Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

Zvuloni, A.; Artzy-Randrup, Y.; Katriel, G.; Loya, Y.; Stone, L.

Published in: PLoS Computational Biology

DOI: 10.1371/journal.pcbi.1004151

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Figure S3

Figure S3. Probability surface plots for all pair of sequential sampling dates between June 2006 and May 2007. The probability of infection at each point within the 10×10 m studied site is displayed as a gradient of colors. Such that, warm colors (e.g. red) represent a high probability of infection (‘disease hotspots’) and cold colors (e.g. blue) represent a lower probability of infection. The probability was calculated by eqn 2 (using the best fitting parameters $\alpha, c_1, \ldots, c_{11}$; see text) for a set of all Previously-Infected Corals (PICs; red circles) observed in the field. Note that in nearly all cases Newly-Infected Corals (NICs; white circles) develop in significant proximity to PICs as proposed by the model.