Out of the blue
Experiences of contingency in advanced cancer patients
Kruizinga, R.

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
The effect of spiritual interventions

Chapter 3

This chapter is based on:
Abstract

Objective
The aim of this study was to examine the effect of spiritual interventions on quality of life of cancer patients.

Methods
We conducted our search on June 6, 2014 in Medline, PsycINFO, Embase, and PubMed. All clinical trials were included that compared standard care with a spiritual intervention that addressed existential themes using a narrative approach. Study quality was evaluated by the Cochrane Risk of Bias Tool.

Results
A total of 4972 studies were identified, of which 14 clinical trials (2050 patients) met the inclusion criteria, and 12 trials (1878 patients) were included in the meta-analysis. The overall risk of bias was high. When combined, all studies showed a moderate effect (d) 0.50 (95% CI = 0.20–0.79) 0–2 weeks after the intervention on overall quality of life in favour of the spiritual interventions. Meta-analysis at 3–6 months after the intervention showed a small insignificant effect (0.14, 95% CI =0.08 to 0.35). Subgroup analysis including only the western studies showed a small effect of 0.17 (95% CI = 0.05–0.29). Including only studies that met the allocation concealment criteria showed an insignificant effect of 0.14 (95% CI =0.05 to 0.33).

Conclusions
Directly after the intervention, spiritual interventions had a moderate beneficial effect in terms of improving quality of life of cancer patients compared with that of a control group. No evidence was found that the interventions maintained this effect up to 3–6 months after the intervention. Further research is needed to understand how spiritual interventions could contribute to a long-term effect of increasing or maintaining quality of life.
Background

Spirituality within the context of a healthcare environment is defined as “that aspect of humanity that refers to the way individuals seek and express meaning and purpose and the way they experience their connectedness to the moment, to self, to others, to nature, and to the significant or sacred” [1]. Spirituality expresses the reflective human quest for identity and meaning beyond a purely pragmatic approach to life [2]. In defining spirituality as a broad notion of finding meaning, purpose and making sense of one’s own existence, religion might be a part of this, but that is not necessarily the case [3].

 Provision of spiritual care is regarded as part of palliative care [4] and aims at addressing the existential needs of patients, including questions about meaning of life and death, as well as the search for peace, spiritual resources, hope and help in overcoming fears [5]. Indeed, spiritual needs can become of particular importance when one is facing the finitude of life [6,7]. The possibility to discuss existential questions is one of the unmet needs of advanced cancer patients who are confronted with the end of life [5,8–10].

 One way of alleviating existential needs may be found in the telling of stories. Such stories, or narratives, are more than just an enumeration of events in serial order: they organize these events into an intelligible whole [11,12]. A narrative can be defined as ‘the creation of a world by picturing particular events and making that world coherent and intelligible by evoking a network of relations-causal links, psychological motivations, goals, plans-among the events’ [13]. In this way, meaning and purpose as well as experiences of connectedness to the moment, to self, to others, to nature, and to the significant or sacred may be expressed. Narrative interventions in public health are aimed at letting the patient talk and letting them construct their own meaningful framework by the power of storytelling [14].

 Telling one’s life story in such a way is thus believed to have a positive impact on patients’ quality of life (QoL) near death [1,15,16]. However, the evidence to support his statement is scarce. Little is known about the effect of spiritual interventions using narrative approaches on quality of life of patients. Some studies show that existential therapies are beneficial [17], but others have pointed out the gaps in this research field, including lack of knowledge and discrepancies between spiritual care as theoretical value and as it is practiced in a healthcare setting [18,19].

 Therefore, we conducted a systematic review and meta-analysis to address the question whether spiritual interventions that address existential needs using a narrative approach improve QoL of cancer patients.

Methods

Eligibility criteria

Interventions were limited to those addressing existential issues using a narrative approach. Study population of the intervention should include >50% cancer patients, with all types of cancer, and aged 18 years and older. Studies had to include a control group of either no intervention or a placebo intervention. The outcome should include QoL or subjective well-being measured with a validated questionnaire. No publication date or publication status restrictions were imposed. Language restrictions were imposed: all languages other than English, German and Dutch were excluded.
Relevant studies were identified by comprehensive searches in PubMed, PsycINFO, Embase, and by selecting relevant trials from the Cochrane Library. This review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement [20].

Search
The final search was run on July 6, 2014. All citations were downloaded into Endnote version x7 (Thomson Reuters, New York City, NY, USA). Together with an experienced librarian (JD), the first author (RK) developed the search strategies using sensitive terms for identifying clinical studies. We pilot-tested search strategies and modified them to ensure that they identified known eligible articles. The final strategies used the following terms: spirituality, cancer, quality of life, (non)-cancer specific questionnaires, supportive care, specific therapies, and trial numbers from trial registers. Specific therapies were also included in the search: reflective journaling, dignity therapy, psycho-spiritual integrative therapy, life completion, meaning-making, meaning reconstruction, narrative therapy, reminiscence, and life review. A customized search strategy was conducted for each database.

Data collection process
Two researchers (IH and RK) independently screened titles and abstracts for inclusion and then read the full text of the selected articles. A senior researcher (HvL) was consulted in case of disagreement or doubt. Data collection was carried out by the first author (RK). Authors were sent an e-mail to obtain more information about the study or study data such as standard deviations (SD) or specific QoL data at different time points. If the authors did not respond the first time, a reminder was sent, with a maximum of three. From each included trial, we extracted the following information: (1) author; (2) year of publication; (3) study design; (4) type of intervention; (5) profession of the person who performed the intervention; (6) type of patients; (7) number of patients; (8) primary study outcome; and (9) instrument used to measure quality of life.

Risk of bias in individual studies
The Cochrane Collaboration’s tool for assessing risk of bias was used to assess the risk of bias on adequacy of sequence generation, allocation concealment, blinding of patients and outcome assessors, blinding of outcome assessment, reporting on incomplete outcome data, selective outcome reporting, and other sources of bias [21]. The researchers (RK, IH and MJ) assessed the risk of bias independently, and a senior researcher (HvL) was consulted in case of disagreement. It is known that in narrative interventions, blinding of patients and personnel cannot be carried out because of the face-to-face intervention. Also, in most studies, outcome assessors could not be blinded for the intervention, as patients were the assessors and they knew to which group they were assigned. The allocation concealment criteria, however, are considered an important determinant for study quality [22]. Therefore, we conducted a subgroup analysis with all the studies that included the allocation concealment, as described in the Cochrane Collaboration’s tool. To explore heterogeneity, we a priori hypothesized that the difference in effect size might be a result of the difference in the methodological quality of the studies, the duration of the intervention, the type of intervention (multidisciplinary or mono-disciplinarily), and whether a study assessed a western or non-western population.
Summary measures
The primary outcome was the mean difference in quality of life between the control group and intervention group 0–2 weeks after the intervention. The secondary outcome was the mean difference in QoL 3–6 months after the intervention. We first extracted data of all studies at the two different time points. From each study, we extracted the data on (1) mean QoL; (2) SD; and (3) sample size. Only one study included in the meta-analysis reported data on a placebo group in addition to a control group [23]; therefore, we selected only the data from the control group as we did for the other studies.

Because the studies used different questionnaires to measure overall quality of life, meta-analyses were performed by computing standardized mean difference using the random-effects model. All scores were converted to a 0–100 scale in order to facilitate the comparison (e.g., score 2 on scale from 0–10 became 2/11*100=18). Cohen’s d was chosen to report the effect size and p-value to assess significance; p-values less than 0.05 are reported as statistically significant [24]. We tested for heterogeneity with the I2 statistic, which can be interpreted as the proportion of total variability explained by heterogeneity [25]. An I2 of 25% can be considered as low heterogeneity, 50% as moderate, and 75% as high heterogeneity [26].

Synthesis of results
First, we differentiated between the western and non-western studies. Second, we conducted a meta-analysis on the studies that scored high on study quality. The last meta-analysis was conducted on subgroups for the different types of intervention. We divided all the studies into three groups as follows: (1) life-reviewing interventions (reconstructing valuable aspects of one’s life); (2) multidisciplinary interventions (with a session on spirituality); and (3) meaning-making interventions (facilitating the search for meaning).

Publication bias
Publication bias was assessed by eye-balling a funnel plot of the trial standardized mean differences for asymmetry. In the absence of publication bias, the studies are expected to be distributed symmetrically around the mean effect size because the sampling error is random [24]. A strong case for publication bias is present when the funnel plot is asymmetrical and there are more studies missing at the bottom of the plot, which can result from the non-publication of small trials with negative results.

Results

Study selection
The search identified 6376 records. After removal of duplications, 4972 records remained. Four thousand nine hundred fifteen records were excluded because they did not meet the inclusion criteria. For the final selection, all 57 records were screened by reading the full text articles. After selection, 14 studies met the inclusion criteria and were included in the systematic review [23, 27-39]. Authors were sent an e-mail to obtain more information about the study: two authors responded and sent more information; three authors responded to the e-mail but did not give more information as they no longer had access to their databases or other reasons; one author did not respond at all.
As a result, two of these were excluded from the meta-analysis [27,28] because of insufficient data, and for one other study [29], we calculated the average SD from two studies [30,31] that used the same questionnaire in assessing QoL (Figure 1).

Figure 1. Flow diagram of study selection

Study characteristics

Intervention
All 14 studies were published between 2005 and 2013. The types of interventions ranged from only spiritual interventions to multidisciplinary interventions with spiritual components. The interventions were performed by various trained people, mostly psychologists/psychiatrists (n=6) and oncology professionals (n=3) or general healthcare professionals (n=2). One intervention was conducted by spiritual healers. Two studies did not provide background information on the profession of the person who conducted the intervention. In two cases, a chaplain contributed to the intervention.

Patients
The patients included in the studies were mostly advanced cancer patients without a specific cancer diagnosis mentioned (n=10); breast cancer patients (n=1); cancer patients at least 1 month diagnosed (n=1); cancer patients with depressive disorder (n=1); and advanced ovarian cancer patients (n=1). The total number of patients included was 2050.
Outcome

In the selected studies, quality of life or subjective well-being was assessed by the Functional Assessment of Cancer Therapy-General (n = 3), the McGill Quality of Life Questionnaire (n = 3), the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (n = 2), two-item Quality of Life Scale (n = 2), the Edmonton Symptom Assessment System (n = 1), Linear analogue self-assessment (n = 1), the Quality of Life at the end of life questionnaire (n = 1), and the Quality of life Concerns in the End-of-life (n = 1). Characteristics of included studies are shown in Table 1.

Table 1. Study characteristics

<table>
<thead>
<tr>
<th>Nr</th>
<th>Author</th>
<th>Year</th>
<th>Study design</th>
<th>Intervention performed by/ intervention targeted</th>
<th>Patients</th>
<th>Sample size</th>
<th>Primary outcome</th>
<th>Measuring instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Breitbart, W.</td>
<td>2012</td>
<td>Pilot RCT</td>
<td>Individual meaning centered psychotherapy</td>
<td>Advanced cancer patients</td>
<td>120</td>
<td>Spiritual</td>
<td>WB QoL</td>
</tr>
<tr>
<td>2</td>
<td>Chochinov, H. M.</td>
<td>2011</td>
<td>RCT</td>
<td>Dignity therapy</td>
<td>Advanced cancer patients</td>
<td>441</td>
<td>Distress</td>
<td>QOL-S</td>
</tr>
<tr>
<td>3</td>
<td>Daly, B. J.</td>
<td>2013</td>
<td>Clinical trial</td>
<td>Multidisciplinary intervention</td>
<td>Advanced cancer patients</td>
<td>610</td>
<td>QoL</td>
<td>FACT-G</td>
</tr>
<tr>
<td>4</td>
<td>Hall, S.</td>
<td>2011</td>
<td>R phase II trial</td>
<td>Dignity therapy</td>
<td>Advanced cancer patients</td>
<td>45</td>
<td>Distress</td>
<td>QOL-S</td>
</tr>
<tr>
<td>5</td>
<td>Henry, M.</td>
<td>2010</td>
<td>Pilot RCT</td>
<td>Meaning-making intervention</td>
<td>One psychologist</td>
<td>28</td>
<td>Existential</td>
<td>well-being QoL</td>
</tr>
<tr>
<td>6</td>
<td>Jafri, N.</td>
<td>2013</td>
<td>RCT</td>
<td>Spiritual therapy</td>
<td>Three experienced spiritual healers</td>
<td>68</td>
<td>Patents</td>
<td>satisfaction ESAS</td>
</tr>
<tr>
<td>7</td>
<td>Kistler, J. L.</td>
<td>2005</td>
<td>Clinical trial</td>
<td>Oncology-assisted spiritual intervention</td>
<td>Cancer patients (> 1 m diagnosed)</td>
<td>118</td>
<td>Anxiety</td>
<td>depression</td>
</tr>
<tr>
<td>8</td>
<td>Loyd-Williams, M.</td>
<td>2013</td>
<td>Pilot RCT</td>
<td>Focused narrative interview</td>
<td>One researcher, no background information</td>
<td>100</td>
<td>Anxiety</td>
<td>depression</td>
</tr>
<tr>
<td>9</td>
<td>Mok, E.</td>
<td>2012</td>
<td>Pilot RCT</td>
<td>Meaning of life intervention</td>
<td>Advanced cancer patients</td>
<td>84</td>
<td>QoL</td>
<td>FACT-G</td>
</tr>
<tr>
<td>10</td>
<td>Pideman, K.M.</td>
<td>2013</td>
<td>RCT</td>
<td>Multidisciplinary intervention</td>
<td>Psychologist/psychiatrist</td>
<td>131</td>
<td>Spiritual</td>
<td>QoL</td>
</tr>
<tr>
<td>11</td>
<td>Rumans, T.A.</td>
<td>2006</td>
<td>RCT</td>
<td>Multidisciplinary intervention</td>
<td>One psychologist</td>
<td>103</td>
<td>QoL</td>
<td>LASA</td>
</tr>
<tr>
<td>12</td>
<td>Steinhauer, K.E.</td>
<td>2008</td>
<td>Pilot RCT</td>
<td>Preparation life compl intervention (outlook)</td>
<td>One research assistant</td>
<td>82</td>
<td>Functioning</td>
<td>QUAL-E</td>
</tr>
<tr>
<td>13</td>
<td>Vega, B. R.</td>
<td>2010</td>
<td>Pilot RCT</td>
<td>Narrative therapy</td>
<td>One research assistant</td>
<td>72</td>
<td>QoL</td>
<td>EORTC C10</td>
</tr>
<tr>
<td>14</td>
<td>Xiao, H.</td>
<td>2013</td>
<td>Pilot RCT</td>
<td>Life review intervention</td>
<td>One trained oncology nurse</td>
<td>80</td>
<td>QoL</td>
<td>M-QOL</td>
</tr>
</tbody>
</table>

RCT, randomized controlled trial; QoL, quality of life; MQOL, McGill QoL questionnaire; QoL-S, QoL, Scale; FACT-G, Functional Assessment of Cancer Therapy-General; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire; ESAS, Edmonton Symptom Assessment System; QUAL-E, QoL at the end of life questionnaire; LASA, Linear analogue self-assessment.

Risk of bias within studies

The Cochrane Risk of Bias tool was used to assess the risk of bias [21]. Five studies scored high on study quality [23,32–35]. Risk of bias within studies is shown in Table 2.

Table 2. Risk of bias within studies assessed by the Cochrane Risk of Bias tool

<table>
<thead>
<tr>
<th>Nr</th>
<th>Author</th>
<th>Year</th>
<th>Study design</th>
<th>Adequate sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of patients/personnel</th>
<th>Blinding of outcome assessors</th>
<th>Incomplete outcome data addressed</th>
<th>Free of selective reporting</th>
<th>Free of other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chochinov, H. M.</td>
<td>2011</td>
<td>RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Hall, S.</td>
<td>2011</td>
<td>Phase II trial</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Jafri, N.</td>
<td>2011</td>
<td>RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Kistler, J.</td>
<td>2005</td>
<td>Clinical trial</td>
<td>No</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Daly, B. J.</td>
<td>2013</td>
<td>Clinical trial</td>
<td>No</td>
<td>No</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Pideman, K.M.</td>
<td>2013</td>
<td>RCT</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Rumans, T.A.</td>
<td>2006</td>
<td>RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Steinhauer, E.</td>
<td>2008</td>
<td>Pilot RCT</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Vega, B. R.</td>
<td>2010</td>
<td>RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Loyd-Williams, M.</td>
<td>2013</td>
<td>Pilot RCT</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Xiao, H.</td>
<td>2013</td>
<td>Pilot RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Breitbart</td>
<td>2012</td>
<td>Pilot RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Henry, M.</td>
<td>2010</td>
<td>Pilot RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Mok, E.</td>
<td>2012</td>
<td>RCT</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Results from the meta-analysis

All studies included

The overall mean effect size for 12 studies on quality of life 0–2 weeks after intervention was $d = 0.50$ (95% CI: 0.20–0.79). This effect was statistically significant ($p = 0.001$) and can be considered a moderate effect size [36]. Heterogeneity was very high ($I^2 = 84\%$) (Figure 2).

Figure 2. SMD and 95% CI: patients’ QoL 0-2 weeks after intervention

The overall effect size of the five studies that assessed quality of life 3–6 months after intervention was $d = 0.11$ (95% CI:0.08 to 0.35), a small and insignificant effect ($p = 0.21$). Heterogeneity was low ($I^2 =0\%$) (Figure 3).

Figure 3. SMD and 95% CI: patients’ QoL 3-6 months after intervention

Western versus non-western studies
At 0–2 weeks after intervention, a small, non-significant effect (d=0.17; 95% CI:0.05 to 0.29) was observed within the subgroup of western studies (Canada, USA, Australia, UK, and Spain); the heterogeneity was low (I²=0%). The non-western studies (Iran, China, and Hong Kong) showed a large effect (d=1.37), but within a large range (0.26–2.47) and with high heterogeneity (I²=92%) (Figure 4).

Figure 4. SMD and 95% CI: QoL 0-2 weeks after interv.; western and non-western studies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>Experimental SD</th>
<th>Control Mean</th>
<th>Control SD</th>
<th>Total Mean</th>
<th>Control Total</th>
<th>Std. Mean Difference</th>
<th>Std. Mean Difference (IV, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breibart 2012</td>
<td>65.27</td>
<td>13.18</td>
<td>41</td>
<td>61.64</td>
<td>14.09</td>
<td>37</td>
<td>0.16</td>
<td>[0.10, 0.22]</td>
</tr>
<tr>
<td>Chocinov 2011</td>
<td>58.08</td>
<td>23.09</td>
<td>108</td>
<td>57.64</td>
<td>22.45</td>
<td>111</td>
<td>0.02</td>
<td>[0.00, 0.05]</td>
</tr>
<tr>
<td>Daly 2013</td>
<td>81.2</td>
<td>17.27</td>
<td>189</td>
<td>80.1</td>
<td>17</td>
<td>226</td>
<td>0.12</td>
<td>[0.04, 0.20]</td>
</tr>
<tr>
<td>Hall 2011</td>
<td>59.86</td>
<td>21.59</td>
<td>12</td>
<td>54.55</td>
<td>22.05</td>
<td>14</td>
<td>0.24</td>
<td>[0.14, 0.34]</td>
</tr>
<tr>
<td>Henry 2010</td>
<td>68.18</td>
<td>16.36</td>
<td>12</td>
<td>65.45</td>
<td>18.18</td>
<td>12</td>
<td>0.15</td>
<td>[0.06, 0.25]</td>
</tr>
<tr>
<td>Kristeller 2005</td>
<td>89.9</td>
<td>12.35</td>
<td>19</td>
<td>86.4</td>
<td>14.9</td>
<td>62</td>
<td>0.32</td>
<td>[0.10, 0.54]</td>
</tr>
<tr>
<td>Lieman 2013</td>
<td>74.2</td>
<td>15.46</td>
<td>91</td>
<td>66.7</td>
<td>15.46</td>
<td>59</td>
<td>0.35</td>
<td>[0.10, 0.62]</td>
</tr>
<tr>
<td>Rammans 2006</td>
<td>72.8</td>
<td>20.62</td>
<td>46</td>
<td>64.1</td>
<td>22.53</td>
<td>64</td>
<td>0.40</td>
<td>[0.08, 0.80]</td>
</tr>
<tr>
<td>Vega 2010</td>
<td>37.6</td>
<td>25.09</td>
<td>38</td>
<td>29.3</td>
<td>27.18</td>
<td>26</td>
<td>0.32</td>
<td>[0.19, 0.55]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>526</td>
<td>601</td>
<td>76.3%</td>
<td>[0.05, 0.29]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi²p = 5.65, df = 8 (P = 0.69); I² = 0%
Test for overall effect: Z = 2.86 (P = 0.004)

Five studies met the allocation concealment criteria. In these studies, a small, non-significant effect of the intervention was visible (d =0.14; 95% CI:0.05 to 0.33) with low heterogeneity (I²=0%) (Figure 5).

Figure 5. SMD and 95% CI: QoL 0-2 weeks after interv.; high quality studies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>Experimental SD</th>
<th>Control Mean</th>
<th>Control SD</th>
<th>Total Mean</th>
<th>Control Total</th>
<th>Std. Mean Difference</th>
<th>Std. Mean Difference (IV, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jafari 2013</td>
<td>68.63</td>
<td>10.86</td>
<td>34</td>
<td>39.25</td>
<td>15.98</td>
<td>31</td>
<td>7.3%</td>
<td>[1.53, 2.76]</td>
</tr>
<tr>
<td>Mok 2012</td>
<td>56.36</td>
<td>13.64</td>
<td>34</td>
<td>51.62</td>
<td>13.64</td>
<td>38</td>
<td>8.5%</td>
<td>[1.14, 0.80]</td>
</tr>
<tr>
<td>Xiao 2013</td>
<td>57.16</td>
<td>10.64</td>
<td>35</td>
<td>36.02</td>
<td>13.45</td>
<td>37</td>
<td>7.9%</td>
<td>[1.13, 2.21]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td>166</td>
<td>23.7%</td>
<td>[2.24, 2.47]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.88; Chi²p = 25.28, df = 2 (P = 0.00001); I² = 92%
Test for overall effect: Z = 2.43 (P = 0.02)
Test for subgroup differences: Chi²p = 4.45, df = 1 (P = 0.03), I² = 77.5%

Heterogeneity: Tau² = 0.00; Chi²p = 1.78, df = 4 (P = 0.78); I² = 0%
Test for overall effect: Z = 1.41 (P = 0.16)
Interventions

Furthermore, we conducted a meta-analysis with the interventions grouped into three subgroups as follows: (1) life reviewing interventions; (2) multidisciplinary interventions; and (3) meaning-making interventions. All studies showed a trend towards a positive outcome on QoL of cancer patients in favour of the intervention. The strongest effect was seen in subgroup 3: meaning-making interventions (d=0.63; 95% CI: 0.01–1.26, p=0.05) (Figure 6).

Figure 6. SMD and 95% CI: QoL 0-2 weeks after intervention; different types of intervention

The graphical funnel plot of the 12 controlled trials appears symmetrical, except for the two outliers; therefore, we assume no publication bias, see figure 7.

Figure 7. Funnel plot of all included studies 0-2 weeks after intervention
Assessed on December 16 2014
Discussion

Summary of evidence
To the best of our knowledge, this is the first systematic review and meta-analysis that examines the effect of spiritual interventions that address existential needs on QoL of cancer patients. We included a total of 12 controlled clinical trials. Our results show that spiritual interventions increase patients’ QoL directly after the intervention. However, our results do not support a long-term effect. A possible explanation is that the effect of the spiritual intervention is negated by the deteriorating physical and mental condition due to disease progression. Based on our findings, we cannot conclude which kind of interventions is most contributing to QoL of cancer patients. It should be noted that only five studies scored high on study quality. This indicates that the field of spiritual interventions could be improved by adopting a more stringent methodology.

Other research
A meta-analysis of the effects of existential therapies also reported on the low quality of the included studies [17]. As a result, researchers are not able to identify which intervention works best for which patient groups. The variety of the studies included in our meta-analysis supports the findings of Henoch and Danielson that underscored the need for more knowledge on how to target existential interventions to specific patient groups [18]. Yet, our finding of a positive effect on overall QoL in favour of the interventions is consistent with the literature review on evidence-based spiritual care that Kalish conducted from June 2010 to December 2011 [19]. She found 10 original research studies with oncology patients, of which four studies pointed out the importance of meeting patients’ spiritual needs. One study found a short-term life review effective for alleviating distress [41]. The other five studies showed positive correlations between the provision of spiritual care or meeting the spiritual needs and QoL of cancer patients and therefore conclude that addressing spiritual needs in clinical settings is critical in enhancing QoL [42–46].

Limitations
Our finding that the overall quality of all included studies was quite poor can be related to the specific field of spiritual care, in which performing evidence-based research is relatively new. In spite of a rapidly growing interest in research on religion, spirituality, and health since 2000 [47], there is still much heterogeneity among the different spiritual intervention studies, for instance, the variety of instruments used to measure patients’ quality of life and the timing of the assessments. Also, the duration of the interventions greatly varied (1 day to 12 weeks) as well as the training of people who performed the intervention. These limitations were also touched upon by Kalish, as she concludes in the literature review that clarity and consensus are still lacking regarding what the best methods are for providing spiritual care [19]. Furthermore, the included studies did not distinguish between type and stage of cancer, while these factors may impact perceived QoL.

Future research
As this meta-analysis shows, spiritual interventions with a narrative approach can have a positive impact on QoL in cancer patients. However, from this meta-analysis, we cannot conclude which specific approach is most beneficial for which type of patient because of the large heterogeneity across studies in terms of the outcome measures, the times of
outcome measurements and randomisation. To obtain more knowledge on this topic, we should strive for more uniformity. This could be achieved by following guidelines on the design of this kind of intervention studies [48], such as standardization of the outcome measurement ‘quality of life’ by using the EORTC QLQ-C30 or C15-PAL questionnaire. In oncology, these questionnaires are regarded as the gold standard to measure QoL in cancer patients [49]. Other guidelines for setting up a clinical study should be followed more adequately, such as including a control-arm and applying proper randomisation and allocation methods.

Our finding that the effect of spiritual interventions did not last up to 3–6 months could be explained by the dynamic nature of personal life stories. It may be hypothesized that a spiritual intervention with a narrative approach is likely to be more effective when it takes into account the ongoing process of defining and reconstructing one’s life story. Using narratives, people continuously refine their stories about certain events and change it in order to fit these events into their lives [50]. This process is unlikely to be sufficiently stimulated by a one-time intervention. The report of the Consensus Conference on Spiritual Care also concludes that appropriate follow-up of patients’ spirituality should be included into the treatment plan [1]. Evidence suggests that psychosocial interventions, in general, do not exert long-lasting effects [50], with the exception of cognitive behavioral therapy, which has been shown to improve quality of life in cancer survivors at both short-term and long-term follow-ups [51,52].

Westerhof and Bohlmeijer showed that a narrative approach, aimed at unravelling a sense of meaning, substantially contributed to one’s well-being [53–56]. The group of non-religious people is growing rapidly, and more people may consider themselves ‘spiritual but not religious’ [57–59]. Therefore, spiritual interventions within healthcare settings should be inclusive when it comes to spirituality in the broad sense, and it may be hypothesized that interventions with a focus on meaning-making aspects, rather than faith contents, will be more effective in enhancing peoples’ QoL. Because we live in a late modern society where social or religious constructs no longer determine how we understand ourselves and the world around us, people create their own biographical story, which they have to (re)construct and justify for themselves [50,60–63].

Furthermore, interventions should be theoretically well substantiated and developed in a way that it is potentially reproducible. In addition, it would be of interest to look into specific approaches to remind, trigger, and stimulate patients in developing the insights they have gained by the intervention. More structured research is needed to determine whether spiritual interventions, with the focus on the ongoing process of meaning-making, could contribute to a long-term effect on QoL.

Conclusions
In conclusion, narrative spiritual interventions can improve QoL of cancer patients in the short term. However, more structured and guided research on this topic is needed to identify the type of interventions from which cancer patients benefit most and to assess which interventions may provide longer-term benefit.
References

