN -body problem from 3N spatial

coordinates to three spatial coordinates of the density functional. Within this method,

the many-body e�ect such as electron-electron interaction is included approximately in

the exchange-correlation potential. Further, the theorems state that the ground state

properties of a system of interacting electrons can be determined by the minimization

of the total energy as a functional of electron density (see [26], page 9):

E [� (~r)] = T[� (~r)] +
Z

Vext (~r)� (~r)d~r +
Z

� (~r)d~r
Z

� (~r0)
j~r � ~r0j

d~r0+ Exc [� (~r)] (3.27)

whereT[� (~r)] is the kinetic energy of non-interacting electron gas moving in the external

potential Vext (~r). The third term of Eq. (3.27) describes the Coulomb interaction energy

which is associated with charge distribution � (~r). The last term Exc [� (~r)] represents

the exchange-correlation energy, which describes the energy di�erences between non-

interacting and interacting systems and the contribution from non-classical electrostatic

interaction. In DFT the required electron density � (~r) is expressed through a sum of

all occupied single-electron states:

� (~r) =
NX

i =1

j� i (~r)j2 (3.28)
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where � i (~r) is the single-electron eigenfunction andN is a total number of electrons in

the system. In order to minimise functional Eq. (3.27) one has to vary it with respect to

the wavefunctions � i (~r) (with additional normalisation conditions for � i (~r) [26]) which

leads to the following equation:

�
�

~2

2me
r 2 + Vef f (� (~r))

�
� i (~r) = Ei � i (~r) (3.29)

whereVef f (� (~r)) is e�ective potential, which represents static mean �eld of the electrons

and is given by:

Vef f (� (~r)) = Vext (~r) + e2
Z

� (~r0)
j~r � ~r0j

d~r0+
�E xc [� (~r)]

�� (~r)
(3.30)

where �=�� is the functional derivative. Eq. (3.27) and Eq. (3.30) are referred to as the

Kohn-Sham equations and have to be determined in a self-consistent way due to the fact

that Vef f (~r) depends on� (~r).

DFT doesn't give us the precise expression forExc [� (~r)], resulting in further approx-

imation schemes. The most widely used approximation is known as the local density

approximation (LDA) for the exchange energy, Exc [� (~r)]:

E LDA
xc [� (~r)] =

Z
� xc [� (~r)]� (~r)d~r (3.31)

where � xc [� (~r)] is the single particle exchange and correlation energy for electrons with

total density � (~r). Since Eq. (3.31) now depends on the coordinates of a single particle,

this approximation is in some sense equivalent to the single particle approximation.

Various expressions for� xc [� (~r)] have been proposed and the interested reader is referred

to Ref.[27]. Given an expression for� xc [� (~r)], Exc [� (~r)] the Kohn-Sham equations can

be solved and the electronic band structure of a particular solid can be obtained.

3.3 Optical transitions

In section 3.1 we discussed the classical description of the optical response leading to the

Drude-Lorentz model. We already hinted at the fact that this description approximately

held, even for band electrons in solids. In this section, we discuss the description of

optical properties in terms of the microscopic properties of solids. The Kubo formalism

provides the basis for understanding the interaction between light and band electrons.

However, the basic physics can be understood by alluding to the somewhat simpler

Fermi's golden rule description. We conclude this section with a brief discussion of
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optical selection rules. Some elements of the Kubo formalism will be discussed in chapter

4.

3.3.1 The relation between electronic structure and optical properties

of matter

The derivation presented in this section is taken from references [21] and [28]. We start

from the Hamiltonian describing the system in the presence of an external electromag-

netic �eld given by:

Ĥ = Ĥ0 + Ĥ int (3.32)

where Ĥ0 is the Hamiltonian in the absence of the external electromagnetic �eld. The

second termĤ int represents the interaction between the electrons and the external elec-

tromagnetic wave. The coupling we will use is derived from a minimal substitution and

second order terms of the vector potential have been neglected. In such a form the

interaction Hamiltonian is given by:

Ĥ int =
e

2mec

NX

i =1

[~pi � ~A(~ri ) + ~A(~ri ) � ~pi ] �
NX

i

e�( ~ri ) (3.33)

where ~p is the electron momentum, ~A is the vector potential and �( ~ri ) is the scalar

potential. The current density is given by:

~J (~r) = �
e2

2me

NX

i =1

[~pi � (~r � ~ri ) + � (~r � ~ri )~pi ] �
e2

mec

NX

i =1

~A(~ri )� (~r � ~ri ) (3.34)

We can use this expression to rewrite Eq. (3.33). For transverse �elds and thus � = 0,

we have:

Ĥ int = �
1
c

Z
~J (~r) � ~A(~r)d~r (3.35)

where terms quadratic in the vector potential have again been neglected. The derivation

of the optical conductivity using the Kubo formalism is rather lengthy and will not be

repeated here. Instead, we use Fermi's golden rule to approximately calculate the rate of

a transition from an initial state to a �nal state. Its derivation straightforwardly follows

from the Schr•odinger equation and can be found, for example, in Ref. [21] or [29]. The

transition rate is:

� i ! f =
2�
~

�
�
�hf j Ĥ int ji i

�
�
�
2

� (3.36)

where i denotes an initial state, f a �nal state and � is the density of �nal states.

The term in brackets is also known as the matrix element of the transition. The total

transition probability is then obtained by summing over all possible initial and �nal
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states, resulting in [21]:

W =
X

i;f

Wi ! f =
X

i;f

2�
~

�
�
�hf jĤ int ji i

�
�
�
2

f (E i )[1 � f (E f )]� [~! � (E f � E i )] (3.37)

where f (E ) is the Fermi-Dirac distribution and Em the energy of statem. The two fac-

tors involving the Fermi-Dirac distributions ensure that the Pauli principle is respected,

while the delta function ensures energy conservation. From the total absorbed power

P = ~! � W one then obtains an estimate for the real part of the optical conductivity

[21]:

� 1(!; T ) =
e2

(2�m )2 ~!

Z
d~k jhf j p̂ ji ij 2 f (~! i ; T)[1 � f (~! f ; T)]� [! � (! f � ! i )] (3.38)

Once the real part is known, one typically calculates the imaginary part of the response

by making use of Kramers-Kronig relations. The optical conductivity will thus be �nite if

the excitation energy equals the energy di�erence between two states, the initial state is

occupied and the �nal state is empty and if the dipole matrix element for this transition

is �nite. We therefore conclude this section with a brief account of the selection rules

that tell us when the dipole matrix element will be �nite.

3.3.2 Selection rules

Figure 3.1: Schematic illustration
of an optically induced transition be-
tween initial and �nal state.

The optical conductivity depends on the �nite-

ness of the dipole matrix element appearing in

Eq. (3.38). Figure 3.1 shows a schematic repre-

sentation of the excitation from an initial state to

a �nal state for which the matrix element for the

transition is given by:

M̂ i ! f = hf jp̂ji i (3.39)

wherei and f are initial and a �nal state as before.

The determination of these matrix elements for a

gas of atoms is pretty straightforward. In that case

we can have some hope to accurately calculate the

matrix elements, since the atomic wavefunctions

are known to some degree of accuracy and the tran-

sitions take place within a single atom or molecule with a well de�ned set of states and

excited states. In solids this becomes a lot more complicated because we should con-

sider a transition from the many-body groundstate wavefunction (blue shaded density
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of states in Fig. 3.1) to an excited state of the system. Within the local density ap-

proximations to density functional theory presented above, we have some idea of what

the groundstate wave function looks like, but the excited states (empty area in Fig. 3.1)

cannot be (easily) obtained within DFT. The best we can do to approximately calculate

the matrix elements in Eq. (3.39) is to take the occupied wavefunctions as initial states

and use the calculated unoccupied wavefunctions to represent the �nal states.

Although the dipole integral in Eq. (3.39) can be explicitly calculated in DFT, it is not

always easy to identify afterwards which states contributed to the optical conductivity.

Obviously, optically induced transitions have to obey conservation laws, such as energy,

momentum and angular momentum. The �rst two can be used to distinguish between

direct and indirect optical transitions. A direct transition is the equivalent of the `reso-

nant' transition known from atomic physics. In a direct transition the initial and �nal

state carry the same momentum and the excited state has an energy" f = " i + ~! , where

the latter term is the energy carried by the photon. In atomic transitions, the photon

momentum is translated into linear motion of the atom as a whole (a so-called recoil). In

solids, the photon momentum is typically absorbed by the crystal. This means that the

excitation is always inelastic to some extent. However, since the photon momentum is

orders of magnitudes smaller than typical electron momenta, one can safely ignore these

e�ects. Indirect transitions are characterized by a large momentum mismatch between

the initial and �nal states. Momentum is conserved by the simultaneous excitation or

absorption of phonon excitations. These types of transitions are crucial in explaining

spectra of most semiconductors.

The last conservation law involves angular momentum and this is the most complicated

one in solids. The spin angular momentum of the photon needs to be absorbed in the

transition. The total angular momentum ~J = ~L + ~S of the initial and �nal states should

thus di�er by one. In atomic physics this leads to relatively straightforward selection

rules (i.e. p ! d is optically allowed, but not p ! p). In solids the mixed character of

the wavefunctions complicate this picture, but sometimes one can still have some hope

to identify transitions if DFT predicts large weight on a particular orbital.

3.4 Correlation driven phase transitions and the underly-

ing topological order.

The classi�cation of matter using concepts from topological geometry has become one

of the major driving forces behind fundamental research in condensed matter physics.

This topic is intimately connected to the theory of quantum phase transitions as we
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will show in the following section. Phase transitions on their own are a fascinating

topic that have been a fundamental aspect of condensed matter physics since its early

history. In the following sections we will brie
y introduce the idea behind topological

classi�cations and the relation with quantum phase transitions. We will be mostly

interested in phase transitions resulting from the complex interplay of many electronic

degrees of freedom. The superconducting phase transition and the cross-over between

Fermi liquid and Kondo insulator are examples of such transitions, which are the topic

of this thesis. In the second half of this section we provide a brief overview of the

experimental signatures of the correlated electron physics underlying these transitions.

3.4.1 Topological classi�cations.

The concept and description of topology is a rich and very active �eld in mathematics.

It ranges from the description of topological spaces through di�erentiable functions on

manifolds to geometrical properties of surfaces and knots. Geometrical topology and the

topological classi�cation of surfaces is perhaps the most easily understandable example

that introduces some general concepts from topology that will be used in the rest of

this section. The topological classi�cation of surfaces is based around the action of

continuous smooth deformations on a surface. For example, the surface of a sphere can

be smoothly transformed (deformed) to the surface of a rectangular block or the surface

of a simple bowl. To create more complicated shapes requires puncturing the surface.

The sphere cannot be deformed to the surface of a doughnut without making a hole

in the surface. The sphere and doughnut are therefore topologically di�erent and are

distinguishable by a so-called topological invariant, known as the genusg. In this case,

the genus is an integer that describes the number of holes through a surface. Surfaces

with a di�erent genus cannot be deformed smoothly into each other.

This is one simple example of a much more abstract and purely mathematical framework.

In recent years the topological classi�cation of di�erentiable functions on manifolds has

found its way into the �eld of condensed matter physics as we will now discuss.

3.4.2 The renormalization group approach.

The relation of these concepts to condensed matter physics is not obvious, but the

description of the electronic structure of solids has been shown to adhere to a form

of topological classi�cation. This classi�cation is based on concepts borrowed from

algebraic topology and equally makes use of concepts such as topological invariants and

smooth deformations. The application of smooth deformations in physics quite naturally
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follows from the renormalization group theory, while the concept of topological invariants

was rediscovered by and attributed to Sir Michael Berry [30].

Any physical system can be described quantum mechanically by a Hamiltonian. The

eigenfunctions and eigenvalues of such a Hamiltonian are unique and fully determined

by some `tuning' parameters. Wilson's renormalization group theory [31] shows what

happens to the solutions (eigenvalues and eigenfunctions) of a model Hamiltonian when

its parameters are tuned (
ow) from one extreme to another. The renormalization 
ow

leads to the de�nition of so-called �xed points, which describe the general properties of

whole families of Hamiltonians. Such renormalization group 
ow can be used to de�ne

the concept of smooth deformations of Hamiltonians and their 'topological equivalence':

if we smoothly deform a Hamiltonian (i.e. by changing a coupling constant), the new

model is topologically equivalent if it 
ows to the same �xed point under renormaliza-

tion. If it 
ows to the exact same �xed point, this also implies that under the smooth

deformation the wavefunctions and energy spectrum do not change signi�cantly and

that observables will follow the same scaling behavior.

A pertinent example relevant to this thesis would be the Kondo-problem [32]:

H =
X

k ;�

" k cy
k ;� ck ;� + J S(0) � S (3.40)

where the �rst term describes a simple tight-binding band of non-interacting electrons

and the second term is the so-called Kondo coupling of these electrons to an impurity spin

S (through the spin density S(0) �
P

k ;� cy
k ;� � �;� 0ck ;� 0 where � �;� 0 are Pauli matrices

(for more details see chapter 5)). Renormalization group theory explains under which

conditions the solutions of a particular Hamiltonian (for a given " k and value of J )


ow to a certain �xed point. In the case of the Kondo problem there are two �xed

points: a Fermi liquid �xed point for J � 0 and the Kondo singlet �xed point for

J ! 1 . Obviously, in the absence of the Kondo coupling and at �nite density, we end

up with a Fermi liquid. The result obtained by Wilson [31] shows that if we add a �nite,

ferromagnetic interaction this result does not change. However, if the interaction is anti-

ferromagnetic the renormalization 
ow of the coupling diverges to1 for any non-zeroJ

and the system forms a Kondo singlet state. The physical result of this analysis is that

for a given real metal with anti-ferromagnetic coupling to an impurity, the conduction

electrons will always screen the impurity spin at su�ciently low temperature resulting in

the Kondo e�ect. The temperature scale below which this Kondo e�ect sets in (de�ning

the Kondo temperature), scales with the coupling strength.
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3.4.3 The integer quantum Hall e�ect.

The renormalization group approach has a natural extension to the concept of topological

classi�cation, which was �rst understood from a discussion of the two-dimensional integer

quantum Hall state [33, 34]. A thorough discussion of the quantum Hall e�ect is beyond

the scope of this thesis (many good and recent reviews can be found online. An early,

pedagogical review can be found in ref. [35]). In the simplest picture, the description of

an electron moving in 2 dimensions (2D) under the in
uence of a magnetic �eld is given

by:

H =

�
p̂ � e

c
~A

� 2

2m
(3.41)

In the Landau gauge, ~A = Byx̂, this can be shown to be equivalent to:

HB =
p̂2

x

2m
+

1
2

m! 2
c (x̂ � x0)2 (3.42)

where ! c � eB=mc is the well-known cyclotron frequency and x0 � ~kx=m! c is an

average `radius' for the cyclotron orbits (note that x0 is proportional to B � 1 as expected).

Equation 3.42 is nothing other than a quantum Harmonic oscillator problem and the

solutions are well known. In particular, the energy eigenvalues (in this case known as

Landau levels) are� n = ~! c(n+1=2) and to each eigenvalue corresponds a particular (N -

particle) eigenfunction. Landau levels come with a large degeneracyN , which depends

on the strength of the magnetic �eld B and the areaA of a piece of material:

N =
BA

�
hc
e

� =
�

2� 0
: (3.43)

Here � is the total 
ux and � 0 = 2e
hc is the 
ux quantum, a constant per electron (note:

the factor two in the numerator counts spin degeneracy). In solids, the 2D integer

quantum Hall e�ect appears when a gas of electrons is con�ned to a two-dimensional

interface. Experimentally this can be achieved by gating a thin, doped semiconductor

such as GaAs, resulting in quantum well states near the surface of the semiconductor [33].

In the absence of a magnetic �eld, the electrons behave just like a free electron gas, with

a Fermi surface and constant density of states (see �gure 3.2). When a magnetic �eld

is applied perpendicular to the 2D plane, the eigenvalues and wavefunctions undergo

a radical transformation and Landau levels are formed. However, in a given piece of

material the total number of electrons is �xed and as a consequence of Eq. (3.43),

fewer and fewer Landau levels will become occupied with electrons (see �gure 3.2) and

the Fermi level will shift from one Landau level to the next. For large ranges of �eld

strengths the Fermi level will actually be in between two Landau levels rendering the
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Figure 3.2: Left: Fermi surface (top) and density of states (bottom) for a 2D electron gas
without applied magnetic �eld. Right: Landau levels (top) and associated density of states
(bottom) in the presence of a magnetic �eld. Note that in this case the Fermi level depends on
the strength of the applied magnetic �eld.

system insulating. In experimental situations, disorder will broaden the Landau levels

in energy (lifting some of the degeneracy) and this will result in small ranges of �eld

strengths where the system becomes metallic.

The implications of the above on physical properties becomes clear if we consider the

transport behavior of such two dimensional electron gases. The experiment conducted by

von Klitzing and co-workers is relatively simple: take a two dimensional electron gas in a

perpendicular magnetic �eld (see �gure 3.3a), apply a voltage along one direction of the

electron gas (keeping a constant drain current of 1�A ) and measure the perpendicular

Hall voltage that develops. They then apply a gate voltage to control the density of

the electron gas, enabling them to tune the occupation of Landau levels starting from

zero density. As �gure 3.3a shows, the Hall voltage shows clear steps resulting from

the quantization of the electron orbits in an applied magnetic �eld as predicted by the

Hamiltonian, Eq. (3.42). At the same time the voltage that is required to keep the drain

current constant shows strong 
uctuations. From a measurement of the Hall voltage one

can de�ne the Hall conductivity as

� xy =
j x

EH
= n

eB
h

(3.44)
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Figure 3.3: (a): Original experimental observation of Ref. [33]. In this experiment the gate
voltage VG is swept at constant magnetic �eld (18 T). As the gate voltage increases the electron
density increases and more Landau levels become �lled. This results in oscillations in the voltage
drop along the Hall bar. The Hall voltage decreases with electron density and shows marked
steps at low gate voltages. The inset shows the experimental geometry. (b): Renormalization

ow diagram adapted after [36]. The diagram indicates the 
ow of the longitudinal and Hall
conductivity as function of system size. The longitudinal conductivity 
ows towards zero at a
�xed point. Depending on the density, the 
ow will be to di�erent �xed points that can be
distinguished by integer values of the Hall conductivity.

where EH is the Hall �eld and j x the applied current along the perpendicular direction

and n is the carrier concentration. A �rst important step towards understanding the

experimental observation of conductance quantization in the QHE is known as Laughlin's

argument [37]. According to Laughlin, the Hall conductance will always be quantized

in an integer times e2=h. Laughlin considered a ribbon (see Fig. 3.4a) made up out

of a 2D electron gas rolled up on itself. The resulting loop of lengthL , is periodic

along one direction and has a magnetic �eld pointing outwards, perpendicular to its

surface everywhere. In the presence of disorder,� -function like sets of Landau levels

are broadened such that extended states emerge and start to overlap with each other.

Laughlin considered the case where the Fermi level was inside the so-called mobility gap

(where the density-of-states is small at Fermi level even in the presence of disorder). In

this case, the current running along the loop is proportional to the `adiabatic' derivative

of the total electronic energy with respect to the total magnetic 
ux through the loop

[37]:

I = c
@U
@�

=
c
L

@U
@A

(3.45)

where in the last step A denotes the vector potential. Classically, this derivative should

be zero, since measurable quantities cannot depend on~A. In quantum mechanics the

vector potential plays a di�erent role as can be seen from Eq. (3.41). The Schr•odinger

equation in the presence of a vector potential ~A remains gauge invariant if we take,
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Figure 3.4: (a): a 2D electron gas is rolled up into a loop of lengthL . A magnetic �eld is
applied normal to the surface everywhere and a current is set to 
ow along the ribbon. A Hall
voltage develops between the two edges of the ribbon. (b): the density of states in the absence
of disorder represents a series of� -functions. (c): in the presence of disorder the delta functions
become extended and can start to overlap. In both cases (b,c) the Fermi level is indicated by
"F . The �gure is adapted from [37].

~A ! ~A + r � , � ! � � @�=c@tand,

 ! ei q
~c �  (3.46)

Therefore, if ~A is changed also the phase of the wavefunction must change. Laughlin

considered the case where a possible choice for� would be,

� = Ax (3.47)

where x is along the loop. Such a gauge transformation is however not allowed, unless

A = n
hc
eL

(3.48)

since it then winds an integer times 2� around the length of the loop and the wave-

function at x = 0 and x = L connect smoothly. The key point is now that the 
ux

penetrating the ring can change only in steps of a single 
ux quantum, � � = hc=e,

such that the vector potential jumps by 2� . In the absence of disorder and with the

Fermi level in between the Landau levels, no states are available in the bulk of the loop.

Therefore, if the 
ux threading the loop is adiabatically changed so that no charges

are excited over the bulk gap, it follows that the change in current must be driven by

adding electrons at the edges of the loop. Laughlin argued that the resulting change in

current is therefore driven by the transfer of n electrons from one edge of the loop to

the opposite edge and is given by [37],

I = c
neVH

� �
=

ne2VH

h
: (3.49)
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Laughlin further showed that this result could be upheld even in the presence of disorder,

as long as the Fermi level was in between Landau levels.

Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [34] provided a �nal, more rigor-

ous explanation based on a topological argument. Their work showed why quantization

was upheld even for arbitrary �lling. We qualitatively discuss this idea in terms of

a renormalization group approach that was developed by Pruisken [36]. Figure 3.3b

shows a renormalization group (RG) 
ow diagram for the quantum Hall e�ect. The ini-

tial number of electrons sets the longitudinal conductance (e.g. the conductance along

the same direction along which the initial potential is applied). As the system size is

scaled while the number of electrons is kept �xed, the longitudinal conductance 
ows

towards zero, while the perpendicular conductivity (i.e. the Hall conductivity) 
ows to

an integer times the `von Klitzing constant' (e2=h). The 
ow diagram,Fig. 3.3b, shows

that there are in fact many distinct �xed points, characterized by an integer n, that each

de�ne a distinct ground state. TKNN showed that this integer n is in fact a topological

invariant and as a result it has become known as the TKNN invariant. It can take on all

integer values and thereforen 2 Z. The 
ow diagram further indicates that the ground

state is always insulating (� xx = 0). However, in order to move from one insulating

ground state to another, the longitudinal conductivity has to become �nite, indicating

that the gap must brie
y close. In the quantum Hall experiment this is indeed observed

as an oscillation in the longitudinal voltage (Upp in Fig. 3.3a).

The interpretation of the TKNN integer takes us back to the �rst paragraph of section

3.4.1. The basic idea proposed in the TKNN work is that each of the QHE groundstates

can be described by a generalized Bloch functionu(k1; k2) that satis�es generalized

boundary conditions (k1 and k2 are two orthogonal momenta and considered to be good

quantum numbers). The function u(k1; k2) is an eigenfunction of the Hamiltonian and

describes a manifold of solutions in momentum space. TKNN showed that the Hall

conductance could be calculated using the Kubo-formula and is given by [34],

� H =
ie2

4�h

X Z
d2r

I
dkj

Z �
u� @u

@kj
�

@u�

@kj
u

�
(3.50)

where the sum runs over the occupied subbands and the integrations are over the unit

cells in r and k space respectively. The important point is that the integration over

k-space has been converted to a surface integral using Stokes theorem and that its value

(for non-overlapping subbands) must be an integer times 4�i . The value of this integer

is analogous to the genus de�ned in section 3.4.1. However, instead of measuring the

number of holes in a surface, it measures the number of times the phase of the Bloch

wavefunction winds around 2� when the integral in Eq. 3.50 is taken over a closed

surface encompassing the �rst Brillouin zone. The phase winding and its importance
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was later expounded by Berry [30] and the surface integral and this particular form of

the kernel are nowadays referred to as the Berry curvature of the Bloch functions.

3.4.4 The rise of graphene and topological order.

A few years after the seminal work by TKNN, Haldane constructed a model that demon-

strated how the quantum Hall e�ect could also arise in materials in the absence of an

external �eld [38]. Haldane showed that time-reversal symmetry breaking (such as occurs

for magnetically ordered groundstates) could give rise to a QHE without Landau lev-

els. This result demonstrated that it was possible to have topologically distinct ground

states in non-interacting electron systems. This work is nowadays considered as a �rst

example of the importance of topological order in physics and Haldane was awarded 1/4

of the 2016 Nobel prize for this contribution. At the time, Haldane considered his toy

model \unlikely to be realizable", but the discovery of graphene by Geim and Novoselov

[39] rekindled the interest in its unusual quantum Hall e�ect. At �rst glance, graphene

(a single atomic layer of graphite) appears to be a perfect 2D electron gas. There is how-

ever a crucial di�erence between the dispersion of graphene and the 2D electron gases

in semiconductors discussed above. Considering only the 2pz orbital and a hexagonal

lattice with 2 carbon atoms per unit cell (also referred to as a honeycomb lattice), the

tight binding dispersion can be shown to be:

Ek = " � 
 0

vu
u
t 3 + 4 cos

 p
3

2
kxa

!

cos
�

kya
2

�
+ 2 cos (kya) (3.51)

where " parametrizes an on-site energy, while
 0 is a hopping amplitude between neigh-

boring sites. Around the corners of the Brillouin zone (for example at the K-point

(kx ; ky)=(0 ; 4�= 3a)) the dispersion Eq. (3.51) can be Taylor expanded as:

Ek = " � vjqj (3.52)

where v = (
p

3=2)a
 0 and q is the momentum measured relative to the K (K') point of

the Brillouin zone. Equation 3.52 is a linear relation between energy and momentum

and as a result the second derivative (i.e. the inverse band mass) is zero. The elec-

trons in graphene are therefore said to behave as relativistic ormasslessfermions. In

experimentally available graphene the Fermi level sits very close to the so-called charge

neutrality point (for which " = 0), making graphene an almost perfect semi-metal with

close to zero free carrier density. By creating �eld-e�ect devices similar to the device

shown in Fig. 3.3, one can actually tune the chemical potential to the charge neutrality
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point. The linear dispersion and the existence of a charge neutrality point are remi-

niscent of the solution to the famous Dirac equation and the charge neutrality point is

often referred to as a Dirac point. These very special properties have a large impact on

the transport properties of graphene. In particular, shortly after the initial discovery of

graphene the quantum Hall e�ect was experimentally realized in a graphene 
ake [40].

The quantization of the linearly dispersing electrons in a magnetic �eld result in Landau

level spectrum that is distinctly di�erent from the solution to Eq. (3.42) and instead

reads:

� n = sgn(n)
p

2e~v2jnjB (3.53)

The most important distinction with the integer quantum Hall e�ect is the presence of

the n=0 Landau level with � 0=0 as predicted by Haldane [38]. The presence of this n=0

Landau level results in a Hall conductivity that is quantized according to

� xy = � gs(n + 1=2)
e2

h
(3.54)

where gs is the Landau level degeneracy. The additional factore2=2h gives rise to the

nomenclature `half-integer' Hall e�ect and is an implicit manifestation of a non-trivial

Berry phase [40].

Around the same time that the quantum Hall e�ect in graphene was reported, Gene

Mele and Charles Kane came with a radical prediction for a new type of quantum

Hall e�ect in graphene: the quantum spin Hall e�ect [41]. Kane and Mele started

from the same model as Haldane, but with the bene�t of new experimental insights

and the 
urry of theoretical activity at the start of the graphene era they considered

a time-reversal conserving perturbation. Their argument was fully grounded in the

use of fundamental, discrete symmetries of graphene. In contrast to previous works

they sought to construct a Hamiltonian that preserved the fundamental symmetries of

graphene (e.g. time-reversal symmetry, inversion symmetry and mirror symmetry about

the plane). The only interaction that is allowed under these conditions is the spin-orbit

(SO) interaction,

VSO(k) = � SO~h(~k) � ~� (3.55)

with � SO the spin-orbit coupling, ~h(~k) the intrinsic spin orbital �eld and ~� the spin-

operators of the conduction electrons. The function~h(~k) is a complicated function that

depends on the crystal structure. Note that under time-reversal~k ! � ~k and ~� !

� ~� , hence~h(~k) ! ~h(� ~k). This also implies that with inversion symmetry (for which
~h(~k) = ~h(� ~k)), the intrinsic SO �eld must vanish. Kane and Mele showed that for any

�nite coupling � SO, the SO interaction results in a gapped (i.e. insulating) groundstate.

The key di�erence with the work by Haldane is that the spin-orbit interaction not only
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Figure 3.5: (a): Brillouin zone boundary of graphene. There are two time-reversal invariant
points indicated (� and M ). The dashed lines form the integration contour for Eq. (3.57). Also
indicated are two zeros of the Pfa�an (Eq. (3.58)). The cross and dot indicate the opposite
vorticity of the phase of the Pfa�an. (b): the same as in (a), but now with two zeros of the
Pfa�an.

preserves time-reversal symmetry, but also that its e�ect is opposite for spin-up and

spin-down electrons resulting in a spin current [41]:

~Js =
~
2e

�
~J" � ~J#

�
(3.56)

and a corresponding spin Hall conductivity � xy = e=2� . Applying Laughlin's argument,

this spin current must be carried by edge states just as in the normal Hall e�ect. An

explicit calculation for a strip of 2D graphene shows that the bulk of such a strip is

gapped as a result of the SO interaction and that there are two edge states traversing

the gap [41]. However, the spin dependence introduced by the SO interaction lifts the

degeneracy of the spin states resulting in spin-�ltered states at each edge (allowing

quasi-particles with a certain spin to move in only one direction).

Kane and Mele quickly realized that they had uncovered a new principle that had pre-

viously gone unnoticed in condensed matter physics: topological order. In a follow-up

paper [42], they showed that the quantum spin Hall phase was in fact distinguishable

from an ordinary insulating phase by the introduction of a topological invariant similar

to the TKNN invariant introduced above. The TKNN invariant cannot be applied to

the case considered by Kane and Mele, as it vanishes in a time-reversal invariant system.

Instead, they borrowed ideas from the mathematical framework of knots and bundles to

construct a new topological invariant [42],

I =
1

2�i

I

C
d~k � r ~k log

h
P(~k) + i�

i
(3.57)

where the function P(~k) is the so-called Pfa�an,

P(~k) = P f
hD

ui (~k)
�
�
� �

�
�
�uj (~k)

Ei
(3.58)
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Here � represents the time reversal operator and the
�
�
�uj (~k)

E
are Bloch wavefunctions.

The action of the � operator on these Bloch wavefunctions can be either even or odd and

the Pfa�an distinguishes between these two cases. For even wavefunctions the Pfa�an

jP(~k)j = 1, while for odd wavefunctions P(~k) = 0. Kane and Mele showed that the

number of pairs of zeros ofP(~k) de�nes the Z2 invariant. This is illustrated in Fig. 3.5.

In Fig. 3.5a, the Brillouin zone (BZ) of graphene is shown. There are two distinct high

symmetry points in the Brillouin zone that are even under time reversal symmetry: the

� and M point (note that the middle of each vertex of the BZ is an M point). At these

points the Bloch wave functions are even with respect to � and therefore the Pfa�an

at these points is jP(~k)j = 1. Depending on the tuning parameters of the Hamiltonian,

there can be isolated points whereP(~k) = 0. Figs. 3.5a,b show two distinct possibilities:

an odd number of pairs (a) and an even number of pairs (b). Note that the zeros come

in pairs where the partners have opposite winding direction (vorticity) of the phase of

the Pfa�an. As a result of time-reversal invariance the zeros must be at ~k and � ~k and

this means that the zeros of Fig. 3.5a cannot be removed by smooth deformation of the

Hamiltonian. By changing the tuning parameters of the Hamiltonian these zeros would

have to meet at the � or M -point, but at these points the Pfa�an is jP(~k)j = 1. In

contrast, with an even number of pairs (or no pairs at all) the zeros can be eliminated

by smoothly deforming the parameters such thatk1 becomes equal to� k2. (see Fig.

3.5b). The contour integral of Eq. (3.57) counts the number of zeros in the Brillouin

zone when integrated along the dashed line indicated in Fig. 3.5 and takes on the value

0 or 1 depending on the number of zeros and their vorticity. The situation sketched in

Fig. 3.5 is not the real situation for graphene, since the crystal structure imposesC3v

symmetry. As a result the only allowed momenta for zeros of the Pfa�an are at the

corners (K and K 0 points) of the Brillouin zone. Kane and Mele showed [42] that the

invariant, Eq. (3.57), with or without spin-orbit interaction takes on di�erent values,

thus distinguishing the quantum spin Hall state from the normal insulating state.

3.4.5 Topological insulators in two and three dimensions.

The discovery of the quantum spin Hall phase and the subsequent identi�cation of the

Z2 invariant were tied together in further work by Fu and Kane [43], who established

the connection between the invariant and the edge states. Working on the problem

at the same time, Moore and Balents [44] coined the phrase "topological insulator"

to denote a material with a Z2 invariant di�erent from vacuum and generalized the

results of Kane and Mele to three dimensions. Further generalizations [45{47] of the 2D

graphene model soon followed, as well as a prediction for a system in which this new

state could possibly be observed [48]. The experimental discovery of 2D [49] and 3D [50]
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Figure 3.6: (a,b): Two possible ways to connect degenerate Kramers pairs across the Brillouin
zone corresponding to the two values theZ2 invariant can take. In (a) there is no way to
smoothly deform the Hamiltonian such that a gap opens at the Fermi level. In (b) the edge
states can be shifted in energy such that there are no states crossing the Fermi level. Therefore
(a) corresponds to the topological insulator case and (b) does not. (c): Some of the possible
phases corresponding to speci�c choices for the invariants (� 0;� 1,� 2,� 3). The � indicate the sign
of the � i (Eq. 3.59) at the indicated TRIM points. (d) Corresponding Fermi arcs for the phases
in (c) projected onto the (001) surface. Figure adapted from [46].

topological insulators marked the beginning of a new era in condensed matter physics

where topology has turned into a guiding principle to classify electronic states of matter.

With the �eld blossoming and quickly expanding from condensed matter physics to other

�elds in physics, a complete overview of the subsequent discoveries is beyond the scope

of this thesis. Instead, we will focus on a small corner where topological protection is

provided by the symmetries of a 3D cubic crystal structure with inversion symmetry.

We refer the reader interested in other aspects of topological insulators to the wide range

of available reviews and books that are now available.

Fu, Kane and Mele [46] showed how to generalize the 2D quantum spin Hall (QSH)

state to a 3D crystal. For a two dimensional crystal, Laughlin's argument can be used

to show that a special quantity, de�ned as a so-calledtime-reversal polarization (TRP),

can take on two distinct values [47]. This then de�nes a so-calledZ2 invariant that takes

on two distinct values (0 or 1, for example) and its value measures whether there is a

Kramers degenerate state at the edge of the system. The invariant can be calculated by

multiplying the TRP's at the time-reversal invariant momentum points (TRIM-point)

in the �rst Brillouin zone, Z2 =
Q

� i . The TRP for a speci�c time-reversal invariant

51



Chapter 3. A window on topological and correlated electrons.

momentum point (TRIM-point) can be calculated from � i =
Q

� k where � k is given by:

� k =
p

det [w(� k )]=P f [w(� k )] (3.59)

where P f (x) stands for the Pfa�an and w is the expectation value of the time reversal

operator between time reversed eigenfunctions,wij (k) = hui (� k)j � juj (k)i This ab-

stract invariant encodes a very beautiful physical picture (Fig. 3.6a,b): it measures how

Kramers degenerate pairs at the TRIM points in the Brillouin zone are connected. As

Fig. 3.6a,b shows, Kramers pairs can connect from one to another (a) or pairwise (b).

In the �rst case there is no way to smoothly deform the Hamiltonian such that a gap

opens at the Fermi level (apart from making a deformation that closes the bulk band

gap). In the second case the edge states can be moved in such a way that there are no

states crossing the Fermi level.

The abstract method of determining the Z2 invariant provides the basis for the gener-

alization to three spatial dimensions. However, now there are 8 TRIM-points resulting

in 16 possible phases. In ref. [46] it was shown that these con�gurations can be distin-

guished by 4Z2 invariants. These invariants are grouped together as (� 0;� 1,� 2,� 3) where

the �rst invariant, � 0, divides the 16 phases into two groups. When� 0=0 there are either

0 or 2 Dirac points on the faces of the Brillouin zone (see for example the middle two

panels of Fig. 3.6c and 3.6d). Depending on the values of the other invariants it is then

possible to have Dirac-like edge states on certain surfaces and these phases therefore

resemble a stack of 2D QSH phases. However, in this case any weak periodic potential

that doubles the unit cell will fold the Dirac points onto each other and thereby destroy

the topological edge states.

The � 0=1 phases are more interesting as they characterize the situation with an odd

number of Dirac points in the Brillouin zone. An example of such a phase is indicated

in the right hand-side column of Fig. 3.6c,d. In this case it is not possible to destroy the

edge states by a weak periodic perturbation. The invariant � 0 therefore distinguishes

between \weak" (� 0=0) and \strong" ( � 0=1) topological insulating phases. Apart from

weak periodic perturbations, the two dimensional edge states are also protected from

localization by disorder. The latter is a consequence of a Berry phase of� that the

electron wave function acquires when the electron follows a path encircling the Dirac

point [51, 52].

The topological Kondo insulator discussed in chapter 5 is in fact nothing else than a

`strong' topological insulator as described in the previous paragraphs. There are again

4 indices that characterize the phase of the Kondo insulator. The de�nition of the � k 's

is a bit di�erent. It builds on the observation, developed by Fu and Kane [47], that
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for materials with time-reversal and space-inversion symmetry the topological structure

is determined by the parity of the occupied wavefunctions at the TRIM-points. Dzero

et al. [53] used this de�nition for the speci�c case of Kondo insulators whered- and

f -bands interact strongly. Since the relevant bands around the Fermi level are made up

out of even (d) and odd (f ) parity states one can de�ne the � k 's as:

� m = sgn(" km � "f ) (3.60)

and the `strong' invariant � 0 �
Q

� m = � 1 where m runs over the 8 high symmetry

points of the cubic Brillouin zone.

This concludes the discussion of the theory of topological phases of matter. In the next

section we explore experimental signatures of topological phases and phase transitions

in optical experiments.

3.5 Experimental signatures of topological and correlated

electrons.

In this section I will brie
y discuss the limitations of optical spectroscopy when it comes

to investigating the edge states of 2D or 3D topological insulators. This will be followed

by a discussion of the areas where optical spectroscopy is a much more powerful tool:

the exploration of phase transitions in correlated electron systems.

3.5.1 Edge states in optical experiments?

The key feature that distinguishes topologically non-trivial from trivial states is the

presence of gapless edge states as discussed in the previous sections. The breakthrough

experiments that led to the blossoming of topology in condensed matter physics were

angle resolved photoemission spectroscopy (ARPES) experiments [50]. Since these �rst

experiments many materials have been discovered that feature Dirac like surface states.

In Fig. 3.7 we show a typical ARPES spectrum displaying the surface states in the

TI material Bi 2Se3 (taken from Ref. [54]). Indicated with dashed, yellow lines are the

bulk energy bands. Two linearly dispersing states connect the valence band with the

(partially occupied) conduction band, crossing each other at a Dirac point in the centre

of the Brillouin zone, 450 meV below the Fermi energy. Quantum well states resulting

from a quantization of the bulk bands in the strongly band-bending potential near the

crystal surface [55] are clearly visible below both the conduction and valence bands.
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Figure 3.7: ARPES spectrum
of Bi2Se3. The surface pro-
jected bulk bands are indicated
with dashed, yellow lines. The
Dirac point sits approximately
450 meV below the Fermi energy.
Also clearly visible are `quan-
tized' bulk bands split of from
the main bulk bands. Adapted
from ref. [54].

ARPES is the key identi�er when it comes to estab-

lishing the topological nature of a material. The appli-

cation perspective for topological materials is more to-

wards the interesting electro-magnetic properties that

are believed to emerge associated with twists in the

electronic structure [56{60]. Despite the many predic-

tions, optical spectroscopy studies reporting signatures

of the topological surface states [61, 62] are far and few

between. Instead, most works [63{65] report negative

or indirect results. So, why does optical spectroscopy

fail to detect edge states when ARPES tells us clearly

they are there?

The answer to this question is important, because in

chapter 5 I will discuss the optical properties of SmB6.

In this topological Kondo insulator a gap opens at the

Fermi level and surface states are supposed to form in-

side the hybridization gap. The gap that forms at the

Fermi level is of the order of 10 - 20 meV and that

poses a real problem for ARPES experiments to resolve the surface states (see Ch. 5

for further details). After many inconclusive ARPES reports, the scienti�c community

is looking for other means to detect signatures of the surface states.

The simple reason why optical experiments have a hard time detecting surface states

is simply a `numbers' game. As Eq. 3.18 shows, the optical response of free charge

carriers is proportional to ! 2
p = 4 �ne 2=m. In other words, directly proportional to the

free charge carrier density. Despite their name, even the most insulating topological

insulators are lightly doped semiconductors. Most of the materials discovered so far are

small bandgap, thermoelectric materials with relatively complicated crystal structures.

In such materials crystallographic defects form relatively easily and impurities are an

important factor in determining the true bulk doping [66]. Indeed, Fig. 3.7 suggests that

the bulk of Bi 2Se3 is doped with n-type carriers since the Fermi level appears to sit in

the bulk conduction band (note that due to band-bending near the crystal surface, care

has to be taken in making de�nitive statements about the bulk doping from ARPES

experiments [54]). Importantly, optical spectroscopy is a bulk probe with a probing

depth up to microns. The response measured in an optical experiment is therefore

always a combination of both bulk and surface conduction. To answer the `numbers'

question is then simply a matter of comparing the bulk and surface carrier densities.

This is somewhat complicated by the fact that the surface states are 2D in nature and its
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free carrier concentration is given per unit area. To compare the two we must therefore

make a small approximation. First we compute the relation between the bulk and surface

carrier density. We assume that the bulk Fermi surface is approximately spherical so

that we obtain a relation between the bulk carrier density and EF ,

EF =
~2

2m

�
3� 2NBD

� 2=3
; (3.61)

which holds for a 3D Fermi gas. This should be compared to the relation betweenEF

and the surface density for massless Dirac like states:

EF = ~vF (4�N SD )1=2 ; (3.62)

Figure 3.8: Calculation of the relation
between bulk and surface carrier density
based on a �t to measured ARPES disper-
sions.

Figure 3.8 shows the resulting relation be-

tween NBD and NSD based on the ARPES

data reported in ref. [54]. The typical car-

rier densities reported for Bi-based TI's is

on the order of 1012/cm 2, which corresponds

with a bulk carrier density of approximately

1018/cm 3. However, one should not forget that

the surface states are highly localized to the

surface. Clear estimates for their extent into

the bulk are not precisely known, but ARPES

experiments on thin �lms report that the sur-

face states interact when the �lm is less than

5 quintuple layers (QL) thick [67]. This places a rough bound of 2.5 QL on the extent

of the surface states, corresponding to a thickness of approximately 2.5 nm. The real

surface state carrier density should therefore be corrected for this factor and gives a

`bulk' surface carrier density of order 1011. This should be compared to estimates of

the bulk carrier density in the Bi 2� xSbxTe3� ySey family of materials, which depends

strongly on crystal quality [68] and varies between 1015-1020/cm 3. This informs us that

the ratio between bulk and surface conduction is larger than 104 in the best case. Since

the optical conductivity is directly proportional to the carrier density, we can safely

estimate that a direct observation of the surface states through a measurement of the

absolute value of the optical conductivity will probably always be below the detection

limit in optical experiments.
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3.5.2 Probing correlated electrons with optical spectroscopy.

In the �rst few sections of this chapter we discussed the classical response of a gas of non-

interacting charges and subsequently explained how the electronic bandstructure of solids

gives rise to modi�cations of this simple picture. The simple picture based on Fermi's

golden rule does however not include the e�ects of interactions between the electrons,

assuming instead that upon excitation the electronic structure does not `change'. This

picture works well for a simple metal such as copper, but not for a large class of materials

dubbed `correlated electron systems'. In such materials the perturbation of the electron

system by creating an electron-hole pair subtly, but signi�cantly, alters the entire many-

body state. In chapter 4 I will explicitly show how the optical response is altered as a

result of interactions. Here I will brie
y discuss how optical spectroscopy can be used

to study interacting electron systems. I will do this based on two `observables' that can

be derived from a measurement of the optical conductivity.

Looking back to Eq. 3.18 one notes that the optical conductivity of the non-interacting

system is characterized by three numbers: (i) the free charge carrier density, (ii) the

scattering rate and (iii) the quasi-particle mass. This gives a frequency dependence

that is essentially ! 2. How will this change if we consider a non-interacting gas? This

question is explicitly answered in chapter 4, but without any further input it is likely

that interactions will not change the carrier density. The most obvious change will be

observable as a change in the frequency dependence of the optical response. This cannot,

however, be changed randomly: the real and imaginary part of the optical conductivity

still need to obey Kramers-Kronig relations.

Without delving into the details, the changes in the frequency dependence of the optical

conductivity are best captured by assuming that in the interacting case the scattering

rate and e�ective mass become frequency dependent [69]. The complex-valued free

charge optical conductivity can then be written as

� (!; T ) = � 1(!; T ) + i� 2(!; T ) =
i! 2

p

4�
1

! + M (!; T )
; (3.63)

where ! 2
p = 4 �ne 2=m is the plasma frequency andM (!; T ) = M 1(!; T ) + iM 2(!; T ) is

the complex memory function. For a simple Drude metalM (!; T ) = i � D is frequency

independent, while interactions beyond simple impurity scattering introduce a frequency

and temperature dependence. In the latter case Eq. (3.63) is referred to as the extended

Drude model.
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Another, more convenient, way of expressing the extended Drude model is through the

optical scattering rate and optical mass:

1
� (! )

=
! 2

p

!
� 2(! )

[� 1 ;IR � � 1(! )]2 + � 2
2(! )

(3.64)

and
m(! )
mb

=
! 2

p

! 2

� 1 ;IR � � 1(! )
[� 1 ;IR � � 1(! )]2 + � 2

2(! )
: (3.65)

where we have chosen to express the scattering rate and mass in terms of the dielectric

response, highlighting the importance of the interband response,� 1 ;IR . Equations 3.64

and 3.65 provide a `simple' method to determine the impact of interactions on the optical

response. If the material under study is a simple metal a simple inversion of the measured

optical conductivity should give an approximately frequency independent scattering rate

and e�ective mass. On the other hand, the frequency dependence and the energy range

over which this deviates from the Drude result provide a direct measure of the impact

of interactions on the electrons in the solid. This approach has been widely used in the

study of the cuprate high Tc superconductors and other correlated materials (see Ref.

[3] for an overview).

There is an important caveat to keep in mind when making use of the extended Drude

model to study departures from the Drude model. The caveat is that one has to exclude

frequency dependencies arising from other sources. An almost trivial example, which

has been neglected by many, is that low energy interband transitions will equally well

change the frequency dependence. As discussed extensively in chapter 4, the extended

Drude model does not allow for an unambiguous separation of the intra- and interband

response. Even when the intra- and interband responses are well separated in energy, as

is the case in the cuprate superconductors, Eq.'s 3.64 and 3.65 show that their (frequency

independent) contribution, parameterized by � 1 ;IR , should be taken into account.

The second observable that allows us to investigate the impact of correlations, partic-

ularly across phase transitions, is the optical spectral weight. The spectral weight, or

sum rule, is a measure of the total charge in the material and is therefore not expected

to change. The sum rule is de�ned as:

SW(!; T ) =
Z 1

0
� 1(!; T )d! (3.66)

For the simple Drude model of Eq. 3.18, it is easy to check that this integral evaluates

to ! 2
p=8 and is therefore directly proportional to the charge density. When the optical

conductivity takes on a more complex form, the integral in Eq. 3.66 remains a tem-

perature independent constant and that provides the basis for its usefulness. Since in
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Figure 3.9: (a): optical conductivity and dielectric function of optimally doped
Bi2Sr2CaCu2O7+ � at two temperatures. The critical temperature of this material is 88 K. Note
the large di�erences in the optical response at low energy. The di�erence in the areas of these
two curves is the spectral weight loss recovered in the zero frequency� -function. (b) Partial sum
rules AL + D and AH (explained in the text). Images adapted from ref. [72]

practice we cannot integrate from zero to in�nite frequency, we are always bound to

evaluate so-called partial sum-rules. These partial sum rules do not immediately give

information on interactions, but they can if the spectral weight at di�erent temperatures

is compared.

One famous example of a partial sum-rule is known as the f-sum rule or Ferrel-Glover-

Tinkham sum rule [70, 71]. This sum rule applies explicitly to superconductors and

allows for a determination of the fraction of electrons that become superconducting at

the critical temperature. It states:

Z 1

0+
[� 1;NS (!; T ) � � 1;SS(!; T )] d! =

�n Se2

2m
(3.67)

where� 1;NS is the normal state, � 1;SS the superconducting state conductivity andnS the

fraction of superconducting electrons. Note that the integrals start at 0+ and in principal

should be integrated to as high a frequency as possible. The sum rule states that

the spectral weight lost at �nite frequency when a material becomes superconducting,

is recovered in a (collisionless) super
uid condensate atzero frequency (the perfect

diamagnetic response).

A recent example of the application of this sum rule was reported in Ref. [72], the main

result of which is shown in Fig. 3.9. Panel 3.9a shows the optical conductivity of an

optimally doped high-T c cuprate superconductor in the normal (300 K, full curve) and

superconducting (15 K, dashed lines) state. At low energy (< 0.25 eV) the 15 K data

is clearly below the 300 K curve, indicating a loss of conductivity or spectral weight

(area of � 1(!; T )) at these frequencies. Since the dashed curve is always below the full

curve, this spectral weight is not recovered in the measured experimental range. The
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loss is a result of the electronic reorganization that takes place when the material enters

the superconducting state. First of all, a gap of size 2� opens at the Fermi level. In a

`clean' superconductor at zero temperature, this gap opening would result in a complete

removal of spectral weight below 2�. At �nite temperature, there is some conductivity

expected below the gap edge as a result of thermal excitation of Cooper pairs. In this

particular case a lot more conductivity is visible. This is a result of thed� wavegap that

characterizes the superconducting state in these materials. Nevertheless, a signi�cant

amount of spectral weight appears to be lost and this weight is transferred to a (non-

visible) super
uid condensate at zero frequency. This condensate is not accessible in

measurements of the optical conductivity (we note that as a consequence of the Kramers-

Kronig relations, the dominant frequency behavior of � 1(! ) is changed from! � 1 to ! � 2

and this can be measured [73]). As panel 3.9b shows, the changes in spectral weight

are continuous as a function of temperature down to the critical temperature, Tc. The

functions AL + D and AH are de�ned as follows. Firstly, the total measured integrated

spectral weight is de�ned as AL +A H :

SW(T) =
Z 
 L


 0

� 1(!; T )d! +
Z 
 H


 L

� 1(!; T )d! (3.68)

Secondly, the zero frequency spectral weight is de�ned as:

D(T) = SW(T) � SW(300K ) (3.69)

Figure 3.9b shows the functions,

AL + D (T) = D(T) +
Z 
 L


 0

� 1(!; T )d! (3.70)

and

AH (T) =
Z 
 H


 L

� 1(!; T )d! (3.71)

Equation 3.70 is integrated in [72] up to 
 L = 1.25 eV. As Fig. 3.9a shows this cor-

responds to the minimum in the optical conductivity and is taken as the separatrix

between free and interband responses. For temperatures above Tc, the spectral weight

decreases quadratically with temperature, which is a direct consequence of the temper-

ature dependence of the scattering rate.

SinceAL + D (T) includes the zero frequency� -function, one expects no signi�cant change

at the critical temperature. The remarkable observation made in Ref. [72] is that at

the critical temperature AL + D (T) shows a sudden upturn and increases faster than

expected from the normal state trend. The authors of Ref. [72] subsequently point

out that this additional spectral weight is removed in the visible range of the spectrum
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by calculating AH (T) with cuto� frequencies 
 L = 1.25 eV and 
 H = 2.5 eV. In this

energy range the optical conductivity shows a broad structure that can only be an

interband transition. These structures are believed to arise from transitions between

the charge transfer bands situated well away from the Fermi level (approximately 1

eV below and above the Fermi level). These experiments have been performed with

remarkable accuracy, allowing the authors to conclusively demonstrate that spectral

weight is transferred from the visible part of the spectrum to the low energy part of

the spectrum. This is an indirect demonstration that a reorganization of the electronic

structure on the scale of the Coulomb interaction (U� 2-4 eV) takes place in these

materials and a signature of the unconventional nature of the superconducting state.

In Chapter 5 I will use a similar argument to show that spectral weight in SmB6 is trans-

ferred over energy scales associated with the Coulomb energy. In this case a transition

from a bad metal to a Kondo insulating state takes place and there is no� -function to

be detected. Spectral weight that is removed below the energy gap is instead expected

to be recovered in the energy range just above the gap edge. I will use partial sum rules

in a similar way as discussed here to show that spectral weight is lost in the entire mea-

sured energy range. This spectral weight is likely recovered in an interband transition

associated with the f -level multiplet.
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Chapter 4

Fermi liquid like groundstate in

an iron-pnictide superconductor.

4.1 Introduction.

Strong electronic correlations and Mott physics have played an important role in shaping

our understanding of high-Tc superconductivity (HTSC) [74]. With the discovery of the

iron-pnictide family of HTSCs, a new playground to study correlation e�ects has emerged

[75]. Unlike the cuprate HTSC, the pnictides are properly classi�ed as moderately

correlated semi-metals [76]. By studying their normal state properties a new picture

has started to emerge [77], where intra-atomic exchange processes (Hund's coupling)

govern the degree of correlation e�ects. In the resulting \Hund's metal" state [78],

Hund's coupling reduces the propensity towards a strongly correlated Mott insulating

state, while simultaneously reducing the coherence temperature below which Fermi liquid

(FL) properties emerge. A strong dependence of the nature of this Hund's metal state on

orbital �lling has been found, providing a natural explanation for the di�erences between

hole- and electron-doped pnictides [75, 79]. Recently, Werneret al. showed [80] that the

combined e�ect of dynamic screening (manifested through a single particle self-energy,

�( !; T )) and orbital occupancy results in a Fermi-liquid like state in electron-doped

pnictides, while a spin-freezing transition separates an incoherent metal regime from the

FL regime in hole-doped materials (for a more extensive review of the role of Hund's

coupling in the iron-pnictides, see Ref. [75]). A clear experimental identi�cation of

both these regimes is currently lacking. In this chapter I provide direct experimental

con�rmation of the Fermi liquid state in the electron-doped case. Before turning to

my results, I will provide a brief introduction to the iron-pnictide superconductors. I

then introduce the optical data measured on two single crystals grown in Amsterdam.
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Making use of the high temperature stability of the cryostat, I present a novel way

to display the temperature and frequency dependence of the optical response. Model

calculations of the optical response of a Fermi liquid display remarkable agreement with

the experimental results and provide a strong indication that the normal state of the

investigated single crystals is indeed Fermi liquid like.

4.2 Iron-pnictide superconductivity.

4.2.1 Discovery of a new family of high temperature superconductors.

One of the key topics driving research in the �eld of condensed matter physics has been

superconductivity. Superconductivity is the principal example of the exceptional behav-

ior that electrons display under the in
uence of the rules of quantum mechanics. Indeed,

superconductivity is a macroscopic manifestation of the e�ects of quantum statistics on

charged, fermionic particles. First explained by Bardeen, Cooper and Schrie�er, the

theory of superconductivity has developed into a quantitative framework that explains

global properties of superconductors (e.g. the critical temperature and superconduct-

ing gap size). The framework is based on the so-called Migdal-Eliashberg theory of

electron-phonon driven superconductivity and describes the properties of most elemen-

tal superconductors.

Initially, it was believed that the critical temperature was limited to a maximum of

about 40 degrees Kelvin. The argument was based on the observation by Cohen and

Anderson [81] that the dielectric function posed constraints on the stability (and thus

existence) of crystals. These arguments were later partially refuted by Dolgov and

Maksimov [82], but the dispute ended abruptly in 1986. In that year Bednorz and

Mueller announced they had discovered a new type of superconductor with an unusually

high critical temperature of 35 K [83]. Albeit the highest critical temperature to date,

T c was still within the bound proposed by Anderson. This all changed a few months

later when the discovery of superconductivity was announced in YBa2Cu3O7� � with a

critical temperature of 93 K, well above the boiling point of liquid nitrogen [84]. This

work led to the discovery of a whole family of materials with high transition temperatures

nowadays colloquially referred to as 'the cuprates'. It quickly became clear that these

materials did not �t well within the paradigm of superconductivity mediated by the

electron-phonon interaction. Several aspects (other than the unusually high Tc) hinted

at a new mechanism underlying the unusual properties of these materials. Among these

are the strongly correlated metallic state from which the superconductor forms and the

d-wave pairing symmetry of the order parameter, or superconducting gap. To this date
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Figure 4.1: Crystal structures of the di�erent members of the iron-pnictide superconductors
with increasing structural complexity from left to right. The yellow box highlights the common-
ality between these di�erent structures: the Fe-As plane. Image adapted from [86].

these aspects have eluded a thorough theoretical treatment and the physics of high Tc's

remains at the forefront of condensed matter research.

The discovery of a second family of high Tc superconductors took a little more than

twenty years. In 2008, Hideo Hosono and his group announced that they had discovered

a new superconductor in a so-called oxy-pnictide compound, La[O1� xFx ]FeAs [85] with

a critical temperature of T c � 26 K. The announcement resulted in a 
urry of papers

reporting superconductivity in several closely related materials, now referred to as the

family of iron-pnictides. In the following sections I will show that the various members,

like the cuprates, have some commonalities in their crystal structure and electronic

properties, which likely hold the key to the unconventional superconducting state and

high critical temperature.

4.2.2 The versatility of the iron-pnictide crystal structure.

There are various crystal structures that belong to the family of iron-pnictide supercon-

ductors. An overview is given in Fig. 4.1, which is adapted from Ref. [86]. Within

the groups of individual crystal structures, several materials typically can be found that

display superconductivity or some other form of electronic order. The chemical compo-

sition of the various structures is used as shorthand to distinguish them. Examples are

`11' for the FeSe structure and related compounds, `Li-111' for LiFeAs or `Na-111' for

NaFeAs. In this thesis we will only be concerned with the `122' crystal structure and
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the Ba-122 crystal structure in particular. After the original discovery by the Hosono

group, it quickly became clear that the electronic properties were largely determined by

so-called iron-arsenide planes (see below). With this idea in mind the focus shifted to

other compounds featuring FeAs planes and BaFe2As2 was the �rst material discovered

to be also superconducting [5]. This discovery established the importance of the FeAs

planes and resulted in the wealth of new superconducting materials displayed in Fig.

4.1. Despite the wealth of possible materials to study, the BaFe2As2 family remains the

most widely studied compound. The main reason for this is the relatively simple crystal

structure and necessary growth conditions. The thermodynamic phase diagram for this

compound is relatively simple and this enables the growth of large, homogeneous single

crystals. Moreover, the electronic properties can be tuned with a large variety of di�erent

methods (chemical substitution, pressure etc.) enabling the study of superconductivity

in this material from several di�erent angles.

The crystal structure of Ba-122 is shown in Fig. 4.2, together with a top view of the FeAs

plane. The tuning of electronic properties can be achieved through chemical substitution

on each of the atomic sites in the unit cell. For example, Ba can be partially replaced by

K resulting in an e�ective `hole'-doping (i.e. a lowering of the chemical potential with

respect to the bandstructure.). Electron doping (raising the chemical potential) can be

achieved by Co substitution, while chemical pressure (no change in chemical potential)

can be achieved by substitution of As with P. The bands dominating the electronic

structure near the Fermi level mostly derive from Fe 3d states with some admixture

of As 4p states. In this thesis we will focus on electron doped Ba-122. The relevant

substitution to achieve electron doping is by replacing Fe with a small percentage of

Co (Co atoms are indicated in Fig. 4.2b in green). The electronic properties strongly

depend on this substitution as is clear from Fig. 4.2c. In �gure 4.2c, a phase diagram

has been constructed based on measurements performed on a series of single crystals

with increasing Co concentration. The electronic phases are determined by transport

(resistivity and susceptibility) experiments, which were initially performed by Mr. R.

Huisman on crystals grown by Dr. Yingkai Huang in Amsterdam [87].

The parent compound Ba-122 is an anti-ferromagnetic (AFM) metal at low temperature.

The anti-ferromagnetic order is destroyed with increasing temperature by the excitation

of spin waves, resulting in a phase transition to a paramagnetic state at 130 K. This

transition is accompanied by a structural transition from orthorhombic to tetragonal.

As some of the Fe is substituted by Co, both transition temperatures decrease until

the AFM phase is completely suppressed at a Co concentration of approximately 12

%. The exact doping where this happens is however obscured by the emergence around

6 % doping of a superconducting phase. With increasing Co substitution the critical
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Figure 4.2: (a): Prototypical 122 crystal structure. Red and yellow balls represent the Fe and
As ions, respectively. Blue represent Ba ions. (b): top view of the FeAs plane. Also indicated are
a few green balls where Co atoms are substituted. (c): phase diagram determined by measuring
transition temperatures [87]. Three di�erent transitions are observed: (i) structural (T � ), (ii)
magnetic (T � ) and (iii) superconducting (T c). These transitions separate the anti-ferromagnetic
metal (AFM) from the superconducting (SC) and paramagnetic metal (PM) phases.

temperature rises, reaching a maximum of approximately 25 K at a Co concentration of

17 %.

4.2.3 General features of the electronic structure of iron-pnictides.

In the early days of iron-pnictide research it was speculated that these materials could

shed new light on the long-standing problem of high Tc superconductivity in the cuprates.

This idea was quickly abandoned once the basic features of the electronic structure be-

came clear [88]. At �rst glance the basic crystallographic building blocks of the iron-

pnictides and cuprates are very similar. In the former, conducting Fe-As layers are

separated from each other by an `insulating' Ba layer, while in the cuprates Cu-O planes

are decoupled by (more complicated) oxide layers. In both cases 3d transition metal ions

(Fe and Cu) form an approximately square lattice where the bond between individual

transition metal ions is through an anion (As or O, respectively). In the cuprates this

Cu-O network is fundamental in determining its overall electronic features, resulting in

the formation of a so-called charge transfer insulator [89]. In contrast, the overall elec-

tronic structure of the iron-pnictides seems to be mostly determined by the Fe square

lattice with only a minor role for the As anions (although there are reports that attribute

an important role to the anions [90]). The di�erence is a result of a small buckling of

the Fe-As plane by which As anions are alternatingly placed slightly above and below

the Fe layer (see Fig. 4.2a). This buckling results in a doubling of the unit cell and,

consequently, a folding of electronic bands in the Brillouin zone.
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Figure 4.3: (a): Bandstructure for BaFe2As2 calculated within the GGA approximation to
DFT. The hole-like bands around the �-point (red) have mostly dxz=yz character, while the
electron-like bands at the M -point (blue) have a mostly dx 2 � y2 character. Panel adapted from
ref. [91]. (b): schematic representation of the Fermi surface sheets in the Brillouin zone.

The band structure for BaFe2As2 has been calculated using density functional theory

(DFT) by many authors. In Fig. 4.3 we show calculations from Ref. [91]. These

calculations show that the main bands around the Fermi level derive from the Fe 3d-

orbitals with a strong variation of weights of the di�erent 3 d-orbitals throughout the

Brillouin zone. Around the �-point three hole like bands are found (indicated in red) and

two electron like pockets around theM -point of the Brillouin zone (indicated in blue).

A schematic picture of the resulting Fermi surfaces is shown in Fig. 4.3b. The placement

and shapes predicted by DFT calculations lend themselves perfectly for a scenario where

superconductivity is a result of pairing mediated through anti-ferromagnetic 
uctuations

[92]. The spin susceptibility associated with anti-ferromagnetic spin waves peaks at a

wave vector of (� ,� ) and as indicated in Fig. 4.3b such a wavevector provides a good

`nesting' of the electron and hole like Fermi surfaces. Despite the early prediction that

this could result in an instability of the normal state, no conclusive evidence for this

scenario has been presented.

The overall electronic structure as measured in angle resolved photoemission spec-

troscopy (ARPES) experiments seems to match quite well with the band structure

predicted by DFT after an overall scaling of the bandwidth is taken into account. An

example of a typical intensity distribution map, I (k; E ), is shown in Fig. 4.4a. Indeed

a hole like band is observed around the �-point, while an electron-like band is observed

around the M -point in the Brillouin zone (at
p

2�=a ). Also shown is a 10-orbital tight

binding model [93], with parameters optimized to match the measured band structure.

Compared to the DFT calculations the overall bandwidth of the tight-binding bands
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had to be renormalized by a factor of approximately 1.5. This renormalization has been

taken as evidence that this material is moderately correlated with the renormalization

resulting from electron-electron interactions [94], a conclusion similar to the one obtained

based on optical spectroscopy experiments [76].

The measured Fermi surface is shown in Fig. 4.4b and also agrees well with the calculated

Fermi surface. There is however one crucial di�erence with the predicted Fermi surface:

in Fig. 4.4b an additional Fermi surface sheet is clearly visible around theX -point of the

Brillouin zone. The origin of this additional Fermi surface sheet turns out to point to an

important problem when it comes to the interpretation of ARPES experiments. It was

�rst pointed out by Massee et al. that the cleaved surface of Ba-122 crystals as observed

by scanning tunneling microscopy showed signs of surface reconstructions [95]. This

observation was later con�rmed and completely quanti�ed by van Heumen et al. using

low energy electron di�raction (LEED) experiments [96]. These authors determined the

surface crystal structure from their LEED experiments and used this as input for DFT

slab calculations. They observed that there are two di�erent possible cleavage surfaces,

each characterized by a di�erent long range ordering of the 1=2 Ba layer that remains

at the surface after a crystal is cleaved. In particular, they showed that cleaving results

in 2 � 1 and
p

2 �
p

2 reconstructions. Based on the re�ned surface crystallographic

structure, DFT slab calculations then predict the emergence of additional Fermi surface

sheets around theX -point in the Brillouin zone. This additional Fermi surface sheet

arises from Ba derived states and it was shown in Ref. [96] that there are in fact many

surface bands that overlap with the bulk bands. This provides a natural explanation

for the relatively broad energy bands observed in the ARPESI (k; E ) map of Fig. 4.4a:

rather than a being a single band there are in fact several overlapping bands, closely

spaced in energy and momentum, that appear as a single band with a large scattering

rate. This rules out a more detailed analysis of ARPES line shapes of the entire family

of M122 iron-pnictide superconductors (M=Ca, Sr, Ba) that could provide indications

of electron-electron correlation e�ects. Similar surface reconstruction e�ects have also

been observed for the 1111 family of materials [97] and this seemed to make ARPES

a very ine�ective tool for the study of electron-electron correlations in the pnictides.

However, the 11 and 111 families turn out to provide a good cleavage surface and provide

important information on the impact of correlations on the electronic structure of the

iron-pnictides [98, 99].

4.2.4 Signatures of Fermi liquid behavior in the optical response.

Before discussing the experimental results, I will �rst describe how optical experiments

can be used to detect signatures of (non-) Fermi liquids. As was discussed in Ch.
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Figure 4.4: (a): ARPES intensity distribution map, I (k; E ), measured on as-grown
BaFe1:83Co0:17As2 with 74 eV photon energy. Also shown are tight-binding bands (yellow)
of a 10 orbital model [93] with parameters optimized to match the measured dispersions. The
data was taken from Ref. [96].

3 and further below, one of the key models to study correlation e�ects with optical

spectroscopy (the extended Drude model) cannot easily be applied to the study of iron-

pnictide superconductors. We therefore developed a framework to address the impact

of correlations on the optical response and this will be described in this section. The

extended Drude model is given by (see Ch.3):

� (!; T ) = � 1(!; T ) + i� 2(!; T ) =
i! 2

p

4�
1

! + M (!; T )
; (4.1)

where ! 2
p = 4 �ne 2=m is the plasma frequency andM (!; T ) = M 1(!; T ) + iM 2(!; T ) is

the complex memory function.

The frequency and temperature dependent optical conductivity for interacting electrons

can be obtained from the Kubo formalism as �rst derived by Allen [100]. This so-called

Allen-Kubo formula for the optical conductivity is given by,

� (!; T ) =
! 2

p

i 4�!

+ 1Z

�1

nF (! + x; T ) � nF (x; T )
! � �( x + !; T ) + � � (x; T ) + i � imp

dx (4.2)

wherenF are the Fermi-Dirac distribution functions and �( !; T ) = � 1(!; T )+ i � 2(!; T )

is the so-called single-particle electron self energy. These self-energy functions describe

the modi�cation of the quasi-free electron dispersion and scattering rate as a result of

residual interactions. Comparing Eq. 4.1 and Eq. 4.2, we see that there is a (integral)

relation between the single-particle self-energy and the memory function. The single

particle self-energy thus manifests itself in the free charge carrier response, appearing

as a deviation from a classical Drude response. This makes optical spectroscopy a
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powerful tool to probe self-energy e�ects [3] as a function of frequency and temperature

simultaneously.

If we consider a Fermi liquid (FL) where the residual interactions are `local', �( !; T )

follows a universal quadratic dependence on both energy and temperature. In this con-

text `local' is taken to mean that the residual interaction is considered to be momentum

independent. For such a local Fermi liquid � 2(!; T ) takes on the form [101]:

� 2(!; T ) = �
i

�k B T0

�
(1 + a)(~! )2 + ( �k B T)2�

(4.3)

where an additional elastic resonant scattering contribution has been added, parame-

terized by the value of a. This additional parameter is a phenomenological parameter,

which was introduced by Maslov and Chubukov [101] as explained below.kB T0 is an

overall energy scale characterizing the correlation strength.

The real part of the self-energy can be obtained from Eq. 4.3 by Kramers-Kronig

transformation. In real materials, we need to take into account that we have a �nite

bandwidth. In this case we can modify Eq. 4.3 to [101, 102],

� 2(!; T ) =

8
>><

>>:

1
�k B T0

[(1 + a)(~! )2 + ( �k B T)2] 0 < j! j < ! c

1
�k B T0

[(1 + a)(~! c)2 + ( �k B T)2] ! c < j! j < D

0 D < j! j

; (4.4)

whereD represents (a fraction of) the total bandwidth. We have also introduced a cuto�

frequency ! c above which the Fermi liquid response turns into a frequency independent

scattering. To facilitate the calculation of the optical response for such a self-energy, we

derived an analytical expression for the real part of the self-energy by Kramers-Kronig

transformation. The real part, � 1(!; T ), is given by

� 1(!; T ) = (1+ a)
� 2kB T0

2!! c + (1+ a)
� 2kB T0

(! 2
c � ! 2)

h
log

�
jD � ! j
j! c � ! j

�
+ log

�
j! c+ ! j
jD + ! j

�i

+ � 2 (!;T )
� log

�
jD � ! j
jD + ! j

�
(4.5)

for 0 < j! j < ! c,

� 1(!; T ) =
(1 + a)
� 2kB T0

2!! c +
(1 + a)
� 2kB T0

(! 2 � ! 2
c ) log

�
j! c � ! j
j! c + ! j

�
+

� 2(! c; T)
�

log
�

jD � ! j
jD + ! j

�

(4.6)

69



Chapter 4. Fermi liquid like groundstate in an iron-pnictide superconductor.

for ! c < j! j < D , and

� 1(!; T ) =
(1 + a)
� 2kB T0

2!! c +
� 2(!; T )

�
log

�
j! c � ! j
j! c + ! j

�

+
� 2(! c; T)

�

�
log

�
jD � ! j
j! c � ! j

�
+ log

�
j! c + ! j
jD + ! j

��
(4.7)

for ! > D .

In ref.'s [101, 102] an approximate expression for the memory function was derived,

based on the energy and temperature dependent �2(!; T ) (Eq. 4.3). These authors

found that for a Fermi liquid, at low enough temperature, the memory function should

have the following form:

M 2(!; T ) =
2

3�k B T0

�
(1 + a)(~! )2 + (2 �k B T)2�

(4.8)

Summarizing, the Kubo-Allen formula Eq. 4.2 combined with Eq. 4.3 predicts that

the optical response for a Fermi liquid deviates from the basic Drude response and that

this deviation is given by Eq. 4.8. Based on the work by Maslov and Chubukov [101]

and later the work of Berthod et al. [102], several groups experimentally tested these

predictions [103{107] in purported Fermi liquid materials. In these works a slightly

modi�ed Eq. 4.8 was used, namely:

M 2(!; T ) =
2

3�k B T0

�
(~! )2 + ( p�k B T)2�

; (4.9)

where a = ( p2 � 4)=(1 � p2)[101]. For a local FL (a = 0) one expects p = 2, however

in most experiments deviations from this value are observed. To date the only known

example with p = 2 is Sr2RuO4 [108], while p 6= 2 has been reported for several other

materials [103{107].

When applied to the iron-pnictide superconductors, the accurate determination ofM (!; T )

is hampered by the presence of low-lying interband transitions. In the following we �rst

show that M (!; T ) extracted for carefully annealed BaFe2� xCoxAs2 single crystals in-

deed displays the characteristic!; T -scaling predicted by Eq. 4.9. We then introduce an

analysis of the complex optical conductivity that represents a direct con�rmation of the

Fermi liquid normal state of these electron doped iron-pnictides . This is made possible

by the 2 K temperature resolution in our experiments, which allows us to compare the

detailed frequencyand temperature dependence with similar resolution.
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Figure 4.5: Two crystals were measured: as-grown (blue) and annealed (red) crystals. (a) dc
resistivity with an approximate T2 dependence up to 300 K. The little kinks at 70 K and 220 K
are experimental artifacts. The inset shows an enlarged view of the superconducting transitions
to the zero-resistance state. (b) dc susceptibility measured in a 40 Oersted �eld. As the inset
shows the onset of the transition takes place at signi�cantly higher temperature compared to the
temperature where the full volume of the crystal becomes superconducting.

4.3 Optical properties of electron doped iron-pnictide su-

perconductors.

4.3.1 Crystal growth and characterization.

A large 4 x 5 x 0.1 mm3 single crystal of BaFe1:8Co0:2As2 was grown from self-
ux. Its

chemical composition has been determined with electron probe microanalysis, resulting

in the determination of a Co concentration, x = 0.195. We subsequently cut the crystal

into two pieces and annealed one piece for 75 hours at 800°C. The dc resistivity and

susceptibility were measured for both pieces, see Fig. 4.5. The resistivity shows a

signi�cant enhancement of the critical temperature from 18 K for the as-grown crystal to

25.6 K in the annealed crystal. The dc susceptibility shows an onset to superconductivity

at similar temperatures, but the full Meisner volume is obtained at somewhat lower

temperatures. A similar increase in Tc has been previously reported in [109].

4.3.2 From re
ectivity to optical conductivity.

The details of the experiments have been extensively described in Chapter 2. The re
ec-

tivity for the pnictide crystals studied in this chapter is shown in �gure 4.6, at selected

temperatures. For the as-grown crystal we observe the opening of the superconducting

gap below 18 K as can be seen in panel 4.6c. The superconducting gap manifests itself

as a small upturn at low frequency. Below the gap edge, the re
ectivity has to be unity,
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Figure 4.6: Re
ectivity of the as-grown (a,c) and annealed (b,d) crystals at selected tempera-
tures. (e): comparison between the two crystals at selected temperatures.

as there are no excitations possible inside the superconducting gap. The somewhat

smaller crystal size (2 x 1 x 0.1 mm3) for the annealed crystal complicated the accurate

determination of the re
ectivity below 10 meV. This is most likely due to di�raction

e�ects becoming important at these longer wavelengths. Figure 4.6e compares the low

frequency re
ectivity of the annealed and as-grown crystals. Based on the higher re
ec-

tivity of the annealed crystal one can immediately observe that the overall scattering

rate has decreased, assuming that the charge carrier concentration has not signi�cantly

changed. In a �rst step the re
ectivity data is modelled using a Drude-Lorentz model

with parameters optimized by a least-square Levenberg-Marquardt routine [23]. We

tried di�erent models to determine the robustness of the modeling, as we want to use it

later on in the extended Drude analysis. The Drude-Lorentz models presented in table

4.1 (see below) for both crystals (i) gives the lowest� 2, (ii) consistently describe our

optical data at all temperatures and (iii) are nearly identical for both crystals as one

might expect. Based on this model and the full re
ectivity data we use a variational

dielectric function routine developed in [22] to extract the optical conductivity, as will

be discussed in the next section.
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Figure 4.7: (a, b): Comparison of the real part of the optical conductivity � 1(! ) for as-grown
(T c � 18 K) and annealed (Tc � 25 K) BaFe1:8Co0:2As2 at selected temperatures. The most
signi�cant, annealing induced change is a reduction of a broad incoherent background that is
most clearly seen by the deeper minimum around 70 meV separating the free charge and inter-
band optical conductivity.

4.3.3 Optical conductivity.

Figure 4.8: Experimental spectrum for
the annealed crystal at 40 K (symbols)
and the decomposition in oscillators (solid
lines) corresponding to the parameters
given in table 4.1. Note that the two Drude
components are plotted as a single curve
(black).

The in-plane optical conductivity of as-grown

and annealed BaFe1:8Co0:2As2 are shown in

Fig. 4.7a and 4.7b, respectively. After an-

nealing we observe a decrease in the depth of

the minimum around 70 meV separating the

free-charge and interband optical conductiv-

ity. To pin-point its origin we turn to a stan-

dard Drude-Lorentz modeling of the data. The

decomposition of the optical conductivity of

both as-grown and annealed crystals in Drude

and Lorentz terms is given in table 4.1. We

�nd that the intraband contribution can be de-

scribed by two relatively narrow Drude terms

and a low energy Lorentz oscillator. The inco-

herent background extending to low energy is

captured by a high energy oscillator (labeled as number 7 in table 4.1). Upon annealing,

the width of this oscillator decreases, resulting in a much weaker contribution at low

energy. This e�ect can be clearly seen in the optical conductivity data by comparing

the depth of the minimum (at 70 meV) separating the intra- and interband response.

Apart from this di�erence in the incoherent background, the Drude-Lorentz models are

nearly identical, indicating that the annealing results in a rather subtle change of the

intraband response. Put di�erently, annealing does not signi�cantly change the overall
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Table 4.1: The high-frequency dielectric constant � 1 � 9. ! j is the centre frequency of an
oscillator, ! pj its area (Drude terms) or oscillator strength and 
 j is the width. All values
reported correspond to 40 K data.

as-grown
j 1 2 3 4 5 6 7 8

~! j (eV) 0 0 0.01 0.12 0.67 0.92 1.6 1.82
~! pj (eV) 1 0.96 0.42 0.59 2.49 1.96 14.56 3.65
~
 j (eV) 0.005 0.065 0.01 0.12 0.58 0.73 14.55 1.84
annealed
~! j (eV) 0 0 0.011 0.13 0.68 0.87 1.6
~! pj (eV) 1.1 0.8 0.51 0.72 1.28 1.62 14.95
~
 j (eV) 0.0034 0.064 0.01 0.13 0.39 0.72 9.48

electronic structure (such as a large chemical potential shift), and the high-energy op-

tical properties are mostly una�ected. The optical conductivity of the annealed crystal

at 40 K and its decomposition in terms of the oscillators from Table 4.1 is shown in Fig.

4.8 for completeness.

4.3.4 Spectral weight analysis

Once the optical conductivity is known, we can calculate derived quantities such as

the optical spectral weight. The spectral weight can be used to further quantify the

annealing induced changes in the optical response and is a necessary ingredient for the

determination of the memory function. An interesting quantity is the plasma frequency,

which is the integrated intra -band optical conductivity. Unfortunately, as the previous

section shows, interband transitions are present in the entire energy range and it is

not clear how to separate the two. As discussed in Chapter 3, the spectral weight is

obtained by integrating the real part of the optical conductivity over frequency up to a

cuto� frequency ! c:

SW(! c; T) =
Z ! c

0
� 1(!; T )d! (4.10)

Figure 4.9 shows the integrated spectral weight as function of cuto� frequency! c. For

both crystals we �nd that the integrated spectral weight is nearly temperature indepen-

dent for ! c � 100 meV, corresponding roughly to the minimum in the optical conductiv-

ity presented in Fig. 4.7a,b. At this point the integrated spectral weight SW(! c; T) �

3.1� 0.15 � 106 
 � 1cm� 2 (as-grown) and SW(! c; T) � 3.4� 0.15 � 106 
 � 1cm� 2 (an-

nealed). If we assign this spectral weight in both cases entirely to the intraband response

we obtain values for the plasma frequencies of:! p � 1.35 eV (as-grown) and! p � 1.4

eV (annealed). Given the error bar on the estimation ofSW(! c; T) we use! p � 1.4 eV

for both crystals.
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Figure 4.9: Spectral weight of the as-grown (a) and annealed (b) crystals at selected temper-
atures.

4.4 Experimental signatures of the Fermi liquid state.

Subtle changes in the free charge carrier response are more easily analyzed in terms of

equations (4.1) and (4.9), but the extended Drude model analysis assumes that interband

transitions do not contribute to the optical conductivity in the energy range of interest.

The multi-band nature of the pnictides complicates the extraction of M (!; T ) since

inter-band processes have a signi�cant contribution to the optical conductivity [6, 7,

110, 111]. In the next section I will �rst describe the procedure used to extract the

memory functions and explain how we determined the range of validity.

4.4.1 Extended Drude analysis: interband contributions and range of

validity.

As discussed above, overlapping intra- and interband conductivities complicate the ex-

traction of the memory function from optical conductivity data. In the absence of

overlapping intra- and interband conductivities (e.g. such as is the case for cuprate

HTSC) one can write the memory function in terms of the dielectric function:

M 1(! ) =
! 2

p

!
"2(! )

["1 ;IR � "1(! )]2 + "2
2(! )

(4.11)

M 2(! ) =
! 2

p

!
"1 ;IR � "1(! )

["1 ;IR � "1(! )]2 + "2
2(! )

� ! (4.12)
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Figure 4.10: Decomposition of the
dielectric function in bound and free
charge response at 40 K correspond-
ing to the model parameters of table
4.1.

where "1 ;IR represents a frequency independent

contribution to the real part of the dielectric

function due to high energy interband transi-

tions, which can be estimated from the oscillator

strengths of those transitions. What happens in

the case of iron-pnictides where interband transi-

tions have a low energy onset (estimated to be sit-

uated around 100 meV, see Fig. 4.8)?

This is most clearly illustrated in �gure 4.10 where

we show the free charge (or intraband) and bound

charge (or interband) contributions to the dielec-

tric model presented in table 4.1. The question

that arises is whether the bound charge response can be approximated with a constant

in the photon energy range where we want to analyze the memory function. Given the

relative strengths of the free and bound charge response, the approximation of using

a frequency independent"1 ;IR could possibly be upheld below about 50 meV. This is

forti�ed by explicitly calculating the imaginary part of the memory function for a series

of models as we will now discuss.

Figure 4.11: (a): superposition of two Drude terms, (b): two Drude terms and a well separated
interband transition, (c): two Drude terms and a strong interband transition overlapping with
the intraband response and (d): a model used for the annealed crystal. (e): Memory functions
calculated for each of the panels (a-d) without taking the presence of the interband transitions
into account. The comparison shows that the additional frequency dependence of interband
processes is modest for photon energies up to 50 meV for the worst case considered (e.g. two
Drude terms + overlapping strong interband transition).
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Fig. 4.11 shows the optical conductivity for 4 di�erent models. In panel 4.11a the real

and imaginary part of a sum of two Drude terms with di�erent widths is shown. Panel

4.11b,c show the same model but now with a single interband transition added to it. In

panel 4.11b the intra- and interband parts are well separated as in the cuprates, while

panel 4.11c has a strong interband transition well within the intraband region. Finally,

panel 4.11d shows the optical conductivity for a model similar to the pnictide model.

Panel 4.11e now compares the extracted memory functions for these modelswithout

making any correction for the interband contribution. The two Drude case (in green)

would represent the correct optical scattering rate that we would like to extract in an

experiment. The other cases show deviations from this ideal curve to varying degrees.

What is important for the current work is that below about 50 - 80 meV the frequency

dependence in all cases is very close to the ideal case indicating that in the realistic case

relevant to the iron-pnictides (black curve) the extended Drude model gives relevant

results in the low energy range.

4.4.2 Extended Drude model: comparison of methods

Figure 4.12: Comparison between the memory
functions obtained using the method of subtract-
ing "1 ;IR � 100 -110 (a,b) and by subtracting
the full frequency dependent interband conduc-
tivity (c,d).

Despite the reassuring results of the pre-

vious section, we tested two methods to

determine the memory function. In the

�rst method we approximate the inter-

band contribution to the optical conduc-

tivity with a temperature independent

"1 ;IR � 100 - 105 (for as-grown and an-

nealed crystals respectively). We then

use Eq. 4.11 to calculate the memory

function. In the second method we sub-

tract the interband part obtained from

the Drude - Lorentz model obtained at

each individual temperature. In this sec-

tion we compare both methods and will

�nd that the �nal results provide similar

results. First of all, at low temperatures

( � 150 K) and photon energies between

10 - 50 meV both methods give nearly identical results. At higher temperatures di�er-

ences are starting to become more evident as can be seen most clearly by comparing

the 200 K data for the annealed crystal. At photon energies above 50 meV di�erences
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between the two methods become more prominent. In particular, a signi�cant exten-

sion of the photon energy range whereM 2(!; T ) shows a strong frequency dependence

becomes apparent from the comparison of the top and bottom panels.

4.4.3 ( !; T )-scaling of the optical response.

The previous section shows that even though the determination of the memory function

comes with uncertainty at higher energies, at low energies (~! � 50 meV) interband

transitions only weakly a�ect the frequency dependence. In the following we use the

second method to subtract the interband response, as this provides the most stringent

test; however, we note that our conclusions remain the same when alternative methods

for accounting for the interband transitions are applied.

The frequency and temperature dependence of the imaginary part of the memory func-

tion M 2(!; T ), is shown in Fig. 4.13a and 4.13b for the as-grown and annealed crystal.

The clear frequency dependence of the memory function indicates the presence of residual

interactions beyond a classical Drude response. We �t both datasets with a power-law

form M 2(!; T ) = 1 =� (0; T)+ B (T)! � (T ) , where 1=� (0; T) is the zero-frequency scattering

rate and � (T) = 2 is expected for a FL. These parameters are determined independently

at each temperature. The temperature dependence of 1=� (0; T) and � (T) are displayed

in Fig. 4.13c,d for both the as-grown and annealed crystal. We �nd that the annealed

crystal displays characteristic FL behavior with 1
� (T ) � T2 (Fig. 4.13c) and � (T) � 2

(Fig. 4.13d) over a large range of energy (10 meV� ~! � 50 meV) and temperature

(8 K � T � 100 K). We further �nd that the prefactor B (T) is temperature indepen-

dent in the same temperature range as is expected from Eq. (4.9) (see next section).

The as-grown crystal on the other hand does not display FL behavior. Instead, the

zero frequency scattering rate follows a more linear temperature dependence, while the

frequency exponent� (T) < 2. Given the approximate T2 and ! 2 dependence of the

memory function apparent in Fig. 4.13c,d we test whether the scaling form of Eq. 4.9

applies to the annealed crystal. Fig. 4.13e demonstrates thatM 2(!; T ) indeed follows

a universal FL scaling as function of the scaling variable� 2 = ( ~! )2 + ( p�k B T)2, with

p � 1.47 (see also the next section).

We highlight three deviations from universal FL behavior that can be discerned in Fig.

4.13e. First, universal FL behavior disappears above 100 K. Second, for� 2 � 2500

meV2, M 2(� ) changes slope, as indicated by the dashed pink line, signaling a crossover

to a nearly energy independentM 2(!; T ) for ~! � 50 meV (Fig. 4.13b). Third, p =

1.47 rather than 2, indicating that an additional elastic contribution is present beyond

residual electron-electron scattering. However, the precise value ofp determined by

78



Chapter 4. Fermi liquid like groundstate in an iron-pnictide superconductor.

Figure 4.13: (a, b): Imaginary part of the memory function, M 2(!; T ), revealing the di�erence
in free charge response for as-grown and annealed crystals. The memory function is obtained
by subtracting the full interband response as discussed in sec. 4.4.2. Dashed curves indicate �ts
made using the �tting function indicated in panel (a). (c): Temperature dependence of the static
scattering rate 1=� (T) obtained from the �ts in panels (a, b). For the annealed crystal 1=� (T)
displays a T2 behavior below T � 100 K as indicated by the �t. (d): Temperature dependence
of the exponent, � (T), extracted from the �ts in panel (a, b). The exponent for the annealed
crystal shows! 2 dependence in the same temperature range where 1=� (T) has aT2 temperature
dependence. At higher temperatures a clear deviation from Fermi liquid behavior is found. (e):
Scaling collapse obtained by plotting M 2(!; T ) as M 2(� ), where � 2 = ( ~! )2 + (1 :47�k B T)2.
Above � 2 � 2500 meV2 the scaling deviates from the universal Fermi liquid behavior which is
indicated by the dashed pink line.

collapsing the data on a universal curve comes with some uncertainty as it depends on

the assumed strength and frequency dependence of the interband contribution as we will

now show.
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4.4.4 Determination of the scaling parameter p.

Figure 4.14: Value of p giving the best
scaling collapse as a function of maximum
temperature used in the determination of
the deviation of the data from a universal
curve.

In section 4.4.2, we already alluded to the fact

that one of the key results, namely theT2 and

! 2 dependence ofM 2(!; T ), would be extended

over a larger energy and temperature range if a

di�erent method to determine M 2(!; T ) is used.

Here we will discuss the estimation of the value

of p for which all the data collapses onto a uni-

versal curve. In Ref. [108] the following method

was proposed: one plots the data as function of

� 2 =
�
(~! )2 + ( p�k B T)2

�
for a range of values

of p. We take 1 � p � 2 with steps of 0.01. One

then calculates the root-mean square for each

value of p determined by summing over the de-

viations of each temperature from a universal curve for that value ofp. These RMS

values are then summed over a range of temperatures up to a certain maximal tempera-

ture. Figure 4.14 shows the dependence ofp on the maximum temperature, Tmax , used

in the scaling analysis. We apply this method to the memory function extracted with

both methods indicated above and �nd that the value of p depends weakly on temper-

ature. At 100 K, where the power of the frequency dependence starts to deviate from

� � 2 we �nd the values p = 1.2 ( "1 correction) and p = 1.47 (interband subtraction).

4.4.5 Robustness of the scaling collapse and consistency with transport

data.

In section 4.4.3 we showed that the DC extrapolation of the scattering rate follows a

T2 temperature dependence, implying that the resistivity is also a function ofT2. To

con�rm this expectation we show in �gure 4.15a the resistivity data of Fig. 4.5 plotted

as function of T2. We indeed �nd that � (T) is an approximate function of T2 in the same

range of temperatures ( 30� T � 120 K) as 1=� (0) (see Fig. 4.15b). From Fig. 4.15a

we estimate d�=d(T2) � 6.5�10� 9 
 cm/K 2, while d(� ) � 1=d(T2) � 3.5�10� 3 cm� 1/K 2.

We can now use the Drude expression for the DC resistivity� = 4 �=! 2
p� to compare

the slopes of both quantities. Together with the plasma frequency! p � 11290 cm� 1

we obtain d�=d(T2) � 1.7�10� 9 
 cm/K 2 from d(� ) � 1=d(T2). Given the uncertainties

involved in determining 1=� (0) this is a reasonable agreement. We note that the re-

sistivity deviates from the approximate T2 behavior at the onset of superconductivity

and at elevated temperatures. Above the temperature scale where Fermi liquid scaling
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Figure 4.15: (a): Resistivity as function of T2. The dashed line is a guide to the eye. (b): DC
scattering rate as function of T2. This panel is equivalent to Fig. 4.13e of the main text (c):
Prefactor, B (T), of the frequency component of the memory function. (d): Scaling collapse of
M 2(!; T ) obtained by correcting M 2 with a frequency independent interband contribution.

applies both the DC resistivity and scattering rate are still approximate functions of

T2, but with slightly smaller slopes as can be seen from the deviation from the black

lines. Figure 4.15(c) shows the temperature dependence of the pre-factor,B (T), of the

frequency component appearing inM 2(!; T ) = 1 =� (0; T) + B (T)! � (T ) . Comparing this

empirical relation with Eq. 4.9, B (T) is expected to be temperature independent in the

range of validity of Eq. 4.9. Fig. 4.15(c) shows that this is indeed the case belowT �

100 K. In panel 4.15(d) we plot the scaling collapse for the memory function obtained

by subtracting "1 ;IR . Note that in this case the scaling extends over a larger energy

window due to the higher energy where the memory function saturates (� 120 meV,

Fig. 4.12b).

4.5 Direct observation of Fermi liquid signatures in the

optical conductivity.

Our analysis provides compelling evidence that the normal state of BaFe1:8Co0:2As2

below 100 K is properly classi�ed as a FL. As the previous section shows, the speci�c

method of accounting for interband processes does not alter the conclusion that the

low frequency and temperature dependence ofM 2(!; T ) follows ! 2 and T2 scaling. In
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contrast, the same analysis applied to the as-grown crystal does not show such clear

signatures of FL behavior, despite its similar plasma frequency and high-energy optical

properties. Nevertheless, the determination of the parameters characterizing the Fermi

liquid state using the extended Drude analysis remains sensitive to the choice for the

interband contribution. To strengthen our conclusions, and to determine the character-

istic properties of the Fermi liquid state more accurately, we now turn our attention to

an analysis of the complex optical conductivity, which provides a more direct compari-

son between theory and experiment and does not require a model speci�c choice for the

interband processes.

4.5.1 Zero crossings and the complex optical conductivity.

Berthod et al. showed [102] that in a local FL a dome is de�ned by the locus of points

where � 1(!; T ) = � 2(!; T ), which bounds a `thermal' regime in which FL behavior

emerges. Zero crossings signaling the presence of a dome have been clearly observed [108]

in Sr2RuO4 at low temperatures. Despite the clean Fermi liquid behavior, exempli�ed in

that case by p = 2, these authors found that at elevated temperatures deviations from

the predicted dome shape appeared, which they linked to the increasing importance

with increasing temperature of `resilient' quasi-particles. This observation provides the

means to make a direct comparison between the optical conductivity and theoretical

calculations, where one does not have to resort to making the decompositions involved

in the extended Drude analysis presented in Fig. 4.13.

Berthod et al. observed that in a Fermi liquid the optical conductivity could be described

by three di�erent frequency regimes [102]. These regimes are, at low temperature,

separated by crossings of� 1(! ) and � 2(! ). They demonstrated that at low frequency

the optical conductivity follows a Drude behavior, with � 1(! ) � � 2(! ), at intermediate

frequency a thermal regime appears with� 1(! ) � � 2(! ) and �nally at high frequency

� 1(! ) � � 2(! ) again. The boundary separating these regimes can be easily derived from

the optical conductivity. Starting from Eq. 4.1 with M (! ) given by [102],

M (! ) =
i

�k B T0

�
! 2 + (2 �k B T)2�

; (4.13)

we can equate� 1(! ) = � 2(! ), to obtain a second order equation relating temperature

T and frequency! . Solving for T gives [102]:

T1(! ) =

s
3kB T0

8�

�
! �

2! 2

3�k B T0

�
: (4.14)
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As was shown in Ref. [101], the pre-factor of the temperature term can be di�erent from

2 if additional contributions to the frequency dependence of the self-energy are present,

in which case:

�( ! ) =
i

�k B T0

�
(1 + a)! 2 + ( �k B T)2�

: (4.15)

Given the value of p = 1 :47 determined from the scaling collapse presented in sec. 4.4.3,

we should therefore take,

T1(! ) =

s
3kB T0

8�

�
! �

2(1 + a)! 2

3�k B T0

�
: (4.16)

with a = ( p2 � 4)=(1 � p2). However, low energy interband contributions further com-

plicate matters. Below we will therefore use the full Allen-Kubo formula (Eq. 4.2 and

calculate � � (!; T ), including the full frequency dependent interband conductivity. It is

however instructive, and possibly useful for other materials, to approximate the inter-

band contribution with a purely reactive component and derive an analytic expression

for the zero crossings. We will show below that the zero crossings of this expression and

the full calculation do not di�er too much. Starting instead from,

� (! ) =
i! 2

p

4�
1

M (! ) + !
�

i!" 1

4�
(4.17)

which is equivalent to,

� (! ) =
1

4�

"
! 2

pM 2(! ) + i
�
! 2

p �! � !" 1
�
�! 2 + ( M 2(! ))2

��

�! 2 + ( M 2(! ))2

#

(4.18)

with �! = ! + M 1(! ). We consider again the case whereM 1(! )=0 and M 2(! ) /
�
(1 + a)! 2 + (2 �k B T)2

�
+� 0. Here the last term is an additional, frequency independent

impurity scattering rate. Solving Eq. 4.18 for � 1(! ) = � 2(! ) results in a fourth-order

equation in T and ! , which has only one physical solution:

T1 (! ) =
1
4

s
3

"1 �!

q
T2

0

�
! 4

p + 4"1 ! 2! 2
p � 4"2

1 ! 4
�

�
4! 2(1 + a)

� 2 �
3T0! 2

p

"1 �!
�

6� 0T0

�
:

(4.19)

Although this expression looks more unwieldy than Eq. 4.14, most of the parameters

can be determined independently from each other. The plasma frequency,! p, can be

determined from a spectral weight analysis, while"1 can be estimated from a Drude-

Lorentz analysis. � 0 can be determined at low temperature from an extrapolation of

M 2(! ) to ! = 0. This leaves T0 and p as free parameters.
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4.5.2 Characteristic Fermi liquid properties of Co-doped BaFe 2As 2.

The results of the previous section suggest a new method to facilitate a direct compari-

son between experiment and theory. We introduce the function � � (!; T ) � � 1(!; T ) �

� 2(!; T ), which is readily obtained from experimental data and also from calculations

of the optical conductivity. For the particular case of a local FL, the function � � (!; T )

has the property that it is negative in the thermal regime where characteristic FL be-

havior should be observed, while it is positive in the incoherent and Drude-like regimes.

Moreover, the zeros of this function correspond to the \dome" derived in the previous

section. � � (!; T ) thus allows us to examine the full, complex optical conductivity and

search for zero-crossings where� 1(!; T ) = � 2(!; T ).

In Fig. 4.16a, � � (!; T ) is displayed as a false color plot for the annealed crystal. Blue

represents � � (!; T ) < 0, while red indicates � � (!; T ) > 0. � � (!; T ) = 0 is indicated in

white. The most striking feature of Fig. 4.16a is a clear dome of zero crossings, closely

resembling the dome predicted by Berthodet al.. In Fig. 4.16b we display calculations

of � � (!; T ), assuming a FL self-energy. Motivated by the saturation ofM 2(!; T ) above

50 meV (Fig. 4.13b), we have introduced a cuto� ! c above which the imaginary part

of the single particle self-energy, �2(!; T ), is constant (see Fig. 4.17a and sec. 4.2.4)

and a high energy cuto� D . The calculated � � (!; T ) is in excellent agreement with the

experimental data. As input for the calculation we have used several experimentally

available parameters, namely! p � 1.4 eV, � 0 = M 2(� ! 0) � 7 meV and p � 1.47. The

cuto�s ! c � 41 meV andD � 1 eV are motivated below. In addition to the free charge

response, we also include the frequency dependent interband response from table 4.1.

The only remaining free parameter,T0 � 1700 K, is determined by two criteria: (i) the

maximum of the dome of zero crossings (at~! � 55 meV) and (ii) the low temperature

zero-crossing at~! � 100 meV. To facilitate the estimation of T0, we use the analytical

expression,T1 (! ) derived in the previous section (Eq. 4.19). The consistency between

T1 (! ), the data, and the calculation (which includes the full frequency dependence of

the interband response) shows that the details of the interband response are unimportant

for obtaining this level of agreement.

The deviation from scaling in Fig. 4.13(c-e) around 100 K signals a crossover temper-

ature where ~! � p�k B T, above which an incoherent regime emerges [101, 102]. This

suggests a natural cuto� ~! c � 1.47�k B T with T � 100 K, resulting in ! c � 41 meV.

The cuto� D � 1 eV is less critical but is motivated by the value ofT0. Dynamical Mean

Field Theory (DMFT) calculations for a single band Hubbard model [102] indicate that

kB T0 � 0:57�W where W is half the bandwidth and � is the carrier density. This yields
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Figure 4.16: (a): ( ! ,T) dependence of � � (!; T ) � � 1(!; T ) � � 2(!; T ). The experimental data
is bounded by the purple dashed box, while the background image is the same as in panelb.
Colour is used to indicate the magnitude of � � (!; T ), with red indicating the dissipative regime
(� 1(!; T ) > � 2(!; T )) and blue indicating the inductive regime (� 1(!; T ) < � 2(!; T )). The colour
scale is chosen such that the boundary between these two regimes, where� 1(!; T ) � � 2(!; T ), or
� � (!; T ) � 0, appears as white. This dome of zeroes can be reproduced using the approximate
expressionT1 (! ). The green line indicates the crossover temperature 1.47�k B T = ~! , below
which Fermi liquid behavior can be expected. (b): Same as in panel (a), but calculated from the
Allen-Kubo formula for the optical conductivity using a Fermi liquid self-energy with parameters
derived from the experimental data of Fig. 4.13. The dashed semi-circle is the same as in panel
(a).

W � 1.3 eV in our case, which is reasonable compared to combined density functional

theory and DMFT (e.g LDA+DMFT) estimates [80].

Apart from the saturation in � 2(!; T ), ! c also introduces a frequency dependence in

� 1(!; T ). This is clear from the derivation presented in sec. 4.2.4. The calculated self

energy is presented in Fig. 4.17a. The frequency dependence of �1(!; T ) should be

manifest as a frequency dependent mass enhancementm� =m(!; T ) � 1 + M 1(!; T )=!

in the free charge response. Fig. 4.17b shows excellent agreement betweenm� =m(!; T )

extracted from experiment and the theoretical calculation wherem� =m(! ! 0; T) �

1.2. This value is consistent with a modestm� =m � 1.8 predicted by LDA+DMFT

calculations for this level of electron doping [80]. The experimental data leaves some

room for additional mass enhancement resulting from boson exchange processes (such

as phonons or spin-
uctuations) below ~! � 10 meV, although it is di�cult to make a

quantitative statement on their strength due to the low signal-to-noise at low energy.

More importantly, the energy dependence of the mass-enhancement introduced through

the cuto� in our self-energy rules out the presence of a signi�cant boson exchange spec-

trum for ~! � 10 meV. We emphasize that the calculated mass enhancement is based

on an analysis of the optical conductivity, while the experimental mass enhancement

is determined using the extended Drude analysis presented in Fig. 4.13. The excellent
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Figure 4.17: (a): single particle self-energy, �( !; 8K ), extracted from the optical data. The
cuto� energy in � 2(!; T ) at ! c = 41 meV introduces a �nite slope of � 1(!; T ) at lower energy and
a corresponding mass enhancement. (b): energy and temperature dependence of the e�ective
mass of the annealed crystal corresponding to the optical scattering rate of Fig. 4.13d. The
experimental mass enhancement is shown with solid lines, while the mass enhancement calculated
from the Allen-Kubo formula is shown as dashed lines. The e�ect of the cuto� energy! c results
in a mass enhancementm� =m(! ! 0) � 1.2. Note that the data and �ts are o�set from their
actual value with increments of 0.1 at successive temperatures above the 8 K curves. (c): (! ,T)
dependence of �� (!; T ) for the as-grown crystal. The dome of zero-crossings is smaller compared
to the annealed crystal. This di�erence is highlighted by the dashed (as-grown) and dashed-
dotted (annealed) semi-circles calculated fromT1 (! ). The dashed semi circle is calculated
using the same parameters as in Fig. 4.16 except for �0 � 8 meV and p � 1.34.

agreement between the experimental and calculatedm� =m(!; T ) therefore serves as a

con�rmation of the analysis presented in Fig. 4.13.

To conclude we discuss the deviation ofp from the FL value p = 2. The most likely origin

appears to be scattering of quasi-particles on weak, localized magnetic moments [101].

Such localized moments could be associated with the presence of Co impurities in the Fe

lattice, although no local moment has been detected for Co impurities in BaFe2As2 [112].

Regardless the origin, this resonant elastic term has a strong in
uence on the normal

state properties. Figure 4.17c displays �� (!; T ) for the as-grown crystal, displaying a

suppressed dome of zero-crossings compared to the annealed crystal. The dashed semi-

circle is calculated using exactly the same parameters as for the annealed case, except for

a slightly higher � 0 � 8 and p = 1.34. This smaller value of p corresponds to a two-fold

stronger elastic term in the single particle self-energy �(!; T ), indicating that annealing

strongly reduces the in
uence of this scattering channel. Given the concomitant change

in superconducting critical temperature, we suggest that this scattering channel could

be pair-breaking, possibly providing an interesting direction for future work.
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Chapter 5

From bad metal to Kondo

insulator: temperature evolution

of the optical properties of SmB 6.

5.1 From mixed-valent to topological Kondo insulator

Samarium hexaboride (SmB6) is a well established mixed-valent compound at high tem-

perature and a Kondo insulator at low temperature. SmB6 recently gained a lot of

attention due to the suggestion that it can host topological surface states, which makes

this system the �rst strongly correlated material with a nontrivial topological electronic

structure. After the original prediction that SmB 6 could host a topological Kondo in-

sulating state and reports of the �rst tantalizing signatures in transport experiments,

numerous new insights in its properties have been reported.

One of the techniques that might be able to disentangle the response of the surface states

from the bulk carriers is time-resolved optical spectroscopy. We collaborated with the

T-REX laboratory in Trieste with the goal to study the ultrafast electron dynamics in

SmB6. It was hoped that these experiments could give additional information on the

formation of the Kondo state and possibly some hints on the dynamical properties of

the surface states. To make the interpretation of these experiments more quantitative, I

measured the equilibrium optical properties in our lab in Amsterdam. These experiments

turned out to provide equally interesting results and will be the subject of this chapter.

Several optical studies of SmB6 have been made in the past, which will be summarized in

section 5.4. However, the renewed interest in SmB6 has also resulted in new advances in

single crystal preparation and has improved material quality. These high-quality crystals
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enable us to provide a new view on signatures of the formation of the Kondo state in

optical spectroscopy experiments. In this chapter, I will start with a brief discussion

of the electronic structure of SmB6 based on �rst principles calculations. This will be

followed by a summary of the theoretical description of the (topological) Kondo insulator

(TKIs). After this introduction to the physics of TKIs, I provide a brief overview of

some key experimental results in section 5.3. The remainder of the chapter is devoted to

the new results I obtained with a detailed study of the temperature dependent optical

properties and a discussion of the key �ndings based upon these results.

5.2 Theoretical description of SmB 6

5.2.1 From �rst principle band structure to tight binding models

In this section, the band structure of SmB6 calculated from �rst principles will be dis-

cussed, with as a reference the work of Antonovet al. [113]. Apart from providing

detailed calculations, this work also provides calculations and predictions that are used

to interpret the measured optical data.

Experimentally an average valence of 2.5+ is observed at low temperature, with the

presence of both Sm2+ and Sm3+ being detected [114]. At higher temperatures, the

valence increases and it appears that the 3+ valence dominates. Since there have been

no reports of charge ordering, it is assumed that the valence for a given ion 
uctuates

between 2+ and 3+. This makes �rst principle calculations di�cult to interpret, since

such 
uctuations cannot be captured in density functional type calculations. Antonov

et al. investigate the impact of valence by performing the calculation for two di�erent

con�gurations (e.g. for a 2+ and 3+ con�guration). They start by assuming an e�ective

Coulomb interaction of 7 eV, based on photoemission and bremsstrahlung isochromat

spectroscopy.

The calculation that most accurately describes SmB6 is presented in Fig. 5.1. The top

two panels show the band structure (Fig. 5.1a) and corresponding density of states

(Fig. 5.1b) for the Sm3+ con�guration, while the lower two panels show the results

for the Sm2+ con�guration. The SmB 6 band structure with Sm3+ con�guration has

the unoccupied 4f 7=2 states pushed 1 eV above the Fermi level. A single unoccupied

4f 5=2 level lies 0.34 eV above the Fermi level, as indicated in Fig. 5.1a,b, while the �ve

occupied 4f 5=2 states are hybridized with B 2p bands.

The divalent samarium con�guration has eight unoccupied 4f 7=2 states that are hy-

bridized with the Sm 5d bands (see Fig. 5.1c,d). Fully occupied 4f 5=2 bands were used
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Figure 5.1: (a): LSDA+U electronic structure calculations for SmB 6 with
Sm3+ con�guration. (b): density of states corresponding to panel (a). The
labels indicate the energy position of the 4f multiplet. (c): same as panel (a),
but now for the Sm2+ con�guration. (d): Corresponding density of states for
panel (c). Note that in this case the 4f 5=2 state straddles the Fermi level.
The �gure is taken from [113].

as a starting con�guration. Subsequent self-consistent relaxation calculations result in

a lifting of the degeneracy of the 4f 5=2 states. The lifting of the degeneracy, in combina-

tion with the hybridization with 5 d bands results in the opening of a semiconductor-like

gap at the Fermi level. Based on their calculations, Antonovet al. provide a detailed

comparison between the optical conductivity derived from the LSDA+U calculations

and the optical conductivity presented in Ref. [115]. The observation is that the ex-

perimental results contain signatures of both the 2+ and 3+ valence states. As will be

discussed in Sec. 5.5.3, the relative contribution of these two valence states appears to

vary from crystal to crystal, but is in good agreement with these calculations.

Since the prediction of a possible topological Kondo insulating state in SmB6, additional

band structure calculations have been performed by other groups [116{118]. These works

focused on the topological nature of SmB6 and possess both some common conclusions
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and also contain some di�erences. In the work of Takimoto [116] a tight-binding model

is used to calculate the topological indices and surface spectra. It was shown that the

SmB6 (001) surface might have one Dirac cone at the � - point and one cone at each

X - point in momentum space. Lu et al. [117] have performed LDA calculations within

the Gutzwiller approximation. In agreement with Takimoto, they have shown that the

SmB6 (001) surface can host one Dirac cone at the � - point. In contrast, they �nd two

at the X - point, where one of the X - centered Dirac cones is crossing the Fermi level

and the second lies well below the Fermi level.

The surface termination dependence of SmB6 has been investigated by Kimet al. [118]

using density functional theory (DFT) slab calculations. They have shown that depend-

ing on the surface termination the surface states are formed di�erently. It is shown that

the B - terminated surface hosts � - and X - centered surface states, in agreement with

[117]. In contrast, a Sm - terminated surface is predicted to have additional surface

states located at the M - point. I will return to a discussion of these aspects in section

5.3.3. Before proceeding, I will now �rst turn to the theoretical framework underpinning

the (topological) Kondo state.

5.2.2 Kondo insulators

The Kondo e�ect was �rst described by Jun Kondo in 1967 [32]. This e�ect can occur in

materials where a sea of conduction electrons interacts with localized magnetic moments.

The interaction between spins of the conduction electrons and a localized magnetic

moment occurs at low temperatures forming a non-magnetic Kondo singlet [4] (see also

the discussion in Chapter 3). This leads to the formation of an additional scattering

channel for the conduction electrons and, as a result, an increase of the resistivity at

low temperature. Doniach [119] showed that strong Coulomb interactions in a multi-

orbital model lead to a similar e�ect. This model has become known as the Kondo

lattice problem or Kondo lattice model and has been widely studied. The Kondo lattice

model describes localized states interacting with conduction electrons. When applied to

SmB6, the necessary ingredients are localizedf - states hybridized with delocalized d

- electrons. The originally 
at 4 f Sm band (shown in Fig. 5.2a) will mix (hybridize)

with the highly dispersive 5d Sm band resulting in the opening of an energy gap, as

shown in Fig. 5.2b. This e�ect only takes place at low temperatures making SmB6 an

insulator, while at high temperature thermal 
uctuations destroy the Kondo state and

SmB6 behaves like a bad metal.

A theoretical description to explain the formation of the insulating state in SmB6 was

�rst given by Martin and Allen [8]. In their work the following aspects are taken into
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Figure 5.2: (a): schematic band structure of SmB6 at high temperature, (b):
schematic picture of band hybridization resulting from the Kondo interaction.

account: a broad conduction band, a lattice of localizedf states with a large on-site

Coulomb repulsion U between them, and an interaction between the conduction andf

electrons. In their model a Hamiltonian is presented as follows [120]:

H =
X

k;�

E(k)cy
k� ck� +

X

j;�

[E f f y
j� f j� +

1
2

Unf
� nf

� � ] +
X

j�

V[cy
j� f j� + cj� f y

j� ] (5.1)

The �rst term describes the kinetic energy of the conduction electrons, whereE(k) is

an energy dispersion,cy
k� (ck� ) creates (annihilates) an electron with momentumk and

spin � = " ; #. The second term of the Hamiltonian describes a set of localizedf state

with energy E f and on-site Coulomb repulsionU. nf
� is the occupation number and can

take on a value between 0 and 1. The sum overj runs over lattice sites with f -states.

The original case considered by Kondo featured a single impurity ion with anf -state.

The lattice problem considered by Doniach featured a crystal where thef -states form a

periodic array, but it is also possible to consider a random distribution off -states. The

last term in Eq. (5.1) describes the hybridization between the conduction band and the

f states, whereV is the hybridization strength.

Considering this model in the limit U ! 0 one obtains a hybridized band with an

indirect gap Eg = 2V , as shown in Fig. 5.2b. The survival of this gap for �nite U was

explained by Martin and Allen by referring to Luttinger's theorem [8]. According to

Luttinger's theorem, the volume enclosed by the Fermi surface remains constant when

interactions are included. Starting with U = 0, but �nite V , and an even number of

electrons we know that we have a band insulator with the Fermi level lying in the energy

gap. Therefore, the Fermi surface volume is zero and according to Luttinger's theorem

will remain zero even in the presence of interactions. This general argument holds as

long as bands do not cross the Fermi level.
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5.2.3 Topological Kondo insulators

After the initial discovery of the role played by topological invariants in characterizing the

electronic structure of solids, several groups considered the application of these concepts

to materials where strong electron-electron correlations play an important role [53, 121{

125]. One of the �rst works where the interplay between interactions and topological

properties was considered was the work by Dzeroet al. [53] on the topological Kondo

insulator. As discussed above, in a Kondo insulator, the interaction between mobile

conduction electrons and localized (f - electron) moments results in hybridization of

the mobile and localized states as described above (section 5.2.2). Dzeroet al. showed

that under certain conditions this could lead to the formation of a topological state

in close analogy to the topological insulating state formed in 3D TI's with inversion

symmetry. In other words, by combining the theory of Kondo lattices (section 5.2.2)

with the topological invariants derived from discrete crystal symmetries (see Ch. 3),

Dzero et al. showed that a non-trivial topological state can arise in the insulating gap

created by the exchange interaction. Dzeroet al. begin their discussion with the periodic

Anderson model [53]:

HALM =
X

ij�

t (c)
i;j cy

i� cj�

| {z }
conduction band

+
X

ij�

t (f )
i;j f y

i� f j� +
Uf

2

X

i�� 0

n̂f
i� n̂f

i� 0

| {z }
f electron system

+

+
X

ij

X

a��

(Via�;j� cy
i;a� f j� + Vi�;ja� f y

i� cj;a� )

| {z }
hybridization term

where t (c)
i;j and t (f )

i;j are hopping amplitudes for conduction andf electrons respectively.

n̂f
i� is the f -electron density operator. The index� denotesf multiplet components, as

will be discussed further below. Thus,f y
i� (f j� ) creates (annihilates) an f electron on

site j in the � state of the multiplet.

The authors of [53] note that to determine the topological invariants for the Kondo

insulator requires taking into account the crystal �eld splitting of the f -states that results

in a multiplet structure for the f -states. This means that the degeneracy of thef orbitals

is lifted as a result of the local electric �eld environment generated by neighboring ions.

Hence, the speci�c multiplet structure depends on the crystal structure. In Ref. [53] the

authors consider a tetragonal lattice, while in Ref. [126, 127] they also consider a cubic

lattice.

Depending on the choice of lattice, the lowestf -multiplet state are Kramers doublets

(tetragonal lattice) or a doublet and a quartet (cubic lattice). Importantly, for both
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choices of lattice theeg states (i.e. the dx2 � y2 and dz2 � r 2 orbital) are lowest in energy.

This means that the d and f states hybridizing with each other have opposite parity. It

is this fact that enables the authors to invoke Fu and Kane's argument [42] to determine

the invariants discussed in Ch. 3.

Figure 5.3: Schematics of the Bril-
louin zone of the cubic unit cell. The
high symmetry points are marked by
dots.

However, in contrast to the simpler case of `non-

interacting' sp3 orbitals considered in Ref. [46],

the hybridization between d orbitals and strong

spin-orbit coupled f multiplets introduces an ad-

ditional complication. The over-simpli�ed picture

in Fig. 5.2 sketches the hybridization gap for a

simple mono-atomic, one dimensional chain. In

a 3D crystal with additional lattice symmetries,

the hybridization gap becomes a complicated func-

tion of momentum (much like the momentum de-

pendent SC gap discussed in the chapter on pnic-

tides). In particular, the gap follows the symmetry

of the f - multiplet involved in the hybridization

and can even acquire nodes (signaling additional

inversions). It is therefore not possible to make completely general statements that will

hold for any type of lattice or �lling. Indeed, one needs to consider the particular details

of a given compound and determine the topological invariants by explicit calculation of

the invariants from the full wavefunctions. Since this chapter is concerned with the case

of SmB6, we will focus on the cubic lattice case as discussed in Ref. [127]. As mentioned

above, for a cubic lattice the J = 5=2 orbitals of the 4f state split into a doublet and

quartet. For Sm, the doublet is fully occupied and unimportant to our discussion. The

quartet is formed from the original orbitals as:
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These four states are degenerate at the �-point [(kx , ky , kz)=(0,0,0)] and at the ( � ,

� , � ) or R-point of the 3D Brillouin zone (see Fig. 5.3), because there the spin-orbit

interaction vanishes. Away from these points the four states split into two doublets.

The eg states also form a `quartet': since we are interested in the Kondo insulator, spin

is an important quantum number and we should label theeg states asj3dx2 � y2 ; � 1=2 >

and j3dz2 � r 2 ; � 1=2 > .

93



Chapter 5. Temperature evolution of the optical properties of SmB6.

Since thef states have odd parity and they are forced to be fourfold degenerate at the

� and R points of the Brillouin zone, the parity at these point will always be � � = 1 and

� R = 1 (see Ch. 3 for the de�nition of � i ). This restriction does not hold at the X and

M points and it is therefore possible to have a di�erent order of the states, resulting in

a band inversion. In the cubic lattice case we have 3 X points and 3 M points, we can

thus conclude that a strong topological insulator is formed if � X � � M = � 1, because then

(� 1)� 0 = � � � � R � (� X � M )3 = � 1. So, an inversion at either the X or the M point always

leads to a strong topological insulator.

The remaining condition to determine whether SmB6 is a topological Kondo insulator

or not requires knowledge of the electronic con�guration of the Sm ions (4f 5 and 4f 6

for Sm2+ and Sm3+ respectively) and a determination of the precise energy position

of the � multiplet with respect to the d-orbitals at the X and M points. The LSDA

calculation of Antonov et al. [113] (see section 5.2.1) shows that the quartet at the

X-point splits into two doublets, one of which shifts above the Fermi level. It is this

shift of one doublet at X from below EF for T > T K to above EF for T < T K that

causes the topological invariant to change sign, giving rise to surface states at the three

X points of the Brillouin zone.

5.3 Experimental signatures of the topological Kondo in-

sulator.

There is a tremendous amount of experimental information available for SmB6, high-

lighting the many aspects of the physics of this complicated compound. Kondo physics,

mixed valence 
uctuations and now a possible topological connection have all been

studied with a variety of experimental techniques. In this section we will provide a brief

overview of some results. Some important results will undoubtedly, but not purposefully,

have been omitted.

5.3.1 Transport measurements

The �rst resistivity measurements on SmB6 were performed in the 1960's [128, 129].

It was shown that with decreasing temperature the resistivity increases exponentially

below 50 - 60 K and saturates below approximately 3 - 5 K (see Fig. 5.4 for a recent

measurement). Since then, many other studies have con�rmed these general features

[130{143]. The sharp increase in the resistivity was linked to the formation of a Kondo

insulating state [4]. The resistivity plateau has remained unexplained for a long time
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and the proposal by Dzeroet al. [53], as discussed in the preceding sections, o�ers a

possible interpretation where the surface states emerging inside the Kondo gap result in

a `shorting' of the resistivity.

Figure 5.4: Temperature dependent resistiv-
ity of SmB6 as measured on a sample taken
from the same batch as the one used in this
chapter. The inset displays the Hall resistivity
indicating an n-type charge carrier concentra-
tion. The �gure is adapted from [144].

To exclude an extrinsic origin for the resis-

tivity plateau, improving the crystal qual-

ity is crucial. As an example, Hatneanet

al. [132] used the 
oating zone technique

to grow high quality SmB6 crystals. The

main di�erence compared with previous

studies was the use of high power Xenon

arc lamps to reach the melting temper-

ature of SmB6, which is around 2400 �

100 � C. This crystal was free of any con-

tamination as shown by energy-dispersive

X-ray spectroscopy and single phase as

shown by powder X-ray di�raction.

Figure 5.4 shows the temperature depen-

dent resistivity taken from [144], where

the measurements were performed on a high quality sample also grown by the 
oating-

zone technique [145]. The Hall resistivity in the saturation regime shows linear de-

pendence on the magnetic �eld, indicating an n-type carrier concentration of about

ne = 3 � 1017 cm� 3.

Recent work presented by Tanet al. [137] shows a paradox in magnetic torque measure-

ments. These quantum oscillation experiments remain unexplained till now, but provide

evidence for a three dimensional Fermi surface at low temperature. However, the pres-

ence of such a Fermi surface is in clear contradiction with a Kondo insulating state. It

was observed that between 2 K and 25 K the quantum oscillation amplitude exhibits a

Lifshitz-Kosevich like temperature dependence [146]. At lower temperatures (T < 2 K )

instead of saturating, it reveals an abrupt upturn with decreasing temperature. This

observation has not found a conclusive explanation and requires further investigation.

5.3.2 Complexity of the SmB 6 surface

The key technique to detect signatures of topological states is angle resolved photoemis-

sion spectroscopy (ARPES). Since this is a surface sensitive probe, we will �rst discuss

the surface structure of SmB6. The crystal structure, (shown in Fig. 5.5a) of SmB6

does not possess a natural cleavage plane, which implies that cleavage can occur either
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Figure 5.5: (a): crystal structure, 1 - cleavage plane between the Sm and B planes, 2 -
the cleavage plane lies within a B octahedron. (b): ARPES and LEED data taken from
freshly cleaved (001) SmB6 surface at 37 K [148]. The labels represent high-symmetry
points of the Brillouin zone. ARPES data reveals elliptical electron pockets located at
the �X - point and additional feature at the �M - point. The LEED data show 2 � 1
periodicity. (c): ARPES and LEED data at the same spot 5 hours after the cleaving
process. The LEED data show 1� 1 periodicity and ARPES data no longer contain
features at the �M point (�gure adapted from [148]).

in between the Sm and B planes, indicated by plane (1) in Fig.5.5a, or within a B oc-

tahedron, indicated by plane (2) in Fig. 5.5a. To break the covalent bonds inside the

B octahedron requires more energy than to break the ionic bonds between Sm atoms

and the B octahedra, thus plane (1) would be more favorable. Considering that on a

macroscopic scale both sides of a cleave will be chemically equivalent, plane (1) would

lead to the presence of both Sm- and B6-terminations on a cleaved sample surface. In

addition to such general considerations, a pure Sm- or B6-terminated surface would be

polar and thus unfavorable with respect to the minimization of its total energy. The

energy of a �nite crystal of such a polar system will possess an electrostatic potential

which increases with thickness of the system. This would entail a diverging surface

energy preventing the existence of pure surface termination [147]. However, energetic

stabilization can be achieved on Sm- or B6-terminated surfaces through a structural or

electronic reconstruction.

For instance, the polar instability of the Sm-terminated surface could be resolved by

equally dividing the Sm plane between the two cleavage surfaces, leading to 2� 1, 1� 2

or
p

2�
p

2 surface reconstructions. These surface reconstructions have been observed by

STM topography [136, 149, 150], and LEED studies of cleavage surfaces of SmB6 [148]

(shown in Fig. 5.5b), as well as in one of the ARPES studies [151]. The STM study

presented by Ruan et. al [152] shows
p

2�
p

2 surface reconstructions as well as unusual

doughnut-like patterns. This �nding emphasizes the complexity of the SmB6 surface

structure. Such surface reconstructions can a�ect the surface electronic properties and

might conceal the true electronic properties of the bulk or at least provide a topological
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trivial route by which the surface electronic structure di�ers from that of the bulk. This

makes the interpretation of the SmB6 results from surface sensitive techniques quite

challenging.

In addition, although the domain size of the di�erent surface reconstructions can extend

over several micrometers, the size of the light spot in most ARPES measurements is

larger than several tens of microns. This means that the resulting ARPES data are

likely to be a combination of the di�erent spectra coming from the various surface

terminations and reconstructions.

Another issue that can complicate surface sensitive studies is a possible time dependence

between cleaving process and measurements itself. By combining LEED and ARPES

data, Ramankutty et al. [148] have shown that 2� 1 and 1� 2 reconstructions of the

cleaved SmB6 surface can relax over time, even under UHV conditions. The freshly

cleaved [001] surface exhibits long-range order with a periodicity of 2� 1 and 1 � 2

(Fig. 5.5b), while after 5 hours the same spot of the cleaved surface reveals only 1� 1

periodicity, as shown in Fig. 5.5c. The ARPES data obtained 5 hours after cleaving

displays elliptical electron pockets located at the�X symmetry point, while freshly cleaved

surface exhibits an additional feature around �M - point. These time-dependent changes

have been explained by possible surface relaxation through absorption of the residual

gases present in vacuum. Time-dependent data is also presented in [147], where the

changes in the ARPES data over time are related to the self-annealing of the SmB6

cleaved surface. From these studies, it is clear that the [001] cleavage surface of SmB6 is

both complex and temporally unstable, and thus the time interval between the cleavage

itself and the measurements is also an important factor that should be taken into account

before making any conclusion from the measured data.

Another e�ect that should not be forgotten is band bending, that can occur in systems

with inhomogeneous charge distributions into the depth of a cleaved crystal, arising,

for example from the existence of surface states. This band-bending can lead to the

spatial con�nement and even quantisation of the bulk electronic states and is also able

to result in complex spin-momentum structures. Band bending has been observed for

some hexaborides [148, 153], so that the possible presence of band bending at the surface

of SmB6 should not be ignored.

5.3.3 Angle-resolved photoemission spectroscopy studies of SmB 6

With a good understanding of the surface structure we can now turn our attention to

the signatures of topological surface states in SmB6. However, we will �rst introduce

angle resolved photoemission spectroscopy (ARPES). ARPES is one of the few direct
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Figure 5.6: Energy dispersion for a B6 terminated surface (a) and for a Sm terminated
surface (c). (b), (d) are the second derivatives (d2I=dE 2) of the selected regions from
(a) and (c) respectively, where solid lines indicate Rashba split (b) and simple (d)
parabolic dispersions. (Figure adapted from [164]).

probes to measure the band structure of solid materials. By measuring the kinetic energy

and emission angle of the photo-emitted electrons, information can be obtained about

the binding energy and the in-plane crystal momentum of the electronic states inside

a crystal. Additional information such as the spin polarization of the states can be

obtained by the spin-resolved APRES [154]. Being a surface sensitive probe, ARPES

has been proven to be the perfect tool to measure topologically protected surface states

of 3D topological insulators [50, 155, 156].

As was mentioned in the previous sections, SmB6 has been predicted to be a topological

Kondo insulator. In an attempt to con�rm this, several ARPES measurements have been

performed on cleaved single crystals of SmB6 [144, 147, 151, 157{164]. Although most of

the experiments agree on the global electronic structure, the observation of topological

surface states has been a subject of quite some debate. This is a consequence of the

complicated cleavage surface as was discussed in the previous section. Although most

groups have indeed observed states that be termed `surface states', the determination

whether these states are trivial or topological is complicated. In the next section we

will discuss observations hinting to trivial surface states, followed by a discussion of

topological surface states in section 5.3.5

5.3.4 Trivial surface states in SmB 6

Surface states that are not expected from bulk band structure calculations have been

associated with the existence of trivial surface states. Zhuet al. [147] proposed a
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polarity-driven scenario for the surface states. Their DFT slab calculations show that

surface states originating from the B-2p dangling bonds are present for both Sm and B6

terminations of the cleavage crystal. Unoccupied surface states originating from boron

dangling bonds might be pushed below the Fermi level at the�� point due to an electronic

reconstruction, which results in surface metallicity driven by avoidance of the creation

of polar surface.

In the work presented by Frantzeskakiset al. [144] several states crossing the Fermi

level have been observed from the unreconstructed SmB6 surface (the measured LEED

pattern from the cleaved surface shows 1� 1 surface structure). One of these states is

located at the �� point in the hybridization region between the 5 d and 4f states. Other

states are found at the �X - point. These latter states have a strong k? dependence,

indicating a bulk origin. The Fermi surface lies 20 meV above the hybridization region.

The Frantzeskakis et al. results [144] have been con�rmed by Hlawenkaet al. [164].

They further show that at binding energies well beyond thef multiplets (at 75 and at

260 meV) other features at the �X - point are found, besides the bulk states. These states

have no k? dependence, indicating their two-dimensional character. In Hlawenkaet al.

[164], a state close to Fermi level (at a binding energy of� 2.3 meV) has also been

found at the �� point (see Fig. 5.6). The topological origin of these states was ruled out

based on two observations. Firstly, the surface state does not connect to the valence

band. The second, and more important reason for excluding a topological origin of this

state comes from the termination dependence. The Sm terminated surface features a

single parabolic state, as can be seen in Figs. 5.6c and 5.6d. It thus seems likely that

the double branch observed at the�� point for a B 6 terminated surface results from

Rashba splitting. Additional states located along the �� � �M direction have been found

by Denlinger et al. [162]. The observed surface states have been associated with tails of

spectral intensity coming from the bulk 4f states, which are gapped at low temperature.

In Ref. [162], a detailed temperature dependent ARPES measurement is also presented.

They show that the conduction band shifts in energy as the temperature is changed, and

crosses the Fermi level signaling the opening of a gap at� 60 K. Starting from the lowest

temperature data reported (T = 6 K) as the temperature increases, the conduction band

�rst appears 9 meV above the Fermi level (at 25 K) and then shifts to 6 meV below the

Fermi level (at 100 K). A second observation is that with increasing temperature the

Sm 4f states lose their coherence. As will be discussed further in this chapter, this last

observation is consistent with our optical data.
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5.3.5 Topological surface states in SmB 6

Some ARPES studies have attributed the observation of surface-related electronic states

to topological surface states [151, 157{161]. For instance, Neupaneet al. [158] have

observed one in-gap state at the�� point and one at each of the two �X - points in the

surface Brillouin zone. They have shown that thermal cycling in the Kondo regime from

6 to 50 K shows a systematic appearance and disappearance of the in-gap states at

temperatures around 15 K. They argue that together with the odd number of in-gap

states, this provides an indication of a strong topological insulating state. However, this

study, like all the other ARPES studies, has not provided a clear observation of a Dirac

point in the surface state dispersion.

Direct evidence of the topological nature of the surface states would be the observation

of their spin texture, an analysis which can be performed using spin-resolved ARPES. In

the research presented by Xuet al. [151], the authors argue that the observed states at�X

points are spin-momentum locked. However, such conclusion is hard to make due to the

high demands as regards the energy and angle resolution. On average, the current best

spin-resolved ARPES instrumentation has an energy resolution about 30 meV - 60 meV

(in Ref. [151] energy resolution is 60 meV). The angular resolution is commonly set

to be about 0.5� -1� for the synchrotron measurement, which would translate to 0.02 -

0.04 �A
� 1

for a photoelectron kinetic energy of 20 eV. The topological surface states of

SmB6 would show their characteristic "X" like dispersion in a hybridisation gap of order

10 meV. To be able to show the presence of the spin-momentum locked states located in

such small gap, a resolution of 5 meV or better is required, which is far beyond current

spin-resolved ARPES instrumentation.

Also, we would like to mention that no quasiparticle interference (QPI) has been directly

visualized in SmB6 [152], which should show characteristic features if the cleavage surface

is structurally crystalline and possessing spin-momentum locked surface states. From

all above mentioned arguments, it is clear that direct, spectroscopic evidence of the

topological nature of the SmB6 surface states is still controversial.

5.3.6 Quantum oscillations vs. ARPES

Since ARPES is a surface sensitive probe, a comparison with bulk sensitive probes such

as transport experiments might shed light on the interpretation of the ARPES data. The

�rst magneto - torque oscillation measurements on SmB6 were presented by Lu Liet al.

[165]. In these measurements, de Haas-van Alphen oscillations in the magnetisation of

SmB6 have been detected with the oscillation frequencies up to 1 kT. The data present
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the change of the oscillation frequency as a function of the tilt angle in the range more

than 180� which goes around the crystallineâ - ĉ plane. The angular dependence of

the oscillating frequency follows the inverse of a cosine function suggesting the two -

dimensional nature of the SmB6 electronic states at low temperature. The extrapolation

of the Landau level indices shows -1/2 at the high �eld limit, suggesting a non-trivial

Berry phase of � . However, the obtained Fermi surface areas are only 0.2% (for the�

pocket from the [001] surface) and 1.23% (for the� pocket from the [101] surface) of the

2D Brillouin zone, which is much smaller than the most prominent features observed by

ARPES (for instance 33% for X-states detected in Ref. [144] and [157]).

Later magnetic torque measurements [137] already discussed in section 5.3.1 indicated

a three-dimensional Fermi surface and no Berry phase. The reported data present fre-

quencies up to 15 kT with angular dependence over a 90� range along a diagonal plane.

By contrast to Ref. [165], the observed frequency of the quantum oscillation is greater

than 10 kT, corresponding to approximately half of the Brillouin zone volume. This

�nding is much closer to the 33% (for �X-states) observed by ARPES [144, 157].

A direct comparison between quantum oscillation measurements and ARPES data was

recently presented by Denlingeret al. [166]. In this work, an analysis of the quantum

oscillations results from both groups [137, 165] has been made. By comparing their own

ARPES results of the Fermi surface to the quantum oscillation data, the authors of Ref.

[166] conclude that the 2D model is the better one. Nevertheless, the need for more

research is also stressed [166].

The literature reviewed in this section goes to show that the surface of SmB6 is too

complicated to make �rm conclusions when based only on data from surface sensitive

techniques. Consequently, additional information from bulk-sensitive experiments, prob-

ing the electronic structure might improve our understanding of the physics behind such

a complex compound as SmB6.

5.4 Optical properties of SmB 6

Another powerful tool to measure the electronic structure of solids is optical spec-

troscopy. Previous optical measurements of SmB6 have been reported by several groups

[115, 167{174]. It was shown that at high temperature the optical conductivity at low

energy exhibits a Drude-like response indicating free charge carriers. At low temper-

ature, the opening of an energy gap has been observed. In the work of Nanbaet al.

[115] the optical conductivity displays three main interband transitions at 0.12, 0.5 and

> 5 eV. In Ref. [169] measurements up to 12 eV show one additional interband transition
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at 10 eV. The two low energy interband transitions also have been observed in our data

and will be discussed further in this chapter.

The next point that we would like to mention is the determination of the (optical) energy

gap. In the work of G. Travaglini and P. Wachter [173] the energy gap was determined

to be 4.7 meV, while later data [115, 169, 171] showed an energy gap of order 13-15 meV.

Some of these works [115, 171] based on transmission experiments, suggested a �nite

conductivity resulting from an absorption band around 4 meV. We can take the optical

energy gap of order� 15 meV as a measure of the energy gap in the density of states

around the Fermi level. Therefore, a �nite optical conductivity at lower energy must be

a result of optical transitions between states within this energy gap and the unoccupied

states just above the energy gap. In the earlier works the absorption was attributed

to optical transitions between localised impurity states and the conduction band. This

was subsequently investigated by Gorshunovet al. [170], who accurately measured the

temperature dependence of the optical conductivity between 3 K and 20 K using sub-

millimeter transmission experiments. They combine their experiments with Hall data in

an e�ort to pin-point the source of the �nite sub-gap conductivity. The combination of

optical and transport data allowed them to determine the spectral weight, e�ective mass,

carrier density, scattering rate and mobility of these carriers as function of temperature

under some assumptions. They conclude that all data below 8 K are consistent with the

exponential freezing out of impurity carriers as expected within a variable range hopping

model.

More recently this interpretation has been questioned by Laurita et al. [174]. These

authors use time-domain THz spectroscopy in the range from 1 - 8 meV to probe the

complex optical conductivity. Their measurements are taken at several temperatures

between 1.6 K and 20 K. At these low temperatures one expects the optical conductivity

to vanish due to the opening of the Kondo gap at the Fermi level. In agreement with

previous work they �nd a �nite conductivity even at the lowest measured temperature.

By examining the temperature and frequency dependence of the optical conductivity

they also �nd qualitative agreement with a variable range hopping model. However,

they conclude that quantitatively such an interpretation is hard to maintain. Within

the context of the topological Kondo insulator, this naturally leads to an alternative

explanation involving conductivity arising from the (topological) surface states. Based

on a simpli�ed model of the optical response of a system consisting of surface state - bulk

- surface state layers, they rule out this possibility. For both surface states a 2D Drude

response was assumed. To get agreement between this model and the data requires the

surface states to have a sheet resistance larger than 1000 
. This value is much larger
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than the reported sheet resistanceR� = 250 
 for SmB 6 [175] or R� = 200 
 for other

topological insulator such as Bi2Se3 [65, 176].

The authors of Ref. [174] discuss a few other possible interpretations. Although the

physical origin of the �nite conductivity remains unclear, these experiments provide

further evidence for a possible low temperature metallic state. The low temperature

Fermi surface observed in quantum oscillation experiments [137], discussed in section

4.3, implies that deep in the Kondo insulating state bands cross the Fermi level. Op-

tical transitions within such a band are expected to give rise to a Drude peak in the

optical conductivity. As will be discussed further in this chapter, we also observe a

Drude peak at high temperature that collapses below the Kondo temperature. At the

lowest temperature in our experiment (14 K) our data indicates a �nite conductivity at

the lowest temperatures. We observe a much larger conductivity below the gap edge

(400 
 � 1cm� 1) compared to the data of Ref. [174] (55 
� 1cm� 1), but this could be

a result of our relatively large error bar at these low frequencies. The zero crossing of

� 1(! ) in our data at 14 K (inset Fig. 5.11a) is the signature of a narrow Drude peak

present in our optical data. The estimated width, 1=� , of this Drude peak (� 10 cm� 1)

and plasma frequency (! p � 1100 cm� 1) are in agreement with data presented in [174]

where at 14 K a Drude peak can be seen with a width of 0.5 THz (=16 cm� 1). These ob-

servations together with the Fermi surface observed by another bulk probe [137] provide

a real challenge to our current understanding of the true ground state of SmB6.

5.5 High resolution optical study of the Kondo to bad

metal transition.

This brings me to a discussion of my own measurements of the temperature dependence

of the optical properties of SmB6. I will start with a discussion of the re
ectivity

measurements of SmB6 and then present an analysis of the optical conductivity and

dielectric function derived from them. As the temperature below which surface states

are expected to become detectable is below the lowest temperature achievable in our

setup, we instead focus on the changes in the optical spectra related to the formation of

the Kondo insulating state.

In our experiments we have observed, for the �rst time, an infrared mode at 19.4 meV.

This mode is associated with the motion of Sm ions against the B6 cages. Furthermore,

we found that as temperature is decreased, the incoherent metallic response �rst becomes

more coherent but then collapses below approximately 60 { 70 K. The total amount of

spectral weight lost in the metallic response corresponds to approximately 0.076 carriers
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per SmB6 unit and is not recovered in the entire energy range of the optical spectra

(up to 4.35 eV). Based on a simple tight binding calculation we rule out kinematic

e�ects associated with the hybridization gap as the cause for the lost spectral weight.

Instead, we suggest that strong correlation e�ects, associated with the e�ective Coulomb

interaction U, are responsible for the transfer of spectral weight to very high energies

that has thus far not been observed in mixed valence Kondo insulators.

This crystal used in this work was taken from a single crystal boule that was grown by

the 
oating-zone technique (for details see Ref. [145]). To obtain a large mirror-like

surface, we �rst oriented the as-grown boule using Laue di�raction. We then made a

slit using spark erosion, cutting on the side of the crystal along the (100) oriented plane

and subsequently cleaved the crystal as done in previous ARPES experiments [144].

This resulted in a large (5 mm diameter) 
at surface oriented perpendicular to the [001]

direction.

5.5.1 Re
ectivity data

Re
ectivity spectra for selected temperatures are shown in Fig. 5.7. Figure 5.7a shows

the re
ectivity over the full spectral range measured. The most prominent changes as

function of temperature take place in the low frequency part of the spectrum (displayed

in Fig. 5.7b). However, at higher photon energies a clear shift of the plasma edge is

visible between 1 and 2 eV. Above the plasma edge several structures in the re
ectivity

point to interband transitions. Figure 5.7b shows the re
ectivity below 0.2 eV, where the

e�ects due to the formation of the Kondo state at low temperature are most prominent.

Overall the spectral features agree with previously published data [115, 170, 172, 173],

but there are also signi�cant di�erences as we will discuss further below. At room

temperature the re
ectivity scales according to the expectation for a metal, namely as

R(! ) � 1 � 2
p

!=� DC (i.e. Hagen - Rubens behavior), with� DC the DC conductivity.

We extracted � DC by �tting the Hagen-Rubens relation to the low energy R(! ). It

agrees to within a factor 2-3 with the DC resistivity measured on a di�erent crystal

taken from the same boule (data reported in Ref. [144]).

At room temperature, Hagen-Rubens (HR) behavior persists up to about 12 meV, but

we expect the HR scaling to eventually break down below a certain temperature due

to the opening of the hybridization gap. We estimate this temperature scale as follows:

we �t the low frequency re
ectivity to the relation R(!; T ) = A(T) � B (T)
p

! and

determine A(T) and B (T). The functions A(T) = 1 and B (T) =
p

4=� DC in the Hagen-

Rubens limit. From B (T) we obtain � DC (T), while a deviation of A(T) from 1 is taken

as an indication for the opening of the hybridization gap. We can directly compare
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Figure 5.7: (a): The re
ectivity of SmB 6 at selected temperatures over the full frequency range
measured. A small shift in the plasma edge is visible, as well as temperature dependent changes
in the UV range. The inset showsA(T) (discussed in the text). The deviation of A(T) from 1
indicates the temperature below which Hagen-Rubens (HR) behavior is lost. The light shaded
region indicates the range of values obtained forA(T) by changing the �tted frequency range.
(b): Low frequency re
ectivity at the same temperatures as in panel (a). With decreasing tem-
perature a minimum develops below the isobestic point around 0.13 eV. At the lowest measured
temperature (14 K) the re
ectivity spectra resembles those of a semiconductor. The sharp line
visible at low temperature around 20 meV is theT1u vibrational mode, which is shown in more
detail and at di�erent temperatures in the inset.

� DC (T) obtained from our �ts to the temperature dependent resistivity reported in Ref.

[144]. Apart from a (temperature independent) scaling factor� 2.7, we obtain excellent

agreement between these two measurements if we restrict the photon energy range used

in the HR �t from the lower limit of the data (4 meV) up to 12 meV. The temperature

dependence ofA(T) obtained in this case is shown in the inset of Fig. 5.7a. The blue

shaded area indicates the dependence ofA(T) resulting from varying the upper bound of

the photon energy range (6 meV { 30 meV) included in the �ts. Based on the departure

of A(T) from one, we estimate that the metallic response persists down to approximately

60 - 70 K, which is in good agreement with estimates of the onset temperature for the

formation of the Kondo groundstate [177]. We note that this onset temperature increases

to about 100 K if we include the frequency range up to 30 meV, but in this case the

agreement with the measured� DC (T) is lost around 150 K.

Before proceeding with further analysis we highlight a few observations that can be

gleaned directly from the re
ectivity data itself. With decreasing temperature several

minima develop in the re
ectivity spectra. An isobestic point (i.e. a frequency where

the re
ectivity is temperature independent) is visible at 0.13 eV. Both above and below

this energy, minima start to develop as temperature is lowered. As we will see below,

both minima roughly correspond to interband transitions. As temperature decreases

below � 60 K, a third minimum develops at the lowest measured energies (starting to

become visible around 20 meV in the 50 K spectrum).
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Figure 5.8: (a): crystal structure of SmB6. (b), (c): schematic picture of
possible movements of low (high) energy mode.

Another feature that becomes more prominent with decreasing temperature is a peak

around 19.4 meV, as shown in the inset of Fig. 5.7b. The crystal structure of SmB6

is shown in Fig.5.8a, where B6 octahedra cages are located in the centre of the cubic

unit cell with Sm ions placed at each corner. This crystal structure is the same for all

rare-earth hexaboride compounds and belongs to the 221 space group [113]. A group

theoretical analysis of this structure shows that these compounds have two infrared active

modes. One of these modes involves the relative motion ofR and B6 ions, as shown in

Fig.5.8b [178{180]. The second mode involves motion of B atoms and corresponds to

deformation of the B6 cage as illustrated in Fig.5.8c. These modes have been observed

for someRB6 compounds (R = Ca, Sr, Eu, La and Yb) [178, 179, 181{187]. The mode

involving the movement of the rare-earth ion is found to vary signi�cantly from 13.5

meV (for YbB 6 [178, 186]) to 18.6 meV (for CaB6 [184, 185]) depending on speci�c

rare-earth ion.

The mode involving B6 only is found at higher energy at around 105.5 meV for YbB6

[178, 186] and 108.3 meV for CaB6 [184, 185] compounds, due to the light weight of the B

ions. This mode has thus far not been seen in the IR spectra of SmB6 [115, 170, 172, 173],

attesting to the high quality of our single crystal. A symmetry `forbidden' excitation

was observed in recent Raman experiments [188] with a similar energy as our phonon

mode and we suggest that the mode observed in the Raman spectra could thus be

interpreted as part of the IR optical phonon branch observed here. We note that the

mode becomes more prominent in the re
ectivity spectra at low temperature due to

`unscreening'. Speci�cally, the oscillator strength associated with this mode remains

more or less temperature independent, but with decreasing temperature the free charge

carrier density is reduced resulting in less e�ective screening of the mode. Finally, we

note a weak but noticeable Fano-like asymmetry for this feature that becomes more

prominent as the hybridization gap opens, similar to what has been observed in FeSi

[189].
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5.5.2 Re
ectivity extrapolations

Before turning our attention to the complex optical response functions, we will discuss

the method to extract them from the re
ectivity data.The complex optical conductivity

can be obtained from the re
ectivity data using a Kramers-Kronig consistent variational

routine [22] (see also Ch. 2). We obtain all relevant optical quantities such as the

complex optical conductivity � (! ) = � 1(! ) + i� 2(! ) and dielectric function � (! ) =

� 1(! ) + i� 2(! ) from the resulting variational dielectric function model.

The traditional method for obtaining the complex optical conductivity or dielectric

function from re
ectivity data is to make use of a Kramers-Kronig transformation. In

such an approach the phase angle of the complex re
ection coe�cient is calculated by

making use of the Kramers-Kronig relation to the measured re
ectivity.

Figure 5.9: Room temperature re
ectivity
data and the �t (red line and blue dashed
line respectively) calculated from the Drude-
Lorentz model at 298 K. Also shown are the
scaled re
ectivity data and �ts used to make
the error bar estimate of the spectral weight
transfer (see section 5.5.6). The inset shows
the high frequency part of the spectrum and the
extrapolation resulting from the Drude-Lorentz
model.

In this case, extrapolations to low (zero)

and high (in�nite) frequency have to be

made beyond the experimental range over

which the re
ectivity has been measured.

Typical expressions for these extrapola-

tions are the Hagen-Rubens approxima-

tion as discussed in section 5.5.1 for the

low frequency extrapolation and these ex-

trapolations always introduce some uncer-

tainty in the resulting optical quantities.

In our analysis we make use of a di�er-

ent approach that has been described in

Ref. [22]. When applied to re
ectiv-

ity data alone, this approach is equivalent

to a Kramers-Kronig transformation, but

with slightly di�erent extrapolations for

low and high frequency.

The �rst step in this procedure is to �t the

re
ectivity spectrum at a given temperature with a Drude-Lorentz model. An example

of a �t of the room temperature and the low and high frequency 'extrapolations' are

shown in Fig. 5.9. The �tted curve shown is still without the variational function

added on top of it. Note that the Drude-Lorentz model already provides a very accurate

description of the re
ectivity data.
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5.5.3 Complex optical response functions of SmB 6

Figure 5.10: (a): Dielectric function for se-
lected temperatures (indicated in panel (b))
over the entire frequency range. At room tem-
perature (red) the dielectric function starts out
negative, indicative of a free charge response.
As temperature decreases interband transitions
start to dominate the low energy response. A
zero crossing around 1.7 eV, corresponding to
a transverse plasma oscillation, is present at all
temperatures. The inset shows the temperature
dependence of this zero crossing. (b): Optical
conductivity at temperatures indicated. The
optical conductivity displays several low energy
interband transitions as well as weak structures
around 2 eV. Above 2 eV a prominent series of
interband transitions appear.

Figure 5.10 presents the real part of the

optical constants of SmB6 over the entire

measured frequency range. In panel 5.10a

we show the dielectric function "1(!; T )

and in panel 5.10b the optical conduc-

tivity � 1(!; T ) for the same temperatures

as the re
ectivity data in Fig. 5.7. At

room temperature, the dielectric function

resembles that of a typical metal: nega-

tive at low energy and, with the exception

of a structure around 125 meV, monoton-

ically increasing as a function of energy.

We observe a zero crossing around 1.7 eV

at all temperatures, corresponding to the

screened plasma frequency,! 2
p;scr(T) �

! 2
p(T)="1 . The inset of panel 5.10a shows

that ! p;scr decreases with temperature.

This decrease is gradual at higher tem-

peratures, but it starts to accelerate below

roughly 200 K. We note that at lower tem-

peratures the dielectric function displays

several additional zero crossings, which we

will discuss further below.

At photon energies larger than ! p;scr,

"1(!; T ) remains positive with structures

up until the highest measured frequencies.

In this range (3 - 4 eV), the optical conductivity � 1(!; T ) (Fig. 5.10b) shows a strong

interband transition. The origin of this transition is not entirely clear. According to

LSDA+ U calculations it can have a di�erent interpretation depending on the assumed

Sm valence [113]. If a divalent Sm2+ con�guration is assumed, the transition involves

mostly B 2p ! Sm 5d. Alternatively, it corresponds to a mixture of B 2 p ! Sm 5d and

Sm 5d ! Sm 4f transitions in the case of trivalent Sm3+ . We further observe two weak

structures in the optical conductivity around 1.5 and 2 eV. These transitions are not

explicitly described in Ref. [113], but the calculated optical conductivity for the Sm3+

con�guration does show a sharp structure in this range. They seem to originate from
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transitions between Sm 5d ! Sm 5d-4f 7=2 states and are exclusive to the trivalent Sm3+

con�guration. Our data therefore support the presence of some Sm3+ in the system.

Figure 5.11 presents a more detailed view on"1(!; T ) and � 1(!; T ) at low photon energy,

which allows for a more careful examination of the temperature dependence in this range.

Figure 5.11: (a): "1(!; T ) at selected temper-
atures (note the rescaling of the vertical axis by
a factor of 1000.). At high temperatures"(!; T )
is negative over the entire range shown. At
180 K a new zero crossing, labelled! p;1, occurs
around 80 meV. As the inset shows,! p;1 shifts
to lower energy with decreasing temperature
and "1(!; T ) becomes positive over an extended
range of photon energies. The red shaded area
indicates the approximate energy of the opti-
cal gap edge and the blue area indicates the
temperature range where! p;1 drops below this
edge. (b): The corresponding� 1(!; T ). We ob-
serve three distinct interband transitions (40,
120 and 300 meV) at the lowest temperatures.
Note also the narrow Drude peak that is still
clearly visible at 50 K.

At room temperature the dielectric func-

tion in this photon energy range is al-

ways negative; however, as temperature

is decreased below 180 K, a new zero-

crossing appears, labeled! p;1. If we de-

crease temperature further, "1(!; T ) be-

comes positive over an extended range.

Figure 5.11b shows that for temperatures

between room temperature and 180 K the

main change in the optical conductivity is

a reduction in the spectral weight of the

Drude peak. We will discuss the detailed

evolution of the Drude spectral weight in

the next section. Here we would like to

point out that the Drude peak has been

completely suppressed at 14 K pointing

to the formation of a gap in the energy

spectrum at the Fermi level. Below 180 K

two transitions become more prominently

visible in � 1(!; T ): one around 0.11 eV

and another around 0.32 eV, and both

increasing in spectral weight as temper-

ature decreases. At much lower temper-

atures a third transition becomes evident

in � 1(!; T ) around 0.04 eV.

There are several possible origins for these

three peaks. The LSDA+U calculations of Ref. [113] again predict several interband

transitions in the photon energy range below 1 eV, depending on the Sm valence. How-

ever, several aspects of this interpretation should be noted: First, the experimental

transition around 0.3 eV seems to stem mostly from occupied, mixedd-f ! 5d-states

for the Sm2+ con�guration, but it may also contain a component related to Sm 5d ! 4f

transitions for the Sm3+ con�guration. Compared to the experimental data reported in

Ref. [115], the centre of this transition is somewhat lower in energy in our case. If this
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transition indeed has contributions from both Sm2+ and Sm3+ , this reduction in the

centre of the transition could be understood as arising from a di�erent average valence

and indicating a larger Sm2+ component for our experiments. This hypothesis is further

corroborated by the transition that we observe around 0.11 eV. This transition is also

present in the experimental data of Refs. [170] and [115], but in those experiments the

transition is much weaker relative to the transition at 0.3 eV, whereas in our case it

is much more prominent. According to Ref. [113], this transition is between occupied,

mixed d � f states and unoccupied Sm 5d states that are exclusive to the Sm2+ con�g-

uration. The second aspect of note is that Antonovet al. predict that the lowest lying

interband transitions occur around 50 meV and are between various hybridized Sm 5d

bands exclusive to the Sm3+ con�guration. This matches well with the structure that

we see evolving with temperature just above the optical gap. As might be expected, the

lowest energy transitions are most strongly a�ected as function of temperature as these

bands involve transitions directly between hybridizing bands.

We conclude this section with some remarks concerning the appearance of the additional

zero-crossings in� 1(!; T ) at low temperature, and in particular the low energy crossing

labeled ! p;1. As the inset of panel 5.11a shows, this crossing �rst appears below 180

K and quickly shifts to lower energy with decreasing temperature. It disappears below

the lower limit of our experimental range below T . 25 K, but we are still able to infer

its approximate energy position from our Drude-Lorentz model. The low temperature

value, ! p;1(18 K) = 3.5 meV, agrees reasonably well with the zero crossing reported in

Gorshunov et al. (Ref. [170]). Although the temperature dependence of! p;1 does not

show signs of changes at a particular temperature, a speci�c temperature scale can be

de�ned as follows. With decreasing temperature the low energy spectral weight starts to

decrease and an optical gap begins to form. As Fig. 5.11b shows, the hybridization gap

appears to have completely formed around 50 K (based on the appearance of the low

energy peak around 0.04 eV). We estimate that the optical gap is approximately 15 to

20 meV wide, based on the 14 K spectrum and using the onset of absorption just below

the phonon mode as a measure. In the inset of Fig. 5.11a we indicate the approximate

size of the optical gap as the red shaded area and note that the zero crossing in"1(!; T )

falls below the gap edge at low temperature. The temperature range where this happens

is indicated by the blue shaded area and spans the temperature range 60 - 80 K.

5.5.4 Spectral weight transfer

Having identi�ed the main features of the optical response functions, we now turn our

attention to the somewhat more subtle changes in their temperature evolution by pre-

senting an analysis of spectral weight transfers associated with the destruction of the
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Figure 5.12: (a,b): Spectral weight as a function of temperature, integrated up to a cuto� 
 c

indicated in each panel. The spectral weight below 75 meV is lost, which is not recovered in
the full measured experimental range. Note that the vertical axes of the two panels are chosen
such that the relative change is the same for both (4:5� 106 
 � 1cm� 2). (c-f): Integrated spectral
weight as function of temperature between two cuto�s indicated in each panel. One thing to
note is that in each panel a small amount of spectral weight increase occurs below approximately
70 K. Further details are discussed in the text.

metallic state and the formation of the hybridization gap. As temperature decreases the

hybridization of the d and f states is expected to result in the formation of an energy

gap near (or at) the Fermi level [8]. The formation of this state takes place at the cost

of mobile d-electron states in favor of a larger occupation off -electron states and a

reduction of the Drude spectral weight results. This can be quanti�ed by examining the

partial integrated spectral weight,

SW(
 c; T) =
Z 
 b


 a

� 1(!; T )d!:

When applied to materials where the optical properties change as function of an external

parameter, the integral is often restricted to �nite frequency intervals in order to detect

associated transfers of spectral weight. The energy range over which these transfers take

place can provide information on the interactions involved in the transition [72, 190, 191].

Inspection of Fig. 5.10 and Fig. 5.11, allows us to anticipate approximately the relevant

energy ranges. The low energy range is de�ned by 
a = 0 meV and 
 b � 75 meV

and the temperature dependence of the SW in this range is shown in Fig. 5.12a. The

integrated spectral weight SW(75 meV; T) continuously decreases as the temperature

is lowered. Assuming that this depletion can be ascribed entirely to a collapse of the

Drude peak, we use �SW = SW(300 K) � SW(14 K) as an estimate of the free carrier

density at room temperature. From Fig. 5.12a we obtain ! p �
p

120�SW =� � 9850

cm� 1, which corresponds tonfree � 1:08 � 0:08 � 1021 cm� 3 assuming that there is no
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mass renormalization (e.g. assumingmb � 1 at room temperature). This value is in

good agreement with early estimates of the room temperature carrier density [130]. The

error bar on this number was determined using the method presented below in section

5.5.6. If we express this in terms of carriers per formula unit, we �nd that the loss

of spectral weight with decreasing temperature corresponds to 0.076 carriers per SmB6

unit. This reduction is in close agreement with a reduction of the Sm valence observed

in temperature dependent x-ray absorption measurements [192], where the estimated

average valence of the Sm ions changes from 2.58 at room temperature to 2.5 at low

temperature.

One expects that the Drude weight decreases in a simple semiconductor with the chemi-

cal potential inside the band gap (or very close to the bottom/top of a band) as a result

of changes in the available phase space for scattering and the thermal distribution of free

carriers. In SmB6 at intermediate temperatures the chemical potential sits very close

to the hybridization zone between the mobiled band and the localizedf -levels, while

at low temperature the hybridization gap opens at the Fermi level as evidenced by the

optical gap. The loss of spectral weight could therefore result from a similar kinematic

e�ect as that occurring in semiconductors. To exclude this possibility, we calculate in

the next section the optical conductivity for a highly simpli�ed tight-binding model for

SmB6.

5.5.5 Spectral weight transfer in a simple tight-binding model.

In order to examine spectral weight transfer as a result of kinematic e�ects, we considered

a simple two-band tight-binding model designed to reproduce the salient features of the

SmB6 optical spectra. The Hamiltonian considered here is:

H =
X

k ;n;�

� n (k)cy
nk � cnk � +

X

k ;n;m;�

tnm (k)cy
nk � cmk �

=
X

k ;n;m;�

cy
nk � Hnm (k)cmk � : (5.4)

Here, � n (k) is the band dispersion of thenth band; cy
nk ;� (cnk ;� ) is the electron creation

(annihilation) operators for the nth band; tnm (k) is the hybridization parameter between

nth and mth bands; and� is the spin of the electron. Our two-band model then consists

of a dispersive band� 1(k) = � 2td[cos(kxa)+cos(kya)+cos(kza)] � � 0, and a dispersion-

less (localized) band� 2(k) = � 2. The hybridization parameter between the two bands is

momentum independent with t12 = t21 = �. We then set ( td; � 0; �) = (0 :5; � 1; � 0:1)

eV and � 2 = -15 meV, such that the band structure mimics approximately the band

dispersion around the X-point of the Brillouin zone [117]. These bands hybridize with a
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hybridization parameter � = 0 :1 eV, resulting in a direct optical gap of 0.2 eV and an

indirect gap of approximately 20 meV.

The optical conductivity � i;j (q; ! ) is evaluated from the Kubo formula, in which the

induced electric current density J is approximated to be linear to the external �eld E

as J i (q; ! ) =
P

j � i;j (q; ! )E j (q; ! ), where i; j are the cartesian directions,� i;j (q; ! ) is

the conductivity tensor; and q and ! are the wavevector and energy of the applied �eld

[193]. For optics, we take the� ij (q ! 0; ! ) � � ij (! ) limit. The detailed derivation of

� ij (! ), including multi-band e�ects, can be found in Ref. [194]. The real part of � ij (! )

is given by

Re[� ij (! )] =
e2~
2�V

X

k

Z 1

�1
dz

nf (z) � nf (z + ! )
!

dz

� Tr[ A(k; z)� i (k)A(k; z + ! )� j (k)]; (5.5)

whereAnm (k ; z) is the imaginary part of the electron Greens functionG� 1
nm (k ; z) = ( z +

i �) � nm � Hnm (k), � i (k) = 1
~

@
@ki

Hnm (k) is the vertex function, nf (z) is the Fermi-Dirac

function, and V is the volume of the crystal. Here, � = 2 meV is a phenomenological

broadening introduced by impurity scattering. The dielectric function is related to

the conductivity by � (! ) = 1 + 4 �i� (! )=! , where � (! ) is the complex-valued optical

conductivity with the imaginary part obtained from the Kramers-Kronig relations.

The calculated optical spectrum is shown in Fig. 5.13. Figure 5.13a shows the calcu-

lated dielectric function at selected temperatures. It captures the main features of the

experimental spectrum: at low frequency there is a zero-crossing followed by an inter-

band transition and then two more zero crossings (the zero crossing corresponding to

the screened plasma frequency sits outside the calculated window).

The model also captures the main temperature dependencies of the experimental data

with the exception of the disappearance of the low frequency zero-crossing (! p;1 in the

inset of Fig. 5.11a). Another di�erence is the broadening of the interband transitions

with increasing temperature. This may be related to the temperature dependence of

the scattering rate �, which we have neglected here. Figure 5.13a also shows the opti-

cal spectrum calculated with an impurity broadening � = 30 meV, providing a better

agreement with the data at elevated temperature. Note that the increased broadening

does not a�ect the energy of the zero-crossing.

The calculated optical conductivity is shown in Fig. 5.13b. At high temperatures

the results display a clear Drude peak as expected. With decreasing temperature, the

Drude peak is gradually suppressed, which is associated with larger occupation of the

band bottom. This e�ect is large enough that the resistivity increases by an order of
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Figure 5.13: (a): Calculated real part of the dielectric function at selected temperatures,
displaying two zero crossings (one at energy just above 1 eV). The inset shows the hybridized
band model used in the calculation, plotted along thek = ( kx ; 0; �= 2) direction. The chemical
potential sits 15 meV above the band bottom. (b): optical conductivity showing the reduction of
the Drude peak with decreasing temperature. The spectral weight is transferred to the interband
transition around 0.2 eV. The dashed curve in both panels shows the 300 K spectrum calculated
with a large impurity scattering rate.

magnitude as temperature is reduced. It is obvious that the integrated spectral weight

below 0.1 eV is signi�cantly reduced at low temperature. Our calculations show that

within the model, this spectral weight is redistributed to higher energies, and most of

it is transferred to the interband transition centered at 0.2 eV. However, a few percent

of the spectral weight is redistributed over a wider energy range comparable to the full

bandwidth of the model.

Applying the same analysis of the spectral weight to the calculated optical conductivity

shows that the Drude spectral weight is transferred in the energy range just above the

optical gap such that the total spectral weight remains constant. This is not the case

for SmB6 as Fig. 5.12b shows. If we integrate the optical conductivity over the entire

range measured, we �nd that the total integrated spectral weight decreases with about

the same amount. This indicates that a signi�cant amount of Drude spectral weight

is being redistributed to energies well above� 4:35 eV. Moreover, this e�ect is well

beyond what is expected due to simple kinematic e�ects associated with the opening

of the hybridization gap. This situation is somewhat reminiscent of spectral weight

transfers taking place in the cuprate high Tc superconductors [72]. In the cuprates

spectral weight is transferred from low energy to the scale of the e�ective Coulomb

interaction ( � 2-3 eV in the cuprates) as the superconducting gap opens. For the case

at hand, the on-site 4f Coulomb interaction was estimated to be Uef f � 7 eV [113].

This is beyond our experimental window; however, a previous optical experiment by
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Kimura et al. [169] indeed shows interband transitions around 5 and 10 eV. To solidify

this result we should however ensure that the observed transfer is not a result of some

experimental error. In the next section we will therefore demonstrate the robustness of

these results.

5.5.6 Error estimate of the observed spectral weight transfer

The accurate estimation of the absolute value of the integrated spectral weight is compli-

cated and to some extent depends on choices made in the conversion of the experimental

data (e.g. re
ectivity) to the complex optical quantities. In chapter 3 and section 5.5.2

we have already discussed the method used to extract the complex optical quantities.

The purpose of this section is to show that the main conclusions (i.e. a collapse of the

Drude peak and the associated transfer of spectral weight over a large energy range

to high energy) are a robust feature that do not depend signi�cantly on the modeling

choices made in our analysis. We will show that although theabsolute value of the

spectral weight is very sensitive to the speci�c model chosen, therelative value between

di�erent temperatures can be accurately determined.

As a result of the highly detailed temperature dependence used to measure the re
ectiv-

ity data over a very wide energy range, we can make a reasonable estimate of the error

bar on our re
ectivity spectrum. Even in the noisiest part of the spectrum (between 4

and 12 meV) the noise is only 0.4 % of the total re
ectivity. The systematic error bar

on the data (0.2 %) can be estimated from the reproducibility of the many temperature

sweeps performed (ranging from 2 cooling-warming cycles in the far infrared to up to

10 cycles in the UV range). To make an estimate of the error introduced in the deter-

mination of the spectral weight shifts we therefore follow the following procedure. We

scale the re
ectivity data up and down by 0.5 % (constant for all temperatures and well

beyond the actual error) as shown in Fig. 5.9. We then perform the full analysis to

determine the spectral weight based on these scaled datasets.

The results are summarized in Fig. 5.14. As expected, the Drude spectral weight (Fig.

5.14a) slightly increases if the re
ectivity data is scaled upwards, while it decreases when

the data is scaled downwards. The most important point however is that therelative

change between room temperature is qualitatively unchanged and quantitatively very

similar. The change amounts to an error of about 8 % on the absolute value of the

Drude weight. The same holds true if we calculate the integrated spectral weight up to

a cuto� frequency 
 c = 4.25 eV. The error bar on the relative change between low and

high temperature is about 3%, but most importantly the total spectral weight decreases

irrespective of the shift of the re
ectivity data. Comparing panels (a) and (b) of Fig.
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Figure 5.14: (a): integrated spectral weight for a cuto� frequency of 
 c = 75 meV.
Shown are SW(T) as presented in Fig. 5.12 and SW(T) obtained when the data is
scaled up (black) and down (blue) by 0.5 %. (b): the same as for panel (a), but now
with the cuto� frequency 
 c = 4.25 eV.

5.14, we note that the redistribution of the additional Drude weight does not seem to

result in an additional transfer of weight to energies beyond our experimental window.

Instead, this weight is already recovered in the interband transition between 3-4 eV.

5.5.7 Concluding remarks and summary

Our spectral weight analysis suggests that the hybridization betweend and f states

involves energy scales on the order of the e�ective Coulomb interaction. Surprisingly,

almost all of the Drude spectral weight lost in the formation of the Kondo insulating

state is transferred to this high energy scale. The stark contrast between the spectral

weight redistribution in the experiment and the tight-binding model perhaps serves as

an illustration of the idea [8] that the Kondo insulator can be understood as the large

U version of a hybridized band insulator. The e�ective Kondo interaction J / � 2=U

becomes small in the largeU limit. Transfers of spectral weight involving large energy

ranges have been observed in several other Kondo insulators [195, 196], which therefore

seems a generic feature associated with the formation of the Kondo insulating state. The

loss of spectral weight can therefore be seen as a signature of strong electron-electron

interactions and the energy scale over which it is recovered as a measure of the e�ective

Coulomb interaction.

The remaining panels of Fig. 5.12 demonstrate that the overall reduction of spectral

weight is masking more subtle shifts in spectral weight. For example, the spectral weight

of the interband transition around 0.11 eV increases at low temperatures, as is clearly

visible in Fig. 5.11b. To estimate if this is the pile-up of spectral weight just above the

gap edge anticipated above, we calculate the partial sum rule, �SW(T), integrated from

75 meV to 140 meV (Fig. 5.12c). Here we observe a di�erent trend in spectral weight
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as function of temperature: the spectral weight contained in this transition remains

more or less constant as function of temperature down to approximately 60 - 70 K,

where the spectral weight suddenly begins to increase. This temperature is close to the

temperature where the re
ectivity starts to deviate from Hagen-Rubens behavior (see

Fig. 5.7a), suggesting that the enhancement of this transition is indeed related to the

opening of the hybridization gap. Note, however, the di�erence in SW scales. The total

Drude spectral weight lost is 2:55 � 106 
 � 1cm� 2, while the increase of spectral weight

around 0.11 eV is of the order of 0:2 � 106 
 � 1cm� 2 (panel 5.12c). We �nd a similar

increase in the range between 0.24 eV and 1 eV (panel 5.12d). �SW(T) between 1 eV

and 2.2 eV (Fig. 5.12e) is relatively weak, with a change in slope observed as function of

temperature. Finally, panel, 5.12f, shows �SW( T) in the range between 2.2 and 4.2 eV.

The spectral weight in this transition mostly decreases with temperature, but a similar

change in slope can be observed around 60 - 70 K, resulting in a small increase of spectral

weight of again 0:2 � 106 
 � 1cm� 2. To summarize, the total spectral weight decreases,

but we observe a small increase in spectral weight in all of theinterband transitions as

the Kondo insulating state forms.

As discussed above, the interband transitions at 0.11 eV and 0.32 eV contain a signi�-

cant component originating from mixed d� f ! 5d transitions. The increase in spectral

weight below 60 - 70 K can therefore possibly be linked to changes taking place in the

hybridization of the d and f states. In recent angle resolved photoemission (ARPES)

works the temperature dependence of thed � f hybridization was investigated in detail

[161, 162]. It has been observed that one of thef -levels shifts from above (low temper-

ature) to below (high temperature) the Fermi level. The temperature where this state

crosses the Fermi level is approximately 60 K, very close to the temperature where we

observe changes taking place in (i) the low energy re
ectivity and (ii) the temperature

dependence of the integrated spectral weight. It is possible that the small feature at 0.04

eV just above the gap edge (see Fig. 5.11b) arises from interband transitions between

these occupied and unoccupied mixedd� f states, as the energy matches reasonably well

with the splitting observed in Ref. [162]. Comparing to our toy-model calculation, this

then implies a hybridization parameter of approximately 20 meV. These authors also

notice a second e�ect: namely a loss of the `coherency' of thef -states with increasing

temperature. This change in coherence (observed as changes in the 4f - amplitude and

width in the ARPES spectra) is a gradual trend however and not particularly linked to

an onset temperature [162]. It is likely that these changes in coherence are re
ected in

the smearing of spectral features in the optical spectra.

We have investigated the temperature dependent optical properties of SmB6 in detail.
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From the re
ectivity data we estimate that the high temperature metallic state is de-

stroyed below 60 - 70 K. A new feature observed in the re
ectivity data is a phonon

mode with an energy of 19.4 meV, which is related to the T1u mode associated with the

rattling of the Sm ion against the boron cages. An analysis of the optical spectra shows

that the destruction of the metallic state is a gradual trend, with an approximate onset

temperature around 200 K. A comparison of the measured interband transitions and

LSDA+ U calculations indicates the presence of ions with varying valence in this mate-

rial. The destruction of the metallic state is accompanied by a loss of low energy (Drude)

spectral weight that is not recovered in the experimental range measured. In contrast,

a representative tight-binding model calculation shows that this spectral weight should

be recovered on an energy scale corresponding to the hybridization strength of thed

and f -states. Our analysis suggests that this spectral weight is instead shifted over an

energy range involving the e�ective Coulomb interaction (Ue� � 7 eV). We suggest that

this is a signature of the important role played by strong electron-electron interactions

in this material.
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