Scaring waterfowl as a management tool: how much more do geese forage after disturbance?

Nolet, B.A.; Kölzsch, A.; Elderenbosch, M.; van Noordwijk, A.J.

DOI
10.1111/1365-2664.12698

Publication date
2016

Document Version
Other version

Published in
Journal of Applied Ecology

Citation for published version (APA):
Appendix S1. Additional figures

Fig. S1. One family of white-fronted geese equipped with numbered neck-collars and backpack GPS/Accelerometer tags during release. Picture G. Müskens

Fig. S2. Example recording (80 min) of accelerometer on three axes (blue, green and red traces) made visible in Movebank Acceleration Viewer. Vertical lines separate recordings (5 s min⁻¹). Orange blocks on top row indicate measurements of GPS positions. Indicated are two flights caused by a disturbance (in this case by helicopters flying overhead shortly after one other).
Fig. S3. Timing of roost flights relative to sunset and sunrise of nine focal wintering white-fronted geese tracked for two days each. Moon phase and cloud cover (on scale 1-9) are also indicated. Linear regressions without outliers.

Fig. S4. Flight distance against flight duration (as estimated from accelerometer recordings) of roost flights and other flights of nine focal wintering white-fronted geese tracked for two days each. Lines are linear regressions plotted on a semi log-scale for clarity.

Fig. S5. Distribution of durations of roost flight ($N = 35$) and other (=non-roost) flights ($N = 129$) of nine focal wintering white-fronted geese tracked for two days each.
Fig. S6. Calculated metabolic rates in three types of winter. Standard resting and field metabolic rate (RMR$_s$ and FMR$_s$) compared to heating metabolic rates during the day (HMR$_d$) and night (HMR$_n$) in a mild, normal, and cold winter (in the scenario that geese can forage into the night).