Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

Zvuloni, A.; Artzy-Randrup, Y.; Katriel, G.; Loya, Y.; Stone, L.

DOI
10.1371/journal.pcbi.1004151

Publication date
2015

Document Version
Other version

Published in
PLoS Computational Biology

License
CC BY

Citation for published version (APA):
Figure S3
Figure S3. Probability surface plots for all pair of sequential sampling dates between June 2006 and May 2007. The probability of infection at each point within the 10×10 m studied site is displayed as a gradient of colors. Such that, warm colors (e.g. red) represent a high probability of infection ('disease hotspots') and cold colors (e.g. blue) represent a lower probability of infection. The probability was calculated by eqn 2 (using the best fitting parameters $\alpha, c_1, \cdots, c_{11}$; see text) for a set of all Previously-Infected Corals (PICs; red circles) observed in the field. Note that in nearly all cases Newly-Infected Corals (NICs; white circles) develop in significant proximity to PICs as proposed by the model.