Moving in concert: Social and migratory behaviour of dolphins and whales in the North Atlantic Ocean
Visser, F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 5

Risso’s dolphins alter daily resting pattern in response to whale watching at the Azores
Chapter 5. Risso’s dolphins alter daily resting pattern in response to whale watching at the Azores

Abstract

Behavioral responses of Risso’s dolphins (*Grampus griseus*) to whale watching vessels were studied off Pico Island, Azores. Dolphin behavior was studied from a land-based lookout, enabling observations of groups in the absence and presence of vessels. The number of whale watching vessels showed a clear seasonal pattern, dividing the whale watching period into a low season and a high season. During the low season, Risso’s dolphins rested mainly in the morning and afternoon. During the high season, Risso’s dolphins rested less and did so mainly at noon, when the number of active vessels was lowest. Data analysis using a generalized additive mixed model (GAMM) indicated that this change in resting behavior was associated with vessel abundance. When more than five vessels were present, Risso’s dolphins spent significantly less time resting and socializing. During the high season, this vessel abundance was exceeded during 20% of observation days. While we cannot be sure that the observed changes in behavior have fitness consequences for Risso’s dolphins, reduced resting and socializing rates can have negative impacts on the build-up of energy reserves and on reproductive success. We suggest the adoption of precautionary management measures to regulate the timing and intensity of whale watching activities.

Introduction

Whale watching tourism has grown to a great extent over the last few decades, leading to a strong rise in the exposure of cetaceans to boat traffic and interactions with humans (Miller 1993, O’Connor et al. 2009). Although marine ecotourism can benefit the conservation of cetacean species through the increase of public awareness (Duffus and Dearden 1990), whale watching activities also may have harmful effects on the animals. Cetaceans have shown a range of short-term to long-term behavioral reactions to whale watching vessels, several of which seem comparable to predator-avoidance responses (e.g., Williams et al. 2002). These responses include horizontal and vertical avoidance (Janik and Thompson 1996, Nowacek et al. 2001, Williams et al. 2002), changes in activity and energy budgets (Lusseau 2003a, b, 2004; Williams et al. 2006), changes in habitat use (Baker and Herman 1989, Allen and Read 2000), displacement (Kruse 1991, Lusseau 2005), and in some cases a decline in abundance in small resident populations (Bejder et al. 2006).

The nature and strength of cetacean responses to whale watching have been linked to the intensity, noise and conduct of the vessel traffic and to intrinsic factors such as the sex of individuals, habituation and behavior prior to exposure (Erbe 2002, Bejder et al. 2006, Stensland and Berggren 2007, Williams and Ashe 2007). It can be difficult to relate any observed short-term response to whale watching vessel presence to long-term biological effects on cetacean populations. However, changes in behavior often are related to the energy budget of individuals, and therefore can provide information on the biological significance of an impact at the population level (Bejder and Samuels 2003).

Whale watching tourism in the Azores has been growing rapidly since its start in 1992. In 2004, fifteen tour operators offered daily trips from seven islands of the Azores, the islands of Pico and Faial being the main centers of activity. Local legislation to regulate whale watching activities was implemented in 1999, including guidelines on approach distances, duration of interactions, angle of approach and maximum number of vessels allowed per cetacean group (Carlson 2008). However, Magalhães et al. (2002) found that only 54% of whale watching vessels fully complied with these regulations when targeting sperm whales. Due to the presence of cetaceans in inshore waters, whale watching vessels can be guided very efficiently by an observer from land, making it difficult for targeted cetaceans to avoid vessel encounters.
Risso’s dolphin (Grampus griseus) is one of the target species of the whale watching activities in the Azores (Gomes Pereira 2008). They are relatively shy cetaceans and do not readily approach boats (Tinker 1988). Off Pico Island, more than 1,000 individuals have been identified, many of which are present in the inshore waters on a regular basis. Risso’s dolphin individuals show high site fidelity in the area, as well as a complex social organization involving stable, long-term bonds and age- and sex-specific social segregation (Hartman et al. 2008). A considerable part of the identified population is composed of mother-calf pairs, suggesting that the area may serve as a nursery ground. These factors make Risso’s dolphins in the Azores potentially vulnerable to disturbance.

In this paper we investigate the effects of whale watching vessel presence and abundance on the behavior of Risso’s dolphins around the Azores. Since Risso’s dolphins can be observed readily in Azorean inshore waters, we were able to use land-based observations, which have the advantage of eliminating possible confounding effects of a research vessel (Williams et al. 2006).

Methods

Research area

From May 1 until October 28, 2004, daily land-based observations were made from a fixed look-out at 30 m above sea level on the south coast of Pico island, Azores (38°24’ N, 28°11’ W). The observations were conducted using Steiner Observer binoculars (Steiner Binoculars, Bayreuth, Germany), with 25x magnification and 80 mm objective lenses. The sighting range from our land-based look-out was determined empirically by recording the GPS locations of our research vessel at the limits of the sighting range. Results indicate that the sighting range from the look-out was 20 km offshore, encompassing a research area of 367 km² (Fig. 1). Risso’s dolphin presence could be determined reliably up to 15 km offshore. Whale watching companies operating in the research area generally organize two trips per day. Trips usually last 3-4 hours, starting at 09:30/10:00 and at 14:00/14:30, with occasional evening or whole-day trips. Most vessels observed in the research area depart from the harbor of Lajes do Pico (Pico Island); the remainder depart from Madalena (Pico Island), or Horta (Faial Island).
Chapter 5

Figure 1. Location of the Azores in the North Atlantic Ocean (left panel). Location of the lookout in Santa Cruz (SC), and the harbors of Madalena (M), Lajes do Pico (L), and Horta (H) from which the whale watching vessels depart (right panel). The outline indicates the research area off Pico Island covered by our land-based observations from the lookout in Santa Cruz. Bathymetry map of the North Atlantic Ocean was reproduced from the GEBCO Digital Atlas (IOC, IHO and BODC 2003)

Data collection
Observations were conducted daily, at regular intervals between sunrise and dawn. Two types of sampling were used: surveys and focal follows. Sea state on the Beaufort scale (Bft), visibility and weather conditions were recorded at the start of each observation. Standardized surveys, conducted at the start of all observations, consisted of a scan of the research area, recording the number of Risso’s dolphin groups and individuals and the number of whale watching vessels present (point sampling; Mann 1999). The presence of fishing vessels and recreational vessels was also recorded. The area was scanned twice to account for individuals submerged or missed during the first scan. Surveys had a duration of 15-30 min and were spaced at least 2 h apart to obtain independent samples.

Behavioral observations recorded during focal follows consisted of sampling of group size, group composition, location, direction and speed of travel, group spacing, display events and behavior of Risso’s dolphin groups, using a standardized ethogram (Mann 1999). Behavioral parameters were recorded once every minute. The relatively small average group size of Risso’s dolphin largely rules out the vulnerability to sampling bias of focal group sampling (Bejder and Samuels 2003, Hartman et al. 2008). Focal groups were followed for at least 15 min, unless the group moved too far offshore for reliable observation or sighting conditions deteriorated. We recorded the number of whale watching vessels present at the start of each observation, and the timing of vessels entering and leaving the research area during the observations.
Behavior of Risso’s dolphin
A group of Risso’s dolphins was defined as a set of individuals which interacted socially and/or showed coordinated activity in their behavior (Whitehead 2003). In general, Risso’s dolphins in the area formed tight groups with inter-animal distances <4 body lengths. The largest group spacings, up to 15 body lengths, were usually observed during foraging. We distinguished four mutually exclusive behavioral types: resting, traveling, socializing and foraging (Altmann 1974, Shane 1990). Resting was defined as individuals organized in cohesive group formation characterized by calm, regular surface behavior, moving at low speed, with events of logging individuals (floating at or just below the water surface). Traveling was defined as individuals moving steadily in a directional path, at normal to high speed. Socializing behavior was defined as individuals showing inter-animal interaction (contact) and regular surface display events in cohesive group formation, with larger socializing groups generally organized in dynamically interacting sub-groups. Foraging behavior was defined as loosely spaced individuals or pairs, with individuals displaying regular, long, non-synchronized dives.

The behavioral budget and group size of Risso’s dolphin were determined from focal follow data. Activity rates were calculated on hourly and monthly time scales from the cumulative time over which a behavioral state was observed divided by the total effort of focal follow observations during that period. Relative abundance of Risso’s dolphins was calculated as the average number of individuals present per survey. Surveys at Bft >3 or at limited visibility and focal follows <15 min were excluded from analysis.

Intensity of whale watching
The intensity of whale watching was determined by calculating vessel abundance on hourly, daily and monthly time scales. Whale watching intensity was monitored during the entire research period, including days of rough sea state conditions (Bft>3). Seasonal patterns were quantified by calculating the total number of vessels frequenting the research area per observation day. Based on seasonal variation in whale watching intensity, the research period was divided into a high season (July and August) and low season (May, June, September and October). Daily patterns were quantified by calculating average vessel abundance at 1 h intervals.
Chapter 5

Statistical analysis

We used generalized additive mixed models (GAMMs; Wood 2006, Zuur et al. 2009) to analyse effects of vessel abundance in the research area on the behavior of Risso’s dolphins. In addition to vessel abundance, we included effects of time of day (h) and time of year (mo). Dolphin behavior is likely to vary on different temporal scales and may, for example, show daily and seasonal variation irrespective of vessel abundance.

GAMMs were used because (i) initial data exploration showed non-linear relationships between dolphin behavior and vessel abundance, and (ii) observation records within focal follows were correlated. As the data are binary (presence or absence of behavioral type), we used a binomial distribution with a logistic link function. The full GAMM predictor function is given by:

\[
Y_{ij} \sim B(p_{ij}, 1)
\]

\[
\text{logit}(p_{ij}) = a + f(Vessels_{ij}) + Month_{ij} + Hour_{ij} + a_i + e_{ij}
\]

where \(Y_{ij}\) is the presence/absence of a given behavior in the \(j^{th}\) observation record of focal-follow number \(i\). The presence of a given behavior is assumed to be characterized by a binomial distribution \(B(\pi_{ij}, 1)\) with probability \(\pi_{ij}\) for each observation record. A GAMM was applied separately to each of the four behavioral types. The logit function contains an intercept \(\alpha\) and a smoothing function, \(f(Vessels_{ij})\), describing non-linear effects of vessel abundance on dolphin behavior. The smoothing function was estimated by thin plate splines, and the optimal amount of smoothing was estimated using cross-validation (Wood 2006). The factors Hour\(_{ij}\) and Month\(_{ij}\) were fitted as categorical variables. The random effect \(a_i\) takes into account the fact that observation records within the same focal follow are correlated; it is assumed to be normally distributed with mean 0 and variance \(\sigma_a^2\). We allowed for additional temporal autocorrelation between observation records by imposing an auto-regressive correlation structure of order 1 (AR1 model) on the residuals \(\varepsilon_{ij}\) (Pinheiro and Bates 2000, Zuur et al. 2009). Various models were fitted using different subsets of the explanatory variables, and the optimal model was selected using the Akaike Information Criterion (AIC; Akaike 1973). If the optimal models showed significant effects of the categorical variables Hour or Month, post-hoc testing was conducted to investigate the contrasts between different hours and months. Post-hoc testing involved re-running the optimal model, each time selecting a
Results

Research effort
During 172 observation days, we conducted 448 focal follows and 87 surveys during suitable environmental conditions. The focal follow observations yielded 8238 observation records (of 1 minute each) in total, with 4156 observation records in the low season and 4082 observation records in the high season.

Intensity of whale watching
A total of 487 vessel visits was recorded in the research area, including 460 visits of whale watching vessels and 27 visits of fishing vessels and pleasure boats. Thus, whale watching vessels constituted almost 95% of all vessels visiting the research area. Whale watching vessels were present during 42% of the observation days. The whale watching season started in spring, with one observation of vessel presence in May and daily activities starting in mid-June. Vessel abundance strongly fluctuated over the research period, showing significant differences between months (Kruskal-Wallis Test, H= 93.1, df=5; \(P<0.001 \)) (Fig. 2). During the high season months (July and August), we recorded 6.0 ± 4.7 (mean ± SD) vessels per day, while we recorded 1.0 ± 1.8 vessels per day during the low season months (May, June, September, October).

The intensity of whale watching showed a bimodal distribution over the day, resulting from the timing of the whale watching trips (Fig. 3). During the high season, two peaks of high activity, from 10:00-13:00 and 14:00-17:00, were separated by a period of less activity from 13:00-14:00. During the low season, activities were centered primarily in the morning hours (10:00-13:00). On average, we recorded 1.5 - 3 vessels at the same time during the high season, and 0.5 - 1.5 vessels during the low season.
Chapter 5

Figure 2. Number of whale watching vessels per day observed during May-October 2004. Shaded area indicates the low season, while the non-shaded area indicates the high season.

Figure 3. Daily distribution of whale watching vessels (mean ± SE), during the low season and high season. Data are binned in 1-hour intervals (i.e., 8 = interval 8:00–8:59).

Risso’s dolphin presence and abundance

The presence of Risso’s dolphin in the research area was largely continuous, with records during 90% of the observation days and during 74% of the surveys. On average (mean ± SD), we recorded 2.6 ± 2.5 Risso’s dolphin groups per survey (range: 0-14). Mean group size (± SD) was 11.1 ± 7.5 individuals with a median group size of 10 individuals (range: 1-50). Risso’s dolphin relative abundance did not show significant differences between months over the study period (Kruskal-Wallis test, $H=10.2$; df=5; $P=0.07$).
Behavioral budget

Based on focal follow data, Risso’s dolphins spent a substantial portion of their time during the low season traveling (38%), resting (31%), and socializing (22%), and spent relatively little time foraging (7%). For the remaining 2%, behavioral type could not be determined. They spent significantly less time resting (20%; $\chi^2 = 124.2; \text{df}=1; P<0.0001$) and more time socializing (33%; $\chi^2 = 155.8; \text{df}=1; P<0.0001$) during the high season than during the low season.

![Figure 4](image-url). Daily patterns of resting, socializing, foraging, and traveling (mean ± 95% CI), during the low season (left panels) and high season (right panels). The behavioral budget is expressed as the average activity rate per 1-hour interval (i.e., 8 = interval 8:00 – 8:59).
Dolphin behavior varied during the day (Fig. 4). Foraging behavior was observed mainly during the early morning and the latter half of the afternoon (Fig. 4e,f). A similar but less pronounced pattern was observed for socializing (Fig. 4c,d). The time allocated to traveling remained fairly constant over the day (Fig. 4g,h). There was a clear difference in the timing of resting between the low season and high season (Fig. 4a,b). The low season was characterized by a double-peaked resting pattern, with highest resting rates from 9:00 to 12:00 and from 14:00 to 16:00. During the high season, the morning peak of resting activity was absent, while the main resting period was from 13:00 to 14:00 (Fig. 4b) when vessel abundance was lowest (Fig. 3).

Statistical analysis
The GAMM analysis revealed a high degree of temporal autocorrelation between consecutive observation records (autocorrelation coefficients ranged from 0.8 to 0.9). That is, the behavior observed in one minute was very similar to the behavior in the next minute. In addition, the GAMM analysis also pointed to seasonal variation in dolphin behavior and to effects of vessel abundance.

The optimal model for each of the four behavioral types was selected using AIC-values (Table 1). For resting behavior, the optimal model included the covariates ‘Vessels’ as a smoothing function and ‘Hour’ as categorical variable (model 5). For socializing behavior, the optimal model included the covariates ‘Vessels’ and ‘Month’ (model 6). For traveling and foraging behavior, the optimal model included the covariate ‘Month’ only (model 2).

Table 1. AIC-values of the seven models included in model selection for the GAMM analysis. For each behavioral type, the optimal model (lowest AIC-value) is indicated in bold. Models for which no AIC-value is given did not converge.

<table>
<thead>
<tr>
<th>Model</th>
<th>Selected covariates</th>
<th>Resting</th>
<th>Socializing</th>
<th>Foraging</th>
<th>Traveling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hour</td>
<td>27467</td>
<td>62052</td>
<td>574219</td>
<td>20930</td>
</tr>
<tr>
<td>2</td>
<td>Month</td>
<td>27189</td>
<td>27329</td>
<td>43843</td>
<td>20797</td>
</tr>
<tr>
<td>3</td>
<td>Vessels</td>
<td>26957</td>
<td>-</td>
<td>46345</td>
<td>20840</td>
</tr>
<tr>
<td>4</td>
<td>Hour + Month</td>
<td>27869</td>
<td>23013</td>
<td>574916</td>
<td>23561</td>
</tr>
<tr>
<td>5</td>
<td>Hour + Vessels</td>
<td>23159</td>
<td>-</td>
<td>-</td>
<td>86949</td>
</tr>
<tr>
<td>6</td>
<td>Month + Vessels</td>
<td>27999</td>
<td>15590</td>
<td>48020</td>
<td>33680</td>
</tr>
<tr>
<td>7</td>
<td>Hour + Vessels + Month</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
The GAMM analysis showed a significant negative effect of vessel abundance on resting behavior (Table 2). The probability of observing resting behavior decreased when more than five whale watching vessels were present in the research area (Fig. 5a). During the high season, this threshold value of more than five vessels was exceeded in 317 observation records (i.e. 7.8% of the observation records) spread over 10 observation days (20% of the observation days). During the low season, the threshold vessel abundance of five vessels was never exceeded. In addition, the analysis indicated hourly variation in resting rates (Table 2). However, no significant differences between hours were found in post-hoc testing.

Table 2. Statistical results from the GAMM models, investigating the dependence of the four behavioral types on vessel abundance and temporal variables. Only variables significant at the 0.05 level are given.

<table>
<thead>
<tr>
<th>Behavioral type</th>
<th>Factor</th>
<th>Coefficient</th>
<th>SE</th>
<th>t</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>Intercept</td>
<td>-0.96</td>
<td>0.29</td>
<td>-3.26</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Hour(8)</td>
<td>-0.48</td>
<td>0.24</td>
<td>-2.03</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Hour(9)</td>
<td>-0.60</td>
<td>0.26</td>
<td>-2.27</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Hour(13)</td>
<td>-1.19</td>
<td>0.37</td>
<td>-3.26</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Hour(14)</td>
<td>-1.22</td>
<td>0.38</td>
<td>-3.20</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Hour(15)</td>
<td>-0.92</td>
<td>0.37</td>
<td>-2.46</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Hour(17)</td>
<td>-0.81</td>
<td>0.39</td>
<td>-2.09</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Hour(18)</td>
<td>-0.92</td>
<td>0.41</td>
<td>-2.27</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Smoother term</td>
<td>edf¹</td>
<td>df</td>
<td>F edf df</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>Vessels</td>
<td>3.92</td>
<td>7880</td>
<td>3.47</td>
<td>0.008</td>
</tr>
<tr>
<td>Socializing</td>
<td>Intercept</td>
<td>-1.39</td>
<td>0.31</td>
<td>-4.50</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Month (July)</td>
<td>0.91</td>
<td>0.35</td>
<td>-0.46</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>Smoother term</td>
<td>edf¹</td>
<td>df</td>
<td>F edf df</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>Vessels</td>
<td>4.9</td>
<td>7893</td>
<td>5.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Foraging</td>
<td>Intercept</td>
<td>-6.79</td>
<td>1.20</td>
<td>-5.59</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Month (September)</td>
<td>2.70</td>
<td>1.31</td>
<td>2.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Traveling</td>
<td>Intercept</td>
<td>-0.76</td>
<td>0.36</td>
<td>-2.13</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>Month</td>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹edf = effective degrees of freedom
Similar results were found for socializing behavior, which was also negatively affected by vessel abundance (Table 2; Fig. 5b). In addition, significant differences in socializing behavior were observed between months (Table 2). Post-hoc testing confirmed that dolphins allocated significantly more time to socializing in July than in August and September (P=0.001 and P=0.027, respectively). The time allocated to foraging showed weakly significant monthly variation (Table 2), but no significant differences between months were found in post-hoc testing. Monthly variation in traveling behavior was not significant.

Overall, the GAMM analysis showed that Risso’s dolphins (i) displayed seasonal patterns for socializing; and (ii) spent less time resting and socializing during periods of high vessel abundance.

Discussion

Behavioral shifts induced by vessel presence

The number of whale watching vessels in the research area showed a clear seasonal pattern, dividing the whale watching period in a low and a high season. Risso’s dolphin displayed changes in behavioral patterns in concordance with
these two seasons. During the low season, Risso’s dolphin displayed a bimodal resting pattern; their resting rate peaked at around 11:00 and 15:00. During the high season, this pattern changed into a single peak, with highest resting rates at around 13:00. Whale watching vessels usually went out on two daily trips, one in the morning and one in the afternoon. As such, the peak resting activity of Risso’s dolphin during the high season was shifted to the hours of lowest whale watching intensity, at lunch-break. In addition, resting rates were significantly lower during the high season.

This was not merely a seasonal behavioral pattern. The GAMM results suggest that, once vessel abundance was taken into account, there was no significant seasonal variation in the probability of observing resting behavior. The analysis did reveal some variation in resting behavior on an hourly time scale, although post-hoc testing did not reveal significant differences between specific hours of the day. However, resting rate showed a significant negative relationship with vessel abundance. The probability of observing resting behavior decreased when more than five whale watching vessels were present in the research area. Events with more than five whale watching vessels were recorded only during the high season, indicating that effects of vessel abundance on resting behavior were concentrated in this period. While models including an effect of vessels, but no effect of month, performed better than models including an effect of month, but no effect of vessels, it is evident that the high collinearity between these two variables makes it difficult to reliably distinguish between their effects.

The time allocated to socializing behavior showed a significant negative relation with vessel abundance when more than five vessels were present in the area. Again, this effect was restricted to the high season, the only time this many vessels were recorded in the area. During the high season, socializing rates were significantly higher in July than in August and September. Increased social interactions between individuals are likely to indicate the timing of the breeding or the calving season.

Foraging

The incidence of foraging behavior did not show a pattern related to whale watching vessels present, which may indicate that this behavioral type is less sensitive to disturbance by whale watching vessels. However, foraging occurred primarily outside the high-intensity hours of whale watching. Foraging activities
were concentrated during the early morning and late afternoon, while very little foraging activity was recorded between 10:00 and 15:00. Low foraging rates observed during daytime might be explained by night-time foraging on deep-sea squid, as has been observed for Risso’s dolphin and short-finned pilot whales (*Globicephala macrorhynchus*) off California (Shane 1995). Spinner dolphins (*Stenella longirostris*) living in the somewhat comparable habitat of the Hawaiian archipelago show a similar diurnal behavioral pattern of high day-time resting rates in inshore waters and foraging activity during the late afternoon and night (*e.g.* Lammers 2004, Danil *et al.* 2005). The spinner dolphins enter sheltered bays during day-time, probably to reduce the chances of deepwater shark predation (Norris and Dohl 1980). Night-time foraging and day-time sheltering in inshore areas may explain the relatively high resting rate of Risso’s dolphin observed during the day (25%), compared to other cetaceans (Moberg 2000, Constantine *et al.* 2003, Lusseau 2003a).

Ecological significance

Risso’s dolphins were present almost continuously in the study area and previous research in the area has shown high site-fidelity of individuals and the presence of calves (Hartman *et al.* 2008). According to the behavioral budget recorded in our study, the dolphins displayed a variety of behaviors with considerable time dedicated to social behavior and resting during the day.

These results suggest that the waters off Pico Island function as a resting, foraging and nursery area for the population of Risso’s dolphins, and do so on a daily basis for at least part of the population inhabiting the inshore waters. Areas used for nursing, resting, foraging and/or socializing form important habitats for cetaceans (Hoyt 2005a). We observed an overall reduction in resting rates and a shift in the daily resting pattern during periods of high whale watching vessel abundance. Socializing rates also decreased when many whale watching vessels were present. This is consistent with previous work on bottlenose dolphins, which spent less time on resting and socializing and more time on traveling following interactions with boats (Lusseau 2003a, 2004; Stensland and Berggren 2007) and avoided areas with intense boat traffic (Lusseau 2005). A reduction in resting and socializing rates can result in reduced energy reserves and can negatively affect foraging and reproductive success, an effect which has been found throughout the animal kingdom including fish, birds and marine mammals (*e.g.* Ricklefs *et al.* 1996, Grantner and Taborsky 1998, Frid and Dill...
2002, Williams et al. 2006). Nursing females and their calves form an especially vulnerable group, for which disturbances by vessels can suppress the build-up of energy reserves. In small resident populations, this may directly affect reproductive success (Bejder 2005).

Management implications
Tourism is growing rapidly at the Azorean islands, including a further increase in whale watching activities. Although, at present, whale watching pressure in the Azores is still relatively low compared to other regions such as the Canary Islands (Hoyt 2005b) or British Columbia (e.g. Erbe 2002), our results show that the presence of more than five vessels in a relatively small area can have a statistically significant effect on the behavioral pattern of Risso’s dolphins. Some caution is nevertheless required in interpretation. In particular, the 95% confidence intervals obtained from our statistical analysis widen at high vessel abundance (Fig. 5). This reflects the relatively low number of observations with high vessel abundances. Hence, although the analysis indicates significant effects of vessel abundance on dolphin behavior, any estimation of the magnitudes of these effects based on currently available data would have a high degree of uncertainty. Furthermore, we cannot be sure to what extent the observed changes in behavior reflect important changes in daily energy budgets or stress levels and, therefore, whether they have negative consequences for individual condition or reproductive fitness. Also, our study was limited to a single year and the seasonal variation in vessel abundance during our study period makes it intrinsically difficult to distinguish between natural seasonal variation in behavior and the effects of vessel abundance on behavior. Continued data collection over several years would be desirable to evaluate the impact of boats on cetacean behavior in this area with higher precision.

Nevertheless, based on our results, we suggest that a precautionary approach is taken to current and future whale watching activities in the Azores, through management of the number of whale watching vessels per area. Low-intensity vessel presence did not decrease the probability of resting or socializing behavior, providing a reference from which threshold measures of vessel abundance could be determined (see also Williams and Ashe 2007). Additionally, it would be beneficial to introduce a time period with no whale watching activity for several hours per day, to create sufficient resting opportunities for the Risso’s...
dolphin population. Other target species in the Azores may benefit as well, in particular the bottlenose dolphin, a species that also makes extensive use of the area (Silva 2007) and has shown sensitivity to vessel traffic in other areas (e.g. Lusseau 2005, Bejder et al. 2006).

Acknowledgements
We gratefully thank WWF the Netherlands and Greenpeace Netherlands, the Prins Bernhard Cultuurfonds, the Schure-Beijerinck-Popping Fund, the Dr. Catharina van Tussenbroek Foundation, the Foundation Vrijvrouwe van Renswoude for supporting our research. This paper and its contents would not have been possible without the dedication of our MSc students and volunteer team members, especially Machiel Oudejans, Kees den Hollander and Else Nuyten. Special thanks go out to Dr. Alain F. Zuur for his help with the GAMM analysis and to Dr. Colin MacLeod and three anonymous reviewers for their constructive comments that greatly improved the manuscript. This project was carried out under scientific license nr. 4/CN/2004, issued to Nova Atlantis Foundation by the Azorean Department of the Environment, Direcção de Regional do Ambiente, island of Faial. G.J. Pierce was supported by the ANIMATE project (MEXC-CT-2006-042337).

References

Danil, K., D. Maldini and K. Marten. 2005. Patterns of use of Maku‘a Beach, O‘ahu, Hawai‘i, by spinner dolphins (Stenella longirostris) and potential effects of swimmers on their behavior. Aquatic Mammals 31:403-412.

Lusseau, D. 2003b. Male and female bottlenose dolphins Tursiops spp. have different strategies to avoid interactions with tour boats in Doubtful Sound, New Zealand. Marine Ecology Progress Series 257:267-274.

Chapter 5

