Kidney oxygenation under pressure

van der Bel, R.

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
UITNODIGING

Voor het bijwonen van de openbare verdediging van mijn proefschrift

KIDNEY OXYGENATION under pressure

Vrijdag 15 december 2017 om 11:00 uur

AULA
Universiteit van Amsterdam
Singel 411 te Amsterdam

Aansluitend receptie

René van der Bel

Paraimfen:
Guido Bakker
Hessel Peters Sengers

© R van der Bel 2017
Kidney oxygenation under pressure

René van der Bel
Kidney oxygenation under pressure
PhD Thesis, University of Amsterdam, The Netherlands
ISBN: 978-94-6299-737-0
Online: http://dare.uva.nl

Copyright © 2017 René van der Bel, Amsterdam, The Netherlands.
All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission of the author.

Cover design: René van der Bel
Lay-out photography: René van der Bel
Layout by: Ridderprint BV - www.ridderprint.nl
Printed by: Ridderprint BV - www.ridderprint.nl

The studies presented in this thesis have been prepared and conducted at the Department of Internal Medicine, Divisions of Nephrology and Vascular Medicine and at the Departments of Radiology, Nuclear Medicine and Hyperbaric Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.

The research described in this thesis was financially supported by the Dutch Kidney Foundation (Kolff grant KJPB12.029) and the Netherlands Organization for Health Research and Development (ZonMw, Clinical Fellowship 40007039712461).

Financial support by the Dutch Heart Foundation and the Stichting tot Steun Promovendi Vasculaire Geneeskunde for the publication of this thesis is gratefully acknowledged.

Publication of this thesis was financially supported by the University of Amsterdam, Finapres Medical Systems, Pfizer, ChipSoft, Bayer, Sanofi
Kidney oxygenation under pressure
PROMOTIECOMMISSIE

Promotores:
 Prof. dr. E.S.G. Stroes AMC-UvA
 Prof. dr. J.J. Homan van der Heide AMC-UvA

Copromotores:
 Dr. C.T.P. Krediet AMC-UvA
 Dr. ir. A.J. Nederveen AMC-UvA

Overige leden:
 Prof. dr. J.A. Reekers AMC-UvA
 Prof. dr. J.J. van Lieshout University of Nottingham
 Prof. dr. K.J. Jager AMC-UvA
 Dr. M. Pruijim University Hospital of Lausanne
 Dr. P.J. Blankestijn Universitair Medisch Centrum Utrecht
 Prof. dr. E.T. van Bavel AMC-UvA

Faculteit der Geneeskunde
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction and thesis outline</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Cross-correlation baroreflex sensitivity and its association with cardiovascular risk in a large multi-ethnic population</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Part A
Blood pressure increase during oxygen supplementation in chronic kidney disease patients is mediated by vasoconstriction independent of baroreflex function</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Part B
A modified device for continuous non-invasive blood pressure measurements in humans under hyperbaric and/or oxygen-enriched conditions</td>
<td>55</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Magnetic resonance imaging derived renal oxygenation and perfusion during continuous, steady-state angiotensin-II infusion in healthy humans</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Sympathetic activation by lower body negative pressure decreases kidney perfusion without parallel reduction in oxygenation in healthy humans</td>
<td>85</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: in silico and during pharmacological renal perfusion modulation</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>General discussion and perspectives</td>
<td>117</td>
</tr>
<tr>
<td>Appendices</td>
<td>Supplementary documents</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Samenvatting (Dutch summary)</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>List of publications</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Portfolio</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Dankwoord (acknowledgements)</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Curriculum Vitae</td>
<td>151</td>
</tr>
</tbody>
</table>