Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

Zvuloni, A.; Artzy-Randrup, Y.; Katriel, G.; Loya, Y.; Stone, L.

Published in:
PLoS Computational Biology

DOI:
10.1371/journal.pcbi.1004151

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Figure S3

Figure S3. Probability surface plots for all pair of sequential sampling dates between June 2006 and May 2007. The probability of infection at each point within the 10×10 m studied site is displayed as a gradient of colors. Such that, warm colors (e.g. red) represent a high probability of infection ('disease hotspots') and cold colors (e.g. blue) represent a lower probability of infection. The probability was calculated by eqn 2 (using the best fitting parameters $\alpha, c_i, \cdots, c_{11}$; see text) for a set of all Previously-Infected Corals (PICs; red circles) observed in the field. Note that in nearly all cases Newly-Infected Corals (NICs; white circles) develop in significant proximity to PICs as proposed by the model.