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Abstract Climate regulation services from forests are an important leverage in global-change
mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological
phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial
patterns of climate regulation services advances our understanding of what underlies climate-mitigation
potential and its variation within and across ecosystems. Here we quantify and contrast the statistical
relations between climate regulation services (albedo and evapotranspiration, primary productivity, and
soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the
eastern United States. We� nd the statistical effects of forest litter and understory carbon on climate
regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors
likely in� uence climate regulation through changes in vegetation and canopy density, radiance scattering,
and decomposition rates. We also� nd a moderate relation between leaf nitrogen traits and primary
productivity at this regional scale. The statistical relation between climate regulation and
temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with
global climate change. Our assessment suggests the expression of strong biotic in� uences on climate
regulation services at a regional, temperate extent. Biotic homogenization and management practices
manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The
identity, strength, and direction of primary in� uences differed for each process involved in climate
regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full
climate-mitigation potential of temperate forest ecosystems.

1. Introduction

Carbon sequestration and the carbon stored in forest’s trees are the ecological leverage of climate-
mitigation treaties [McAlpine et al., 2010;Agrawal et al., 2011]. Offsetting carbon emissions, however, is
only one of the ways through which forests in� uence the climate. Forests, and all other ecosystems, also
in� uence the climate through water and energy� uxes [Pielke et al., 1998; Bonan, 2008; Alkama and
Cescatti, 2016;Naudts et al., 2016]. Together, carbon, water, and energy� uxes between ecosystems and
the atmosphere encompass the ecosystem services of climate regulation. The capture and emission of
carbon and other greenhouse gases by vegetation and soils are biogeochemical� uxes [Bonan, 2008;
Diaz et al., 2009]. The interception and transpiration of water, and the re� ection of solar radiation, are bio-
physical � uxes [Pielke et al., 1998;Anderson-Teixeira et al., 2012;Alkama and Cescatti, 2016]. Climate regu-
lation services connect biophysical and biogeochemical� uxes to the maintenance of conditions favorable
to human well-being and activities [House and Brovkin, 2005]. Though they can counterweigh bene� ts
from the capture of carbon and other greenhouse gases [Anderson-Teixeira et al., 2012;Naudts et al.,
2016], biophysical� uxes remain to be incorporated into climate-mitigation treaties [Jackson et al.,
2008]. To design and implement effective climate-change mitigation policies, we need to understand
the individual and combined mitigation potential from biophysical and biogeochemical� uxes. A� rst step
into that direction is to characterize how abiotic and biotic factors relate to patterns of both the biophy-
sical and biogeochemical� uxes providing climate regulation services. This assessment can help us under-
stand why and how the climate-mitigation potential varies within and across forest ecosystems, within
and across nations.
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For climate regulation services there is robust evidence of a strong abiotic in� uence behind biogeochemical
and biophysical� uxes [Jobbagy and Jackson, 2000;Reichstein et al., 2002, 2007;Seddon et al., 2016]. Abiotic
factors, however, have not fully explained the variation in spatial patterns of climate regulation services
[Lavorel et al., 2010;Reichstein et al., 2014]. Though climate and the environment in� uence biological commu-
nities and their functional traits, there are theoretical and empirical bases for additional, strong biotic in� u-
ences on irradiance scattering, carbon allocation, respiration, water use ef� ciency, and carbon stabilization
in soils [Chapin, 2003;Eviner and Chapin, 2003;de Deyn et al., 2008]. What remains uncharacterized is the
expression of this biotic in� uence on the different biogeochemical and biophysical� uxes, and how they com-
pare to the abiotic, at spatial scales larger than landscape. Evaluating the in� uence of the functional
[Diaz et al., 2009;Lavorel et al., 2010;Conti and Diaz, 2013] and structural [Ruiz Benito et al., 2014] compositions
of biotic communities on climate regulation services is sorely needed [Diaz et al., 2007;Reichstein et al., 2014].
The scarce availability of spatially explicit data has delayed the characterization of biological in� uences on
biogeochemical and biophysical� uxes regulating climate and many other ecosystem services. Going beyond
assessments based on plant functional types is crucial to estimate how climate regulation services could be
impacted by the ongoing losses in global biodiversity and by management practices altering vegetation den-
sity and community composition.

Here we aim to quantify the abiotic and biotic in� uences on climate regulation services in a regional extent of
forests. Comprehensive metrics to represent climate regulation services are scarce; the few available are
model-based and data-intensive [West et al., 2011;Anderson-Teixeira et al., 2012]. We individually evaluate
for the in� uences of the main ecosystem properties and processes involved in the biogeochemical and bio-
physical� uxes providing climate regulation services: albedo, evapotranspiration, primary productivity, and
soil organic carbon (hereafter referred as climate regulation processes). First, we quantify the statistical rela-
tion between climate regulation processes and factors from abiotic and biotic categories separately. This
helped us contrast the in� uence of the functional and structural composition of biotic communities on cli-
mate regulation processes, to those of temperature, precipitation, and the environment. Second, we assess
how the strongest abiotic and biotic factors, alone and combined, explain climate regulation processes.
Overall, if biophysical and biogeochemical� uxes are in� uenced similarly by abiotic and biotic factors, a
robust proxy can be identi� ed for the temperate forest region. Differences in the relative in� uence of factors
related to biophysical and biogeochemical� uxes would suggest trade-offs and different responses to envir-
onmental and biological pressures.

2. Materials and Methods

We focus on a regional extent of forests in the eastern United States (approximately 3.3 × 106 km2, east of the
95°E meridian). Unlike for tropical forest, biophysical and biogeochemical� uxes in temperate regions do not
seem as strongly coupled [Jackson et al., 2008]. Unlike for tropical forest, data on functional traits, forest car-
bon pools, and forest structure are often available for temperate forests.

The regional extent under analysis encompasses 16,955 forest plots from the Forest Inventory Data (FIA,
phase 3). FIA plots under management were excluded from our study given lack of details on the different
practices. Each FIA plot consists of four circular subplots of 170 m2 where trees with a diameter of
� 12.7 cm are measured. In each subplot there is a microplot of 10 m2 where all trees with a diameter of
� 2.54 cm are measured [Woudenberg et al., 2010]. We combined functional trait data from the georeferenced
forest plots with gridded data on climate regulation processes, and abiotic and biotic input variables. We set a
buffer area of 0.8 km in radius around each forest plot and estimated the mean values of gridded data. This
addressed the spatial dislocation in georeferenced plots applied by FIA to protect landowner’s privacy
[Woudenberg et al., 2010].

2.1. Climate Regulation Services: Biophysical and Biogeochemical Fluxes

We represent the biophysical and biogeochemical� uxes providing climate regulation individually. We
chose to use remotely sensed data on the main ecosystem processes and properties behind the different
� uxes, instead of using a single or proxy metric for climate regulation services. Remotely sensed data are
currently the most independent source of data for large-scale assessment such as ours. Spatially explicit
data on biophysical and biogeochemical� uxes from international� ux networks have been interpolated
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by using environmental information [Jung et al., 2011], which hinders its use for characterizing the in� u-
ences of abiotic and biotic variables thereupon.

We used albedo and evapotranspiration data to represent biophysical� uxes involved in climate regulation.
Albedo and evapotranspiration provide local-to-regional climate services by modulating the amount of solar
energy and air moisture used and emitted by forest ecosystems [Pielke et al., 1998;Anderson-Teixeira et al.,
2012;Alkama and Cescatti, 2016]. To represent land-surface albedo, we averaged 16 day composite data
on black-sky, short-wave albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
(albedo (AB), fraction, no units, product MCD43B3 [Moody et al., 2005]). We used black-sky short-wave albedo
because it follows patterns of blue-sky, actual surface albedo better than white-sky or the average of black-
and white-sky estimates [Liu et al., 2009]. We used the average of annual MODIS data on evapotranspiration
(ET, mm yr� 1, product MOD16A3 [Mu et al., 2011]). The MODIS evapotranspiration algorithm is based on the
Penman-Monteith equation [Monteith, 1965] and considers dry canopy transpiration, wet canopy, and soil
surface evaporation in its calculations [Mu et al., 2011]. AB and ET data were obtained at 1 × 1 km grid-cell
resolution. AB and ET data represent the average from the 2000–2009 decade to smooth seasonal and/or
annual � uctuations.

We used primary productivity and soil carbon storage to represent biogeochemical� uxes of climate regula-
tion. The capture and storage of carbon in vegetation and soils in� uence atmospheric concentrations of
greenhouse gases, providing lagged, global climate bene� ts [Bonan, 2008;Diaz et al., 2009]. We used the
average of annual MODIS data on gross and net primary productivity (GPP and NPP, g carbon m� 2 yr� 1, pro-
duct MOD17A3 [Zhao et al., 2005]). The MODIS NPP algorithm estimates autotrophic respiration from leaf
area index, surface temperature, and respiration rates based on MODIS land-cover type [Zhao et al., 2005].
MODIS NPP estimates are independent from GPP [Zhang et al., 2009]. Including both GPP and NPP also
allowed us to contrast the differences between correlates of the gross carbon uptake and the actual amount
incorporated in vegetation. Data on GPP and NPP represent the average of the 2000–2009 decade at 1 × 1 km
grid-cell resolution. We used data on soil organic carbon content in� rst-meter depth developed for the
2000–2009 decade (soil organic carbon (SOC), Mg ha� 1 [Wilson et al., 2013]). For consistent spatial grain in
our input data, we aggregated SOC data from 250 × 250 m to 1 × 1 km by calculating the average of values
encompassed in the new grid-cell resolution. The aggregation did not bias patterns in input data (see Text S1
and Figure S1 in the supporting information).

2.2. Abiotic and Biotic Factors

In order to quantify and contrast the primary in� uences on climate regulation processes, we selected vari-
ables representing abiotic and biotic factors known to in� uence the different processes (Table 1). We used
data on bioclimatic factors, soil physical-chemical characteristics, and topography to represent abiotic factors.
We calculated bioclimatic variables by using mean monthly climate normals at 1 × 1 km grid-cell resolution
(1981–2010) [Daly et al., 2008]. Including bioclimatic variables permitted us to quantify effects of annual and
seasonal means and ranges, and climatic limits on climate regulation processes (Table 1). The bioclimatic vari-
ables included precipitation of the wettest period (mm), precipitation seasonality (estimated as the quotient
of the standard deviation of the monthly mean temperatures and the mean annual temperature, %), precipi-
tation warmest quarter (mm), diurnal temperature range (°C), isothermality (mean diurnal range divided by
temperature annual range), temperature annual range (°C), and temperature of the driest quarter (°C). Soil
physical-chemical characteristics, known to in� uence water-holding capacity, carbon accumulation, and
aboveground productivity, were extracted from gridded data (1 × 1 km grid-cell resolution) [Hengl et al.,
2014]. We included pH (in H2O solution), cation exchange capacity (cmol+ kg� 1), bulk density (kg cm� 3),
and soil texture (sand, silt, and clay, % kg kg� 1) in the � rst-meter depth. As a proxy for abiotic conditions
not accounted by the above factors, we included an elevation estimate from a 1 × 1 km resolution digital
model (meters) [Gesch and Verdin, 1999].

To represent biotic factors, we used data on functional diversity, forest carbon pools, and vegetation cover
(Table 1). We included the plot-level estimates of the functional traits presented inSwenson and Weiser
[2010]: leaf nitrogen, maximum height, wood density, and seed mass. Leaf nitrogen content (mass %N) in� u-
ences the quality and decomposability of organic matter [de Deyn et al., 2008;Ordonez et al., 2009]. Leaf nitro-
gen also in� uences the carbon cycle at the ecosystem level, varying positively and linearly with
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photosynthesis [Reich et al., 1992;Reich, 2012]. Maximum height (m) and wood density (g cm� 3) are
functional traits associated with plant biomass and investment in structure per unit of biomass, both
relating to aboveground carbon storage [Chave et al., 2009;Moles et al., 2009]. Larger plants also make
larger contributions to the accumulation of organic matter in soils [de Deyn et al., 2008]. Seed mass (mg)
increases with seedling survival and relates to forest successional development [Douma et al., 2012]. Leaf
nitrogen, seed mass, maximum height, and wood density re� ect community responses to environmental
conditions at regional [Freschet et al., 2011] and global scales [van Bodegom et al., 2014].

We used abundance-weighted, single-trait community metrics of functional traits multiplying species abun-
dance by their trait values. Tree species presence and abundance (number of individual stems) estimates are
from the 2006 inventory year, except for plots in the state of Louisiana where information comes from 2005
[Swenson and Weiser, 2010]. For each forest plot, we calculated the community mean, minimum, maximum,
variance, and range metrics for each functional trait. As a community index of diversity, we included a plot-
level estimate of species richness. Community mean trait values are generally associated to ecosystem func-
tioning [Suding et al., 2008;Lavorel, 2013]. In the case of, for example, canopy height, maximum trait values
may more strongly relate to ecosystem functioning given the unidirectional impacts of light availability.
On the other hand, the species with the lowest wood density in a community are most vulnerable to drought
stress [Poorter et al., 2010]. Trait ranges and variances in a community re� ect limiting similarity and partly
express the strength of competition and facilitation processes. Limiting similarity has been associated to eco-
system functioning in a wide range of studies [Diaz et al., 2007;Lavorel et al., 2010;Cardinale et al., 2012].

To represent the different forest carbon pools, vertical structure, and successional stage, we used data on for-
est understory, dead wood, litter, and live tree aboveground and belowground carbon (Table 1). Forest struc-
tural and successional attributes determine the dominant species, and the vertical and canopy densities,
which in turn in� uence the absorption of radiation, transpiration rates, productivity, and decomposition rates
[Dixon et al., 1994;Wardle, 2004;Bonan, 2008;de Deyn et al., 2008]. Data on forest understory carbon repre-
sent the carbon of live seedlings, shrubs, bushes in the aboveground and belowground portions

Table 1. Abiotic and Biotic Variables Used to Characterize the Primary In� uences of Climate Regulation Processes

Category Type Variable Description

Abiotic Bioclimatic factorsa Precipitation of the wettest period Seasonal and annual means and ranges, for example, temperature annual range (°C),
precipitation in the wettest quarter (mm)

Climatic limits, for example, temperature and precipitation in coldest and driest periods
Precipitation seasonality

Precipitation warmest quarter
Diurnal temperature range

Isothermality
Temperature annual range

Temperature of the driest quarter
Soil pH • pH index in water solution

CEC • Cation exchange capacity in the� ne earth fraction (cmol+ kg� 1)
Bulk density • Density in� ne earth fraction (kg m� 3)

Texture factors • Gravimetric content of clay, sand, and silt (% kg kg� 1)
Topography Elevation Meters above sea level

Biotic Functional diversityb Leaf nitrogen • Percentage of nitrogen content in leaf (mass %N)
Maximum height • Height of adult tree (meters)

Wood density • Mass of wood divided by green volume (g cm� 3)
Seed mass • Average weight of seeds (mg)

Species richness • Number of species recorded in survey plots
Carbon poolsc Understory • Carbon of live seedlings, shrubs, bushes in the aboveground and belowground portions

Dead wood • Carbon in standing and downed dead wood
Litter • Organic material on the forest� oor: woody debris, humus, and� ne roots above the

mineral soil layer
Aboveground • Carbon in the aboveground portion of the tree, excluding foliage
Belowground • Carbon in the belowground portion of the tree. Includes coarse roots> 0.254 cm in root

diameter
Vegetation cover Tree cover Proportion of grid cell covered by tree canopies (%)

aBioclimatic factors related to precipitation are in millimeters (mm) of water and those related to temperatures are in °C.
bFor each functional trait (leaf nitrogen, maximum height, wood density, and seed mass), we calculated the community-weighted mean, minimum, maximum,

range, and variance metrics.
cAll forest carbon pool variables are in mg ha� 1.
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[Woudenberg et al., 2010]. Downed dead wood represents woody material of> 7.62 cm in diameter and
stumps and their roots> 7.62 cm in diameter. Standing wood represents dead standing trees, including
coarse roots [Woudenberg et al., 2010]. We combined the estimates of standing and downed dead wood
into one variable (dead carbon = standing + downed). Forest litter carbon data represent the organic
material on the forest � oor: � ne woody debris, humus, and� ne roots above mineral soil layer
[Woudenberg et al., 2010]. Forest litter estimates are derived from a model that considers geographic area,
forest type, and stand age [Woudenberg et al., 2010]. We did not include forest stand age from FIA inven-
tories because many of plots did not have a stand age estimate reported in the 2000–2009 period,
because it is used in the estimation of forest litter carbon [Woudenberg et al., 2010] and because of the
concerns over its estimation [Purves et al., 2008; Stevens et al., 2016; U.S. Department of Agriculture
Forest Service FIA Program, 2016] (see Text S2). Exploratory analyses with forest stand age (following the
statistical analyses described in section 2.3) are presented in Figures S2 and S3. Data on live aboveground
carbon represent that of live timber and woodland trees species with a diameter of� 2.54 cm and dead
trees with a diameter of� 12.7 cm [Woudenberg et al., 2010]. Aboveground carbon data exclude carbon in
foliage. Live belowground carbon represents that of coarse roots> 0.254 cm in root diameter, calculated
for live timber and woodland trees species with� 2.54 cm in diameter, and dead trees with� 12.7 cm in
diameter [Woudenberg et al., 2010]. All forest carbon data (in Mg ha� 1) were collated and validated by
Wilson et al.[2013], using inventory data for the 2000–2009 decade.

Finally, to account for effects of canopy surface roughness on the surface-energy budget, we averaged
annual data on MODIS tree canopy cover for the 2000–2009 decade (% cover, product MOD44B [DiMiceli
et al., 2011]). Tree cover data represent the proportion of canopy cover in a given grid cell. For uniformity
in spatial grain, tree cover and forest carbon data were aggregated from 250 × 250 m to 1 × 1 km grid-cell
resolution (see Text S1 and Figure S1). Data on leaf area index, photosynthetically active radiation, and radia-
tion were not included in our analyses because they are used in the MODIS algorithms to estimate AB, ET,
GPP, and NPP [Moody et al., 2005;Zhao et al., 2005;Mu et al., 2011], and including them would introduce cir-
cularity of arguments.

2.3. Statistical Analyses

All input variables were standardized to avoid biases from different measurement scales (mean = 0, SD = 1).
Climate regulation processes (AB, ET, NPP, and SOC) were left untransformed. Descriptive statistics of unstan-
dardized input variables are presented in Table S1 in the supporting information.

To characterize the factors in� uencing climate regulation processes, we performed a two-step selection pro-
cess before quantifying the statistical relation between variables and individual climate regulation processes
[after Murray and Conner, 2009]. First, we eliminated likely spurious correlations by discarding variables with
R2 � 0.05 in bivariate linear regressions with the climate regulation process in turn. Second, we eliminated
highly collinear variables by calculating variance in� ation factors (VIF). We calculated VIF in a stepwise man-
ner, discarding at each step the variable with the highest VIF, until all variables met the VIF< 10 threshold
[Dormann et al., 2013]. We grouped the resulting set of nonspurious, nonhighly collinear variables into abiotic
and biotic categories. The abiotic category includes bioclimatic factors, soil characteristics, and topography.
The biotic category includes functional trait metrics, forest carbon pool variables, and vegetation cover. These
two steps were conducted for each climate regulation process.

We quanti� ed the statistical relations between each climate regulation process and abiotic and biotic vari-
ables, separately, by using the hierarchical partitioning (HP) R package [Walsh and Mac Nally, 2013]. We chose
HP because it quanti� es the independent and joint in� uence of variables in a robust manner, unbiased by
any degree of collinearity between input variables [Chevan and Sutherland, 1991;Mac Nally, 2000;Murray
and Conner, 2009]. The independent in� uence of a variable is the averaged unique contribution to the
explained variance, quanti� ed by comparing all nested models containing the variable to those without it
[Chevan and Sutherland, 1991;Mac Nally, 2000]. The joint in� uence represents the degree to which the con-
tribution of a variable to the explained variance overlaps with that of others [Chevan and Sutherland, 1991;
Mac Nally, 2000]. The sum of independent and joint in� uences of a variable approximates the magnitude
of the univariateR2, but not the direction of the correlation [Mac Nally, 2000]. The HP analyses were con-
ducted � rst for the abiotic and biotic variables separately then in combination, using the top variables from
each category with the highest independent in� uence.
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We then selected the variables with highest
independent in� uences from HP analyses and
used a multimodel inference framework to
assess how abiotic and biotic variables explain
the variance in climate regulation processes.
This approach is complementary to HP, as it also
helped us quantify the model coef� cients of
variables, and hence the direction of their in� u-
ence on climate regulation processes. As for HP
analyses, for each climate regulation process,
we constructed sets of multivariate linear
regression models by using the top variables
from the abiotic and biotic categories sepa-
rately, then using a combination of these vari-
ables. We conducted tenfold cross validation
to compare the model accuracy and to base
multimodel selection on root-mean-square-
error (RMSE; Text S3) [James et al., 2013;
Burnham and Anderson, 2002]. Here we de� ne
the best model set as the set of multivariate
models with the lowest 10% of RMSE values.
To account for model selection uncertainty
and to obtain robust estimates, we averaged
the regression coef� cients in the set of multi-
variate models in the lower 10% of RMSE values.
We did not use Akaike’s Information Criterion
(AIC) as weighting criterion for model selection
(or to rank variable importance) because it was
affected by our large sample size [Burnham
and Anderson, 2002; Hoeting et al., 2006;
Murray and Conner, 2009].

In building our models, we considered multivariate combinations of up to� ve regressors and nonlinear
relationships. The restriction in the number of regressors in models to avoid model over� tting did not
compromise explanatory power: The differences in explained variance between the best model sets
and full models were� 10% (Table 2). If residual-versus-variable plots suggested deviations from linearity,
we added polynomial terms into the model sets [Zuur et al., 2007]. We did not include� rst-order interac-
tions in models given limitations on processing power. The evaluation of ordinary least squares assump-
tions did not show major deviations (see Texts S3–S5). All best model sets (abiotic, biotic, and combined)
were � tted by using the same set of complete observations. We do not report signi� cance levels of the
results from HP analyses or of model coef� cients given our large sample size and spatial autocorrelation
in some residuals. The spatial autocorrelation in model residuals did not show considerable deviations. In
spatial correlograms, only the biotic model for NPP showed Moran’s I between 0.15 and 0.20 at small dis-
tance intervals. All other residuals showed Moran’s I between� 0.1 and 0.1 at all distance intervals (see
Figure S4) [Rhodes et al., 2006]. Statistical analyses were conducted in R statistical software v3.1.2.
Gridded data were processed with ArcGIS v10.1.

3. Results
3.1. Abiotic In � uences

The variable selection process resulted in a different set of abiotic variables being chosen for each cli-
mate regulation process (Figure 1). Still, temperature and soil texture variables were more strongly
related to climate regulation processes than other abiotic variables (Figures 1a–1e). For ET, GPP and
NPP, temperature annual range, precipitation seasonality, and temperature of the driest quarter

Table 2. Comparison Between the Best Multivariate Model
Sets and the Full Models

� (Best Model Setsa-Full Modelsb)

� R2
adj � RMSEc

Albedo
Abiotic � 0.066 0.021
Biotic � 0.014 0.005
Combinedd � 0.035 0.014
Evapotranspiration
Abiotic � 0.044 5.86
Biotic � 0.012 1.50
Combined � 0.025 3.48
Gross primary productivity
Abiotic � 0.080 27.3
Biotic � 0.010 2.60
Combined � 0.041 13.8
Net primary productivity
Abiotic � 0.081 12.0
Biotic 0.00 0.00
Combined � 0.061 8.80
Soil organic carbon
Abiotic � 0.062 1.80
Biotic � 0.039 1.10
Combined � 0.101 4.00

aBest model set is de� ned as the collection of multivariate
models in the upper 10th percentile of RMSE values obtained
from tenfold cross validation.

bFull models are the multivariate models� tted by using all
the variables chosen through the variables selection process.

cRMSE is the average root-mean-square error calculated
from tenfold cross validation.

dIn all cases, the combined set is� tted by using the up-to-
six variables from the abiotic and biotic categories that
showed the highest independent in� uence on each climate
regulation process.
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Figure 1. Abiotic in� uence on climate regulation processes: independent contributions to models and standardized coef� cients. The samexaxis is used for all panels
in order to facilitate comparisons; variable names in thex axis without value were those left out of the analyses because they did not ful� ll the requirements of our
variable selection process. (a–e) The height of bars represents the sum of independent and joint in� uences, which approximates the univariateR2 of the variable.
The independent in� uence of an abiotic variable is its averaged unique contribution to the explained variance; the joint in� uence represents the degree to which the
contribution of the abiotic variable to the explained variance overlaps with that of others. (f–j) Standardized model coef� cients for the best 10% abiotic model
sets. The� lled circles represent the average coef� cient estimate over the models included in the best model sets; the error bars are the length of two standard
deviations. Parametern is the number of models included in the best model sets.RMSEis root-mean-square error obtained from tenfold cross validation, averaged
over the n models.R2

adj represents the explained variance, averaged overn models. Coef� cients for polynomial terms are presented in Table S3. Abbreviations:
AB = albedo, ET = evapotranspiration, GPP = gross primary productivity, NPP = net primary productivity, SOC = soil organic carbon, CEC = soil cation exchange
capacity,T= temperature,P= precipitation, qr = quarter of a year.
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expressing temperature-precipitation interactions had the largest independent in� uence
(Figures 1b–1d). For AB and SOC, the independent in� uence of soil texture variables was greater than
that of most precipitation and temperature variables (Figures 1a and 1e). The independent-to-joint
ratios of sand on AB and of silt on SOC were> 0.8. This suggests that soil variables have large, unique
in� uences on the explained variance of AB and SOC. In all other cases, abiotic variables had
independent-to-joint ratios < 0.5. The large joint in� uence re� ects a considerable overlap in the var-
iance explained by abiotic variables.

Using the abiotic factors that showed the greatest independent in� uence on each climate regulation pro-
cess, we constructed model sets to quantify how much variance they can explain and the direction of their
effects. The best 10% abiotic model sets explained on average� 60% of the variance in most climate reg-
ulation processes (Figures 1f–1j), although the abiotic model set for NPP explained only 34% of the var-
iance (Figure 1i). In the best model sets we also found that abiotic factors with strong in� uence on
climate regulation processes had opposing effects. Such differences in direction of abiotic in� uences were
not consistent between processes behind biophysical (AB and ET) and biogeochemical (GPP, NPP, and
SOC)� uxes. For example, temperature annual range had the largest (negative) averaged coef� cient in
the best model sets for ET, GPP, and NPP (Figures 1g–1i), while the coef� cient was positive for SOC and
AB. Other abiotic variables shared between climate regulation processes such as elevation and tempera-
ture of the driest quarter showed similar differences in direction of effects (Figures 1f–1j). Moreover, the
standard deviation of coef� cients was large, suggesting a considerable variation in the magnitude and
direction of the in� uence.

3.2. Biotic In� uences

The selection of biotic variables based on their in� uence on climate regulation processes differed more
strongly than with abiotic variables. Not one biotic variable was strongly related to all four climate regulation
processes (following our variable selection process, section 2.3). The largest independent in� uences on cli-
mate regulation processes were associated to forest litter (AB and SOC) and understory (ET, GPP, and NPP)
carbon (Figures 2a–2e). With independent-to-joint ratios> 0.9, the in� uences of litter and understory carbon
were largely independent from that of other biotic variables. Belowground and dead forest carbon variables
were only moderately related to GPP, and to AB and SOC, respectively. Only for NPP, community leaf nitrogen
traits had greater in� uence than understory carbon (Figure 2d). Trait ranges, trait variances, species richness,
and forest aboveground carbon hadR2 < 0.05 in bivariate regressions with any climate regulation process
and, hence, were not included in HP or multimodel analyses.

The best biotic model sets often performed as well as their abiotic counterparts. Surprisingly, the best 10%
biotic model set for AB explained more variance and had a lower RMSE value than the abiotic counterpart
(R2

adj = 78% and 68%, respectively; Figure 2f). The explanatory power of the best biotic model set for SOC
was only 2% less than that of the abiotic counterpart and had similar RMSE value. The best biotic model sets
for ET, GPP, and NPP explained between 7% and 16% less of the variance and had considerably greater RMSE
values than the abiotic sets. In all cases, the averaged coef� cients of the forest carbon pool variables were
considerably larger than those of functional traits or tree cover, and often in opposite direction
(Figures 2f–2i). In the case of GPP and ET, the in� uence of forest understory was greatest, while for AB and
SOC, litter carbon had the largest in� uence. Here again the direction of coef� cients was not similar between
the different climate regulation processes, or between the processes representing the two types of� uxes
(AB and ET versus GPP, NPP, and SOC). The results for NPP need to be considered cautiously because only
one model had been selected in the best 10% biotic model sets.

3.3. Combined In� uence of Abiotic and Biotic Variables

We conducted again HP and multimodel analyses by using a combination of the four-to-six abiotic and
biotic variables with the highest independent in� uence. Here, as expected, we found that the joint in� u-
ence of abiotic and biotic variables on climate regulation services was greater than the independent
(Figures 3a–3e and S5). This suggests that large fractions of variance explained separately by abiotic
and biotic variables are accounted by the intrinsic overlap between them. Even so, HP analyses using a
combination of the strongest abiotic and biotic in� uences on each climate regulation process showed
the independent in� uence of forest litter and understory to be often greater than those of bioclimatic
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and soil variables (Figures 3a–3e). The independent in� uence of forest litter on AB and SOC was the
greatest (12.7% and 9.4%, respectively; Figures 3a and 3e). The independent in� uence of understory
and temperature of the driest quarter on ET were similar (7.5% and 8.7%, respectively). For GPP, the
independent in� uence of understory was similar to that of temperature of the driest quarter and

Figure 2. Biotic in� uence on climate regulation processes: independent contributions to models and standardized coef� cients. The samex axis is used for all panels
in order to facilitate comparisons. (a–e) The height of bars represents the sum of independent and joint in� uences, which approximates the univariateR2 of the
variable. (f–j) Standardized model coef� cients for the best 10% biotic model sets. The� lled circles represent the average coef� cient estimate over the models
included in the best model sets; the error bars are the length of two standard deviations. Parametern is the number of models included in the best model sets.RMSE
is root-mean-square error obtained from tenfold cross validation, averaged over then models.R2

adj represents the explained variance, averaged overn models.
Coef� cients for polynomial terms are presented in Table S3. Abbreviations: AB = albedo, ET = evapotranspiration, GPP = gross primary productivity, NPP = net
primary productivity, SOC = soil organic carbon.
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