Good science, bad science: Questioning research practices in psychological research
Bakker, M.

Citation for published version (APA):
Bakker, M. (2014). Good science, bad science: Questioning research practices in psychological research

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Appendix A

Appendix to Chapter 5
Mann-Whitney-Wilcoxon test

A non-parametric method to test to compare two populations is the Mann-Whitney-Wilcoxon test (Mann & Whitney, 1947; Wilcoxon, 1945). Both independent samples \(X_1, X_2, \ldots, X_m \) and \(Y_1, Y_2, \ldots, Y_n \) are put in ascending order. All values are replaced by ranks ranging from 1 to \(m + n \). When there are tied groups, take the rank to be equal to the midpoint of the group. The ranks of each group are added and then the lowest of these ranks is the test statistic \(W \). \(W \) can be transformed in a \(Z \) score by:

\[
Z = \frac{W - \overline{W}}{SE_W}, \quad \text{where}
\]

\[
SE_W = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}.
\]

The null hypothesis is rejected if

\[
|Z| \geq z_{1-a/2},
\]

where \(z_{1-a/2} \) is the \(1-a/2 \) quantile of standard normal distribution.

Yuen-Welch test

A robust method for comparing trimmed means is the Yuen-Welch Test (Yuen, 1974). \(n_j \) is the sample size associated with the \(j \)th group, and \(h_j \) is the number of observation left in the \(j \)th group after trimming. Put the remaining observations in ascending order yielding \(X_{(1)} \leq \cdots \leq X_{(n_j)} \). The trimmed mean of the \(j \)th group and can be estimated with:

\[
\overline{X}_j = \frac{1}{h_j} \sum_{i \in g_j} X_{(i)} ,
\]

and the Winsorized mean and variance with:

\[
\overline{X}_{wj} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{wj} , \quad \text{where}
\]

\[
X_{wj} = X_{(g_j+1)j} \quad \text{if} \quad X_{(i)} \leq X_{(g_j+1)j}
\]

\[
= X_{(i)} \quad \text{if} \quad X_{(g_j+1)j} < X_{(i)} < X_{(n_j-g_j)j}
\]

\[
= X_{(n_j-g_j)j} \quad \text{if} \quad X_{(i)} \geq X_{(n_j-g_j)j}
\]

\[
s^2_{wj} = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (X_{(i)} - \overline{X}_{wj})^2.
\]

Yuen’s test statistic is calculated with:
\[T_y = \frac{\bar{X}_{i1} - \bar{X}_{i2}}{\sqrt{d_1 + d_2}}, \text{ where} \]

\[d_j = \frac{(n_j - 1)s^2_{ij}}{h_j(h_j - 1)}. \]

The degrees of freedom are:

\[\bar{\nu}_y = \frac{(d_1 + d_2)^2}{d_1^2 \frac{1}{h_1 - 1} + d_2^2 \frac{1}{h_2 - 1}}. \]

The null hypothesis is rejected if

\[|r| \geq t, \]

where \(t \) is the \(1-a/2 \) quantile of Student’s \(T \) distribution with \(\nu_y \) degrees of freedom.