The efficiency of education in generating literacy: a stochastic frontier approach

de Witte, K.; Groot, W.; Maassen van den Brink, H.

Published in:
Review of Economics & Finance

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The Efficiency of Education in Generating Literacy: A Stochastic Frontier Approach

Dr. Kristof De Witte¹, ²
1. University of Maastricht and University of Amsterdam
 Top Institute for Evidence Based Education Research
 Postbus 616, 6200 MD Maastricht, The NETHERLANDS
 Tel: +31(0)43 38 84 437 E-mail: k.dewitte@maastrichtuniversity.nl
2. Faculty of Economics and Business, University of Leuven (KUL)
 Naamsestraat 69, 3000 Leuven, BELGIUM
 E-mail: Kristof.dewitte@econ.kuleuven.be

Prof. Dr. Wim Groot, Prof. Dr. Henriëtte Maassen van den Brink
University of Maastricht and University of Amsterdam
Top Institute for Evidence Based Education Research
Postbus 616, 6200 MD Maastricht, The NETHERLANDS
E-mail of Prof. Dr. Wim Groot: Wim.groot@maastrichtuniversity.nl
Prof. Dr. Henriëtte Maassen van den Brink: h.maassenvandenbrink@uva.nl

Abstract: The growing importance attached to education as a key factor to improve economic performance coupled with the persistent scarcity of resources for education makes it important that skills and literacy are produced efficiently. This paper provides an international comparison of the efficiency of literacy production. We find substantial differences between countries in levels of literacy, differences in literacy between education levels and differences in the efficiency of literacy production. The findings suggest that in almost all countries the scope for efficiency improvements in education is large. So even without major increases in (public) funding, improvements in educational outcomes are achievable. We can get better value for the money we spend on education.

JEL Classifications: I22, C14
Keywords: Literacy, Education, Stochastic frontier analysis, Meta-frontier

1. Introduction

Expenditures on education differ between countries. According to OECD (2006), in 2002 Denmark, Iceland, Korea and the United States had the highest spending on education (more than 7% of GDP). Eight out of 28 OECD countries spend less than 5% on education. Although there is some heterogeneity among countries in the educational budget, in all countries the budget is increasing (in both nominal and real terms). According to OECD (2006), during 1995 and 2002 in OECD countries, average real total expenditures on education increased by 5%. This raises the question whether the money for education is spend effective (i.e., doing the right things) and efficient (i.e., doing the things right). Little is known about the outputs that are obtained by the educational investments. This question is especially relevant, given the importance attached to education. Human capital acquired through education is thought by many people as the single most important source to attain a competitive advantage in a globalizing economy (see Becker, 1975; Schultz, 1967 and many references thereto). Education is generally thought to foster economic growth and to contribute to quality of life and the development of values that generate social cohesion and an open society (Willms, 1999).
In the paper at hand, we focus on one component of education: literacy. In doing so, we follow the interpretation of Unesco in defining literacy as ‘... the ability to identify, understand, interpret, create, communicate and compute, using printed and written materials associated with varying contexts. Literacy involves a continuum of learning to enable an individual to achieve his or her goals, to develop his or her knowledge and potential, and to participate fully in the wider society’. We focus on literacy as literacy is considered to be an important indication (if not the most important indication) for the distribution of the economic and cultural capital (cf. Willms, 1999, 1997). Literacy is captured from the 1994-1996 International Adult Literacy Survey (IALS), which is an OECD survey on issues as literacy, schooling, and employment. The survey has been extensively used in estimating the returns of education (Blau & Kahn, 2005 and references therein).

This paper contributes to the literature in three aspects. Firstly, it examines how well education systems are able to produce literacy among their population, i.e. it looks at the efficiency of literacy production in a number of OECD countries. In particular, we apply stochastic frontier techniques (Aigner et al., 1977; Meeusen & Van Den Broeck, 1977) on literacy scores to evaluate the impact of education and social background on literacy scores. As such, we investigate the effectiveness of schooling across countries: to which extent does an additional year of schooling increases literacy and does this differ across countries? In doing so, we account for various background characteristics which capture the socio-economic status of the respondent.

Secondly, we estimate the impact of socio-economic variables on the generation of efficiency in a cross-country perspective. By comparing the coefficient estimates of the father and mother of the respondent to the respondent’s literacy, we deduce insights on the strength of role models across countries. We analyse whether the education of the mother or of the father has the strongest impact on the respondent’s literacy, and whether there is some explanation for this effect.

Finally, using the metafrontier framework of Battese & Rao (2002) and O’Donnell et al. (2008), we estimate the inefficiency within and across countries. The metafrontier framework makes a distinction between country specific inefficiency and inefficiency of the educational system. As such, we estimate the scope for efficiency improvements in education and detect best-practice countries (i.e., countries that are able to obtain higher literacy outcomes with a given budget per pupil).

The paper unfolds as follows. Section 2 provides a brief review of previous work and highlights the differences with the paper at hand. In Section 3, we outline the traditional Stochastic Frontier Analysis model. A fourth section describes the data and provides some preliminary insights. Section 5 discusses the estimated SFA coefficients and estimates the relative (in)efficiency across countries. We finally conclude the paper.

2. A Brief Literature Review

This paper relates to a wide range of academic literature on the performance estimations in education. This section does not intend to provide an exhaustive overview of the literature, on the contrary. It intends to clarify our contributions on three aspects to this literature by pointing to some influential references.

Firstly, consider the adapted methodology of stochastic frontier estimation (see next section). A few studies have applied stochastic frontier estimation techniques to evaluate school efficiency. Izadi et al. (2002) apply stochastic frontier estimation to analyze inefficiencies in higher education in Great Britain. They conclude that inefficiencies in higher education are fairly modest and on the margin of statistical significance. Barbetta & Turati (2003) use stochastic frontier analysis to evaluate the efficiency of junior high schools in Italy. They conclude that the proprietary structure affects efficiency: not for profit schools are more efficient than public ones, whereas for profit
schools are less efficient than public schools. Furthermore, foreign and disabled students affect efficiency of schools negatively. Ruggiero & Vitaliano (1999) use stochastic frontier techniques at a more aggregate level, i.e. to examine the efficiency of New York school districts. They find that mean inefficiency of school districts amounts to 14%, which indicates a significant scope for improvement.

However, a potential limitation of stochastic frontier analysis is that the residual is interpreted as representing technical inefficiency but that it may also represent other systematic and unobservable differences between units of analysis (schools, countries, firms, etc.). Newhouse (1994) criticises the approach because of its difficulty to disentangle inefficiency from quality differences: greater technical inefficiency may simply represent better quality. This problem occurs, e.g., when school expenditures or the number of graduates are taken as an output measure in a stochastic frontier cost function. Newhouse (1994) argues that stochastic frontier techniques can best be applied when the outcome measure is homogeneous and uni-dimensional. However, even years of education – a homogenous and uni-dimensional educational outcome measure – poses difficulties in disentangling efficiency from quality as not all years of education are of similar quality. We believe that production of literacy is a more homogeneous and uni-dimensional outcome measure than school expenditures or the number of graduates and that this solves some of the criticism on the stochastic frontier technique.

Secondly, consider the cross-national focus of the paper. Other studies have used comparative data to evaluate differences in school performance across countries. Hanushek & Luque (2003) use data from the Third International Mathematics and Science Study (TIMSS) to compare performance of schooling systems of more than 40 countries. They conclude that the impact of schooling resources on student performance is rather limited. They further conclude that organizational characteristics and incentives may be more important in explaining performance differences than the level of resources allocated to schools. Finally they find that the impact of school resources does not vary systematically with country income or development. The Hanushek & Luque (2003) study differs from ours in that we compare the performance of schooling systems at a more aggregate level. We also use data from population wide samples, rather than the pupil-based samples of the TIMSS, and use a more general outcome measure – literacy - than mathematics and science test scores. A similar focus on literacy can be found in Charette & Meng (1997) who explored the determinants of literacy using the Canadian ‘Literacy Skills used in Daily Activities’ (LSUDA). Our paper differs from the latter as we consider a cross-country perspective in a different data set (IALS).

Finally, consider our data set. We use the data of the International Adult Literacy Survey (IALS) to estimate a stochastic frontier model to analyze the performance of schooling systems in 11 countries. The IALS data have – among others - been used by Blau & Kahn (2005) to analyze the role of cognitive skills on wage inequality in the USA. This study finds that the greater dispersion of cognitive skills among people in the USA partly explains the higher wage inequality. Denny et al. (2000) use the IALS data to examine the impact of functional literacy on earnings. They conclude that literacy has an effect on earnings but that education remains the dominant factor. Our paper contrasts to previous literature using IALS in that we focus on the efficiency of literacy provision (at a cross-national level). An issue not explored before.

3. A Stochastic Frontier Model of Literacy

In the paper at hand, we presume that the educational system focuses on educating its citizens in terms of literacy. Assume there exists a production function which produces literacy (L) by combining educational inputs (S), social or parental environment inputs (P) and other characteristics (X). Following standard economic theory, the production function is presented as:
where \(f(.) \) denotes the production technology and \(\varepsilon \) an error term. Instead of considering a normal distributed \(\varepsilon \), Aigner et al. (1977) and Meeusen & Van Den Broeck (1977) decomposed \(\varepsilon \) into two terms: \(\varepsilon = v - \mu \). Firstly, \(v \) denotes a random component which captures the stochastic elements and unobserved heterogeneity. \(v \) is assumed to be distributed along \(N(0, \sigma_v) \). Secondly, \(\mu \) represents an inefficiency term and captures the shortfall in output given the inputs. As efficiency should be positive, \(\mu \) is assumed to be half-normal distributed: \(\mu \sim \left| N(0, \sigma_\mu) \right| \) (see Kumbhakar & Lovell (2003) for an extensive discussion).

Although the parametrization of a learning process is quite problematic (see, e.g., Hanushek, 1979, 1986), we assume a simple linear specification for the literacy production function:

\[
L = \beta_0 + \beta_1S + \beta_2P + \beta_3X + v - \mu
\]

where \(\beta \) are vectors of coefficients that measure the impact of the inputs on literacy. The model is estimated by maximum likelihood for which the loglikelihood of the model is given by:

\[
\text{LogL} = -\text{Log}(\sigma) + \sum \text{Log}(1 - \Phi(-\frac{\varepsilon \lambda}{\sigma})) - \sum \frac{\varepsilon^2}{2\sigma^2}
\]

where \(\sigma = \sigma_v + \sigma_\mu \) and \(\lambda = \sigma_v / \sigma_\mu \) and \(\Phi(.) \) is the standard normal distribution function.

The estimation results can be used to obtain a measure of technical inefficiency. Jondrow et al. (1982) derive an estimate of technical inefficiency, i.e. the conditional expectation of \(\mu \) given \(\varepsilon \):

\[
E(\mu | \varepsilon) = \frac{\varepsilon \lambda / \sigma + \varphi(-\varepsilon \lambda / \sigma)}{(1 - \Phi(-\varepsilon \lambda / \sigma))\sigma_\mu / \sigma_\mu}
\]

We estimated the stochastic frontier in Stata 11. To avoid infeasibility in the maximum likelihood estimation due to wrongly specified starting values, which is common in samples with low inefficiency, we specified starting values by a simple linear regression (see Kumbhakar & Lovell, 2003).

4. Data and Descriptive Analysis

To examine the relationship between the education system and the level of literacy, we obtain data from the OECD ‘International Adult Literacy Survey’ (IALS). The IALS survey contains micro data for 38,358 persons in 11 OECD countries: Belgium, Canada, Germany, Ireland, Netherlands, New Zealand, Poland, Sweden, Switzerland, the United Kingdom and the United States. For each of the 11 countries, the survey contains a sample of persons aged over 16, who were similarly tested and interviewed on their literacy. To make the sample representative, the data set includes weights for each individual. In the remainder of the paper, we apply these weights.

The IALS aims at investigating how well adults use information to function in society. Additionally, it allows us to determine the factors that influence literacy proficiency and to compare these across countries. Literacy (\(L \); the dependant variable) is captured by five plausible values (ranging from 0 to 500) on three complementary dimensions: prose (i.e., understand information from texts), document (i.e., use information from forms, schedules, maps or charts) and quantitative (i.e., apply arithmetic operations) literacy. By using the three dimensions and the scale, the IALS

1 After removing respondents with incomplete information on relevant variables, we obtain a data set of 31,984 observations.

2 Although some authors still doubt the comparability across countries (e.g., Blum et al., 2001), we follow the OECD in assuming that the literacy scores are comparable across countries.
intended to construct a comprehensive measure for illiteracy and avoid the simplistic notion that people are either literate or illiterate. Following previous literature, we take the arithmetic average of the three dimensions on each of their 5 plausible values (note that the first principle component resulted in comparable scores). As such, an aggregated variable capturing literacy is obtained.\footnote{Note that an alternative approach could consist of including all three dimensions as outputs and estimating a distance function rather than a production function applied here. We consider this as scope for further research.}

Following the OECD (2000) the obtained score indicates literacy. A score between 0-225 identifies people who have very poor literate skills. On the three aggregated dimensions, i.e. our literacy score, about 19.80% of the sample turns out to be very poorly literate. Scores between 226 and 275 denote respondents with weak literacy skills (27.12% of the sample). A third level (with values between 276 and 325) is reserved for people with a literacy level which suffices for dealing with a complex society (37.46% of the sample). While a fourth and fifth level (respectively, 326-375 and 376-500) indicates respondents who can cope with higher-order information processing (14.56% and 1.06% of the sample).

Figure 1 presents the heterogeneity in literacy (L) among the 11 countries. There are clearly some differences in both the (weighted) mean literacy, and the spread of literacy (in terms of standard deviation and range) across the countries. Swedish and Dutch citizens have the highest average literacy, while Polish citizens have the lowest. The spread of literacy scores is most equal in Germany and the Netherlands, while the inequality of literacy is highest in the French speaking Canada, Northern Ireland and Poland (we will test this in the next section more formally by using SFA estimates). The large variation between the maximum and minimum literacy score can also be observed from the summary statistics in Table 1. It should be noted in this respect that the sample includes for each country a representative sample of people older than 16 years. For example, the correlation between age and schooling of the mother is with -0.187 large and significant. The nonparametric spearman rank correlation is even higher with a correlation of -0.26.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Distribution of scores across the countries}
\end{figure}
Table 1 Descriptive statistics

<table>
<thead>
<tr>
<th>Country</th>
<th>Literacy</th>
<th>Gender</th>
<th>Schooling father</th>
<th>Schooling mother</th>
<th>Own school</th>
<th>Schooling</th>
<th>Age</th>
<th>Migrant ((1=\text{yes}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - English</td>
<td>3951</td>
<td>4.072</td>
<td>3.991</td>
<td>4.115</td>
<td>1.512</td>
<td>41.598</td>
<td>1.258</td>
<td>0.438</td>
</tr>
<tr>
<td>Germany</td>
<td>1832</td>
<td>2.842</td>
<td>2.870</td>
<td>2.189</td>
<td>2.438</td>
<td>40.009</td>
<td>1.060</td>
<td>0.237</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1244</td>
<td>3.340</td>
<td>3.252</td>
<td>1.500</td>
<td>39.782</td>
<td>1.087</td>
<td>0.363</td>
<td>0.282</td>
</tr>
<tr>
<td>Ireland</td>
<td>2362</td>
<td>2.780</td>
<td>1.671</td>
<td>1.699</td>
<td>36.614</td>
<td>1.059</td>
<td>0.235</td>
<td>0.000</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>3951</td>
<td>2.707</td>
<td>2.189</td>
<td>1.050</td>
<td>2.438</td>
<td>0.854</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Belgium</td>
<td>2215</td>
<td>2.983</td>
<td>2.421</td>
<td>1.512</td>
<td>1.032</td>
<td>0.357</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2215</td>
<td>2.983</td>
<td>2.421</td>
<td>1.512</td>
<td>1.032</td>
<td>0.357</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
As can be observed from Figure 1 above, the distribution of the literacy scores shows some remarkable differences between countries. In Poland, the country with the lowest literacy, about 41.43% (33.50%) of the respondents is categorized in level 1 (respectively, level 2). On the contrary, in Sweden only 8.33% (19.59%) of the adults have poor and weak literacy skills (level 1 and 2) (see OECD, 2000 for an extensive discussion).

To obtain the estimate of the influence of education on literacy as accurate as possible, we control in the SFA model for various background characteristics. First, we include the respondents’ education level (S) as independent variable. Intuitively, a higher respondents’ education level will result in a higher literacy score. Education level is made comparable across countries by using the International Standard Classification of Education (ISCED) code, where Isced 0 = pre-primary education; Isced 1 = primary education, Isced 2 = lower secondary education; Isced 3 = upper secondary education; Isced 5 = first stage of tertiary education and Isced 6 = second stage of tertiary education. In the analysis below, we take respondents without pre-primary as a reference group. For countries where the reference group was too small, the reference group consists of Isced 0 and 1. The (weighted) summary statistics are provided in Table 1.

Second, we control for parental schooling (P): education level of the mother and father. It is commonly acknowledged that higher educated parents raise higher educated children. From Table 1 we observe that, on average, fathers are highest educated in Canada, while Switzerland and the Netherlands have, on average, the lowest educated fathers. Mothers of the respondents obtained the highest education levels in Canada and USA and the lowest levels are observed in Poland.

Third, we control for some exogenous characteristics (X) such as gender (female = 1), age, and migrant status. Some (weighted) summary statistics are presented in Table 1. Although both gender, age and migrant status do not significantly differ across countries, it might have an influence on the individual’s literacy score. Intuitively, we expect age and migrant status to be negatively correlated to literacy. A priori, the influence of gender is ambiguous: on average, males underperform females; but females have historically a lower education level.

5. Results of the Stochastic Frontier Estimations

5.1 Explaining Literacy

The results of the SFA estimation are presented in Table 2 on next page. Before we discuss the coefficients, some comments on the interpretation of the results are in order. Firstly, we do not claim to be able to identify the causal effect between education level and literacy. To do so, we need instrumental variables which are not available in the data set at hand. Nevertheless, as we have an adult sample where educational attainment precedes and predetermines literacy achievement in time, there is at least some justification for assuming that education (pre-) determines literacy (and not the other way around). Secondly, to assess the effectiveness of the educational system, we look at the relative differences in literacy between levels of education in a cross-country perspective. In doing so, we control for various other individual characteristics (see Table 1 above).

4 A similar construction of education level consists of both respondent’s education as well as education of mother and father.

5 In the SFA regressions below, we made robustness tests with gender, age and gender*age. This delivered insignificant results on the latter multiplicative variable.

6 Note, however, that the achieved education level might be influenced by omitted variables such as the cognitive abilities, which are likely correlated with the literacy scores. Nevertheless, (a proxy for) ability is unfortunately not available in the IALS sample at hand.
The estimation results of the stochastic frontier specification are presented in Table 2. We firstly estimate the model for each of the countries in our sample separately (i.e., relative to the group frontier). We will relax this assumption later.

Table 2 Stochastic frontier estimates of literacy scores (standard errors below the estimates)

<table>
<thead>
<tr>
<th>Education respondent (Ref. group indicated in the table)</th>
<th>Canada (English)</th>
<th>Canada (French)</th>
<th>Switzerland (German)</th>
<th>Switzerland (French)</th>
<th>Germany</th>
<th>USA</th>
<th>Ireland</th>
<th>Netherlands</th>
<th>Poland</th>
<th>Sweden</th>
<th>New Zealand</th>
<th>United Kingdom</th>
<th>Northern Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.77232</td>
<td>5.85253</td>
<td>5.70115</td>
<td>5.29586</td>
<td>5.85514</td>
<td>5.61899</td>
<td>5.17351</td>
<td>6.11600</td>
<td>5.43330</td>
<td>5.52162</td>
<td>5.19517</td>
<td>5.61733</td>
<td>4.55351</td>
</tr>
<tr>
<td>0.00056</td>
<td>-0.00113</td>
<td>-0.00149</td>
<td>-0.00188</td>
<td>-0.00064</td>
<td>-0.00202</td>
<td>-0.00238</td>
<td>-0.00665</td>
<td>-0.00079</td>
<td>-0.00843</td>
<td>-0.00203</td>
<td>-0.00301</td>
<td>-0.00438</td>
<td>-0.00018</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Education mother (Ref. group indicated in the table)</th>
<th>Canada (English)</th>
<th>Canada (French)</th>
<th>Switzerland (German)</th>
<th>Switzerland (French)</th>
<th>Germany</th>
<th>USA</th>
<th>Ireland</th>
<th>Netherlands</th>
<th>Poland</th>
<th>Sweden</th>
<th>New Zealand</th>
<th>United Kingdom</th>
<th>Northern Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education father (Ref. group indicated in the table)</td>
<td>Canada (English)</td>
<td>Canada (French)</td>
<td>Switzerland (German)</td>
<td>Switzerland (French)</td>
<td>Germany</td>
<td>USA</td>
<td>Ireland</td>
<td>Netherlands</td>
<td>Poland</td>
<td>Sweden</td>
<td>New Zealand</td>
<td>United Kingdom</td>
<td>Northern Ireland</td>
</tr>
<tr>
<td>Control variables</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>(female = 1)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Migrant (1 = 0)</td>
<td></td>
</tr>
<tr>
<td>Variances</td>
<td></td>
</tr>
<tr>
<td>sigma_u</td>
<td>0.07536</td>
<td>0.04831</td>
<td>0.07114</td>
<td>0.05497</td>
<td>0.07245</td>
<td>0.06232</td>
<td>0.08232</td>
<td>0.05860</td>
<td>0.07303</td>
<td>0.06764</td>
<td>0.06323</td>
<td>0.05205</td>
<td>0.06911</td>
</tr>
<tr>
<td></td>
<td>0.00006</td>
<td>0.00008</td>
<td>0.00010</td>
<td>0.00015</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.00016</td>
<td>0.00004</td>
<td>0.00005</td>
<td>0.00007</td>
<td>0.00004</td>
<td>0.00005</td>
<td>0.00003</td>
</tr>
<tr>
<td>sigma_v</td>
<td>0.32324</td>
<td>0.34982</td>
<td>0.24040</td>
<td>0.26971</td>
<td>0.18875</td>
<td>0.38621</td>
<td>0.27891</td>
<td>0.20901</td>
<td>0.40724</td>
<td>0.24772</td>
<td>0.27945</td>
<td>0.34697</td>
<td>0.36201</td>
</tr>
<tr>
<td></td>
<td>0.00003</td>
<td>0.00010</td>
<td>0.00001</td>
<td>0.00004</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.00004</td>
<td>0.00007</td>
<td>0.00008</td>
<td>0.00001</td>
<td>0.00004</td>
<td>0.00003</td>
</tr>
<tr>
<td>sigma2</td>
<td>0.11016</td>
<td>0.24725</td>
<td>0.62238</td>
<td>0.07577</td>
<td>0.44751</td>
<td>0.08988</td>
<td>0.04657</td>
<td>0.04706</td>
<td>0.12756</td>
<td>0.08554</td>
<td>0.3205</td>
<td>0.33578</td>
<td>0.68225</td>
</tr>
<tr>
<td></td>
<td>0.00005</td>
<td>0.00005</td>
<td>0.00004</td>
<td>0.00004</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.00004</td>
<td>0.00002</td>
<td>0.00004</td>
<td>0.00004</td>
<td>0.00004</td>
</tr>
<tr>
<td></td>
<td>0.00013</td>
<td>0.00017</td>
<td>0.00028</td>
<td>0.00036</td>
<td>0.00031</td>
<td>0.00010</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00007</td>
<td>0.00004</td>
<td>0.00004</td>
<td>0.00007</td>
</tr>
</tbody>
</table>
Literacy seems to be strongly associated with the level of education. Across all countries, each level of education increases, on average, literacy by 37% in comparison to ‘no schooling’. Not surprisingly, the increase in literacy increases with higher education levels. For example, a respondent who obtained a primary education degree (Isced 1) obtains, on average, 28% higher literacy than a respondent without schooling. Respondents with a second stage of tertiary education obtain, on average, 45% higher literacy scores than uneducated persons.

There are some interesting differences between more Anglo-Saxon countries – such as Canada, Ireland, USA, United Kingdom and New Zealand – and more continental European countries – such as Switzerland, Germany, the Netherlands and Belgium. In the Anglo-Saxon countries the average increase in literacy appears to be higher with increasing education level, than in continental European countries. Compare, for example, Canada and Germany. The average increase over education levels amounts to 38% in Canada, while only 14% in Germany. This difference arises from the (slightly) higher intercept term in continental European countries. This suggests a relative high average level of literacy in continental European countries with fairly small differences in literacy levels between education levels. In the more Anglo-Saxon countries average literacy levels are lower but differences between education levels are relatively larger suggesting that education contributes relatively more to one’s literacy level than in the continental European countries. Surprisingly, although the average literacy level (observed from the intercept) is highest in the Netherlands, additional levels of education are estimated to be unfavourable to literacy. Street (1993), Gee (2008), and Cope and Kalantzis (2000) pointed to cross-cultural differences which might explain the difference in literacy. We leave the explanation of the cross-country literacy differences as scope for further research.

For parental education we find smaller but similar significant effect sizes: parental education – a proxy for socio-economic background – favours the literacy of the respondent. Pupils who have highly educated mothers are more educated themselves. This confirms previous findings in the literature (see Willms, 1999 for an overview).

Remarkable, in Switzerland (German speaking part) and Belgium the education of the mother has a higher impact on the literacy score than the respondent’s education. In other words, the education of the mother determines the literacy of the respondent. This confirms previous findings that there is a large predetermination in the Swiss and Belgian education system (Verschelde, 2009). A similar observation can be made for the education of the father in French speaking Switzerland. One can observe that in countries which experienced a large increase in wealth during the last decade (i.e., Ireland, Poland and Sweden), the education of the father was an important driver in literacy.

Gender differences in literacy levels appear to be small. However, in most countries we find a significant difference between male and female literacy levels. In all of these countries male literacy levels tend to be higher than female literacy levels. This confirms previous research by, among others, Charette & Meng (1997). Only in French speaking Canada and the USA, females have, controlled for own schooling and education of the parents, a higher literacy.

In most countries, except for the USA and New Zealand, we observe a negative relationship between age and literacy: i.e. literacy levels tend to be higher for younger people. In the USA and New Zealand, older persons have a better literacy than younger persons. This may indicate a shortfall in the education system. We did not find multiplicative effects with age².

Besides in Ireland and Poland, people who are born in their country of residence have a substantially higher literacy score than immigrants. Even in countries with a high immigration and an almost universal language – such as the USA – literacy among people not born in the country is substantially lower than literacy among people born in the country.
5.2 A Metafrontier Approach

The SFA model allows us to estimate the technical efficiency of observations (see Kumbhakar and Lovell, 2003). While accounting for the background characteristics in the estimation (which capture heterogeneity), the technical efficiency estimates reveal for each observation the shortfall in literacy in comparison to the best practice observation. For example, an efficiency score of 0.9 indicates that the respondent could increase his/her literacy score by 10%, given his/her background and schooling.

To estimate the shortfall in the production possibilities across countries, we follow the metafrontier framework of Battese & Rao (2002) and O’Donnell et al. (2008). As more formal discussion of the metafrontier can be found in the latter references, this paper is restricted to an intuitive outline. In a first step, a metafrontier framework pools all observations and estimates performance (denoted by \(\mu_{\text{meta}} \)) against this pooled sample. The potential best practice observation arises therefore not necessarily from the own group. The idea is that the most optimal transformation of inputs into literacy (the production technology) is, in theory, available for all countries. If country A has citizens who, given their background, a higher literacy than in country B, country B shows a shortfall. The results of the metafrontier estimation are presented in Table 3. Sweden, Belgium and the Netherlands have, on average, the highest metafrontier efficiency. The metafrontier efficiency scores are, respectively, 0.879, 0.843 and 0.842, denoting that, if all students were performing as good as their (overall; i.e. from any country) best practice, average efficiency in generating literacy could increase in Sweden by 0.12% (Belgium 0.15% and Netherlands 0.15%). Given the background of the respondents, these three countries are performing better than the other countries in the sample. In sum, given the available resources, Sweden, Belgium and the Netherlands have an efficient school system in creating literacy. On the other hand, Poland and French speaking Canada have the lowest metafrontier efficiency score (scores of, respectively, 0.731 and 0.723). Their school system could significantly benefit from adapting it along the lines of the best practice countries.

<table>
<thead>
<tr>
<th></th>
<th>Relative to own frontier</th>
<th>Relative to meta frontier</th>
<th>Technology gap ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean efficiency</td>
<td>St. dev. Efficiency</td>
<td>Mean efficiency</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.8405</td>
<td>0.1010</td>
<td>0.8787</td>
</tr>
<tr>
<td>Belgium (Flanders)</td>
<td>0.8306</td>
<td>0.1095</td>
<td>0.8426</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.8625</td>
<td>0.0886</td>
<td>0.8423</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.8298</td>
<td>0.1103</td>
<td>0.8307</td>
</tr>
<tr>
<td>Germany</td>
<td>0.8605</td>
<td>0.0867</td>
<td>0.8292</td>
</tr>
<tr>
<td>Switzerland (French)</td>
<td>0.8365</td>
<td>0.1124</td>
<td>0.8213</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.8166</td>
<td>0.1147</td>
<td>0.8138</td>
</tr>
<tr>
<td>Switzerland (German)</td>
<td>0.8442</td>
<td>0.0984</td>
<td>0.8046</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>0.7780</td>
<td>0.1446</td>
<td>0.8033</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.7860</td>
<td>0.1354</td>
<td>0.7956</td>
</tr>
<tr>
<td>USA</td>
<td>0.7883</td>
<td>0.1426</td>
<td>0.7780</td>
</tr>
<tr>
<td>Canada (English)</td>
<td>0.7827</td>
<td>0.1290</td>
<td>0.7607</td>
</tr>
<tr>
<td>Poland</td>
<td>0.7541</td>
<td>0.1592</td>
<td>0.7313</td>
</tr>
<tr>
<td>Canada (French)</td>
<td>0.7630</td>
<td>0.1302</td>
<td>0.7233</td>
</tr>
</tbody>
</table>

\(^7\)In fact, the pooled stochastic frontier analysis follows the line of Battese and Rao (2002). Later, Battese et al. (2004) solve a deterministic linear or quadratic programming problem to envelop the group frontiers. This paper follows the former approach.
In a second step, we first estimate the efficiency relative to all respondents in the same country. The resulting efficiency score is denoted by μ_{own}. De Witte and Marques (2010) interpreted the country average efficiency score as an indication for the inequality in learning possibilities in a country. The efficiency score is estimated as a relative efficiency score (i.e., relative to all other observations in the reference set; in casu, the respondents of a country). In the SFA model, the reference set is restricted to observations with similar characteristics, as proxied by the control variables. If a respondent with similar characteristics is obtaining higher efficiency scores, the SFA model will split this difference to a stochastic error term (capturing the random noise) and an inefficiency term (capturing how much the respondent could do better in terms of literacy score, if he/she would perform as efficient as his/her comparable best practice). The higher the average efficiency score of a country, the more equal the opportunities for learning, given the control variables. The results are presented in Table 3. The average efficiency amounts to 0.86 in the Netherlands and Germany. These countries are best able to provide for similar respondents similar literacy rates (as was also observed from the eye-ball econometrics in the previous section). On the contrary, Poland (score of 0.754), French speaking Canada (0.763) and Northern Ireland (0.778) do not succeed in giving their citizens similar opportunities, given their background (cf. previous section).

Finally, in a third step, we compare the outcomes of the previous two steps. By dividing the meta efficiency score μ_{meta} by the regular score μ_{own}, we obtain the technology gap ratio (TGR). TGR estimates the shortfall in efficiency by not adapting the best available ‘technology’ for transforming the inputs into literacy (see Battese & Rao, 2002; O’Donnell et al., 2008; and De Witte & Marques, 2009). The TGR proxies the potential efficiency gains by changing the educational system and learning from the best practice countries (i.e., the countries with a higher meta efficiency score μ_{meta}). Due to sample size bias (i.e., the larger the reference sample, the lower the average efficiency; Zhang and Bartels, 1998), μ_{meta} is generally lower than μ_{own}. Consequently, the TGR will be smaller than 1 (although this is not necessarily the case as the SFA approach controls for random noise), pointing to potential efficiency gains. The results in Table 3 reveal that particularly French speaking Canada (TGR = 0.948), Switzerland (German part; TGR = 0.953) and Poland (TGR = 0.970) could benefit from learning from the best practice countries.

6. Conclusion and Discussion

The growing importance attached to education coupled with the continuous scarcity of resources for education make it important that skills and literacy are produced efficiently. This paper provides an international comparison of the efficiency of literacy and finds substantial differences between countries in levels of literacy, differences in literacy between education levels and differences in the efficiency of literacy production. There are some notable differences between more Anglo-Saxon countries and the Continental European countries. Typically, Anglo-Saxon countries – like the USA, Great Britain, Canada and Ireland – have lower levels of literacy but larger differences in literacy levels between levels of education than continental European countries such as Sweden, Germany, Netherlands and Belgium.

On the other hand, the estimates suggest that in continental European countries as Sweden, Belgium and the Netherlands literacy is produced more efficiently than in countries like the USA, Canada and Poland. So, it seems that large differences in literacy levels between levels of education are associated with a relatively higher efficiency of literacy production.

Finally, the findings suggest that in almost all countries the scope for efficiency improvements in education is large (i.e., we observe average performance scores which are significantly smaller than 1.0). It appears that even without major increases in (public) funding for education, improvements in educational outcomes may be achievable by learning from the best practices.
Further qualitative research should elaborate on why some countries (as Netherlands or Sweden) are able to generate with the given resources and background of the students more literacy than other countries (as Poland and Canada).

Acknowledgments: We are grateful to seminar participants at University of Groningen for insightful comments and discussions. The usual caveat applies.

References

