Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at $\sqrt{S_{\text{NN}}} = 5.02$ TeV

DOI
10.1016/j.physletb.2013.06.057

Publication date
2013

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement with the ATLAS detector of multi-particle azimuthal correlations in \(p + Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV

ATLAS Collaboration*

A R T I C L E I N F O

Article history:
Received 8 March 2013
Received in revised form 27 June 2013
Accepted 27 June 2013
Available online 4 July 2013
Editor: W.-D. Schlatter

A B S T R A C T

In order to study further the long-range correlations (“ridge”) observed recently in \(p + Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, the second-order azimuthal anisotropy parameter of charged particles, \(v_2 \), has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 \(\mu b^{-1} \), the parameter \(v_2 \) has been obtained using two- and four-particle cumulants over the pseudorapidity range \(|\eta| < 2.5 \). The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over \(3.1 < \eta < 4.9 \) in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in \(Pb + Pb \) collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of \(p + Pb \) collisions. Despite the small transverse spatial extent of the \(p + Pb \) collision system, the large magnitude of \(v_2 \) and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in \(p + Pb \) reactions.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Recent observations of ridge-like structures in the two-particle correlation functions measured in proton-lead (\(p + Pb \)) collisions at 5.02 TeV [1–3] have led to differing theoretical explanations. These structures have been attributed either to mechanisms that emphasise initial-state effects, such as the saturation of parton distributions in the Pb-nucleus [4–7], or to final-state effects, such as jet–medium interactions [8], interactions induced by multiple partons in the Pb-nucleus [4–7], or to final-state effects, such as jet–medium interactions [8], interactions induced by multiple partons [9–12], and collective anisotropic flow [13–18].

The collective flow of particles produced in nuclear collisions, which manifests itself as a significant anisotropy in the plane perpendicular to the beam direction, has been extensively studied in heavy-ion experiments at the LHC [19–24] and RHIC (for a review see Refs. [25,26]). In \(p + Pb \) collisions the small size of the produced system compared to the mean free path of the interacting constituents might have been expected to generate weaker collective flow, if any, compared to heavy-ion collisions.

However, two-particle correlation studies performed recently on data from \(p + Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV revealed the presence of a “ridge”, a structure extended in the relative pseudorapidity, \(\Delta \eta \), while narrow in the relative azimuthal angle, \(\Delta \phi \). The structure has been attributed either to mechanisms that emphasise initial-state effects, such as the saturation of parton distributions in the Pb-nucleus [4–7], or to final-state effects, such as jet–medium interactions [8], interactions induced by multiple partons in the Pb-nucleus [4–7], or to final-state effects, such as jet–medium interactions [8], interactions induced by multiple partons [9–12], and collective anisotropic flow [13–18]. Furthermore, it was shown in Refs. [2,3] that, after subtracting the component due to momentum conservation, the \(\Delta \phi \) distribution in high-multiplicity interactions exhibits a predominantly \(\cos(2 \Delta \phi) \) shape, resembling the elliptic flow modulation of the \(\Delta \phi \) distributions in \(Pb + Pb \) collisions.

The final-state anisotropy is usually characterised by the coefficients, \(v_n \), of a Fourier decomposition of the event-by-event azimuthal-angle distribution of produced particles [25,27]:

\[
v_n = \langle \cos(n(\phi - \Psi_n)) \rangle,
\]

where \(\phi \) is the azimuthal angle of the particle, \(\Psi_n \) is the event-plane angle for the \(n \)-th harmonic, and the outer brackets denote an average over charged particles in an event. In non-central heavy-ion collisions, the large and dominating \(v_2 \) coefficient is associated mainly with the elliptic shape of the nuclear overlap, and \(\Psi_2 \) defines the direction which nominally points in the direction of the classical impact parameter. In practice, initial-state fluctuations can blur the relationship between \(v_2 \) and the impact parameter direction in nucleus–nucleus collisions. In contrast, \(v_1 \) in proton–nucleus collisions would be unrelated to the impact parameter and determined by the initial-state fluctuations. In nucleus–nucleus collisions, the \(v_2 \) coefficient in central collisions and the other \(v_n \) coefficients in all collisions are related to various geometric configurations arising from fluctuations of the nucleon positions in the overlap region [28].

In this Letter, a direct measurement of the second-order anisotropy parameter, \(v_2 \), is presented for \(p + Pb \) collisions at
\[\sqrt{S_{NN}} = 5.02 \text{ TeV} \]. The cumulant method [29–32] is applied to derive \(\nu_2 \) using two- and four-particle cumulants. The cumulant method has been developed to characterise true multi-particle correlations related to the collective expansion of the system, while suppressing correlations from resonance decays, Bose–Einstein correlations and jet production. Emphasis is placed on the estimate of \(\nu_2 \), \(\nu_2 \) [4], obtained from the four-particle cumulants which are expected to be free from the effects of short-range two-particle correlations, e.g. from resonance decays, unlike the two-particle cumulants, used to estimate \(\nu_2 \). The measurements of multi-particle cumulants presented in this Letter should provide further constraints on the origin of long-range correlations observed in \(p + Pb \) collisions.

2. Event and track selections

The \(p + Pb \) data sample was collected during a short run in September 2012, when the LHC delivered \(p + Pb \) collisions at the nucleon–nucleon centre-of-mass energy \(\sqrt{S_{NN}} = 5.02 \text{ TeV} \) with the centre-of-mass frame shifted by \(-0.47 \) in rapidity relative to the nominal ATLAS coordinate frame.\(^1\)

The measurements were performed using the ATLAS detector [33]. The inner detector (ID) was used for measuring trajectories and momenta of charged particles for \(|\eta| < 2.5 \) with the silicon pixel detector and silicon microstrip detectors (SCT), and a transition radiation tracker, all placed in a 2 T axial magnetic field. For event triggering, two sets of Minimum Bias Trigger Scintillators (MBTS), located symmetrically in front of the endcap calorimeters, at \(z = \pm 3.6 \text{ m} \) and covering the pseudorapidity range \(2.1 < |\eta| < 3.9 \), were used. The trigger used to select minimum-bias \(p + Pb \) collisions requires a signal in at least two MBTS counters. This trigger is fully efficient for events with more than four reconstructed tracks with \(p_T > 0.1 \text{ GeV} \). The forward calorimeters (FCal), consisting of two symmetric systems with tungsten and copper absorbers and liquid argon as the active material, cover \(3.1 < |\eta| < 4.9 \) and are used to characterise the overall event activity.

The event selection follows the same requirements as used in the recent two-particle correlation analysis [3]. Events are required to have a reconstructed vertex with its \(z \) position within \(\pm 150 \text{ mm} \) of the nominal interaction point. Beam–gas and photonuclear interactions are suppressed by requiring at least one hit in a MBTS counter on each side of the interaction point and at most a 10 ns difference between times measured on the two sides to eliminate \(\Phi \) interactions are suppressed by requiring at least one hit in a MBTS on each side of the interaction point. A hit in the pixel detector. Additional requirements are imposed on the transverse \((d_0) \) and longitudinal \((z_0 \sin \theta) \) impact parameters measured with respect to the primary vertex. These: \(|d_0| \) and \(|z_0 \sin \theta| \) must be smaller than \(1.5 \text{ mm} \) and \(1.5 \text{ m} \) respectively, as obtained from the covariance matrix of the track fit. The analysis is restricted to charged particles with \(0.3 < p_T < 5.0 \text{ GeV} \) and \(|\eta| < 2.5 \).

The tracking efficiency is evaluated using HIJING-generated [35] \(p + Pb \) events that are fully simulated in the detector using GEANT4 [36,37], and processed through the same reconstruction software as the data. The efficiency for charged hadrons is found to depend only weakly on the event multiplicity and on \(p_T \) for transverse momenta above 0.5 GeV. An efficiency of about 82% is observed at mid-rapidity, \(|\eta| < 1 \), decreasing to about 68% at \(|\eta| > 2 \). For low-\(p_T \) tracks, between 0.3 GeV and 0.5 GeV, the efficiency ranges from 74% at \(\eta = 0 \) to about 50% for \(|\eta| > 2 \). The number of reconstructed charged particle tracks, not corrected for tracking efficiency, is denoted by \(N_{ch}^{REC} \).

The analysis is performed in different intervals of \(\Sigma E_T^{Pb} \), the sum of transverse energy measured in the FCal with \(3.1 < |\eta| < 4.9 \) in the direction of the Pb beam with no correction for the difference in response to electrons and hadrons. The distribution of \(\Sigma E_T^{Pb} \) for events passing all selection criteria is shown in Fig. 1. These events are divided into six \(\Sigma E_T^{Pb} \) intervals to study the variation of \(\nu_2 \) with overall event activity, as indicated in Fig. 1 and shown in Table 1. Event “activity” is characterised by \(\Sigma E_T^{Pb} \); the most active events are those with the largest \(\Sigma E_T^{Pb} \). The distribution of \(N_{ch}^{REC} \) for each activity interval is shown in the lower plot of Fig. 1.

![Fig. 1. Upper plot: the \(\Sigma E_T^{Pb} \) distribution with the six activity intervals indicated. Lower plot: the distribution of \(N_{ch}^{REC} \) for each activity interval. The leftmost distribution corresponds to the interval with the lowest \(\Sigma E_T^{Pb} \), etc.](image-url)
k denotes the average in a single event over all pairs and all
been proposed in Ref.[32] to express multi-particle correlations
clusively from a broad range in
first step, the so-called "reference" flow harmonic coefficients are
 azimuthal correlations,
weight forces the azimuthal-angle distribution of reference parti-
is the number of tracks in an event within this bin. Using this
2
map of all reconstructed tracks. For each small
(δη,δφ)
bin (labelled
of tracks in the
2
second-order anisotropy parameter obtained using two-particle,
corrn(2) = ⟨corr2⟩(2), and the
four-particle cumulant cn(4) = ⟨corr4⟩(4) − 2 · ⟨corr2⟩(2)2. Thus the
effect of two-particle correlations is explicitly removed in the ex-
pression for cn(4). Further details are given in Refs. [29,30,32].
Direct calculation of multi-particle correlations requires mul-
ples passes over the particles in an event, and requires extensive
computing time in high-multiplicity events. To mitigate this, it has
been proposed in Ref. [32] to express multi-particle correlations
in terms of the moments of the flow vector Qn, defined as Qn =
Σ δ(η) − φ, where the index n denotes the flow harmonic and the
sum runs over all particles in an event. This analysis is restricted to
the second harmonic coefficient, n = 2. The method based on
the flow-vector moments enables the calculation of multi-particle
cumulans in a single pass over the full set of particles in each event.
The cumulant method involves two main steps [29,30]. In the
first step, the so-called “reference” flow harmonic coefficients are
calculated using multi-particle cumulants for particles selected in-
clusively from a broad range in pT and η as:
\[
\begin{align*}
\sqrt{v_2^2(2)} &= \sqrt{c_2^2(2)}, \\
\sqrt{v_2^4(4)} &= \sqrt{4c_4^2(4)},
\end{align*}
\]
where \(\sqrt{v_2^2(2)} \sqrt{v_2^4(4)}\) denotes the reference estimate of the
second-order anisotropy parameter obtained using two-particle,
c2(2) (four-particle, c4(4)) cumulants.
The flow-vector method is easiest to apply when the detec-
tor acceptance is azimuthally uniform [32]. A correction for any
azimuthal non-uniformity in the reconstruction of charged particle
tracks is obtained from the data [25], based on an η−φ
map of all reconstructed tracks. For each small (δη = 0.1, δφ = 2π/64) bin (labelled i), a weight is calculated as wi(η, φ) =
\(N(δη)/N_i(δη, δφ)\), where \(N(δη)\) is the event-averaged number of tracks in the δη slice to which this bin belongs, while \(N_i(δη, δφ)\) is the number of tracks in an event within this bin. Using this
weight forces the azimuthal-angle distribution of reference parti-
tles to be uniform in φ, but it does not change the η distribution of reconstructed tracks. A weighted Q-vector is evaluated as Qn = \(\sum w_i(\eta, φ)\) [32,38]. From Eqs. (2) and (3) it is clear that the
cumulant method can be used to estimate v2 only when c2(4) is
negative and c2(2) positive.
In the second step, the harmonic coefficients are determined as functions of pT and η, in bins in each variable (10 bins of equal
width are used in η and 22 bins of varied width in pT).

| Table 1 |
|-----------------|-----------------|-----------------|
| ΣE_T^Pb range | <ΣE_T^Pb> [GeV] | Range in fraction |
| [GeV] | of events [%] | <N_{ch}^{rec}> |
| [GeV] | (RMS) | |
| > 80 | 93.7 | 0–1.9 | 134 (31) |
| 55–80 | 64.8 | 1.0–9.1 | 102 (26) |
| 40–55 | 46.7 | 9.1–20.0 | 80 (23) |
| 25–40 | 31.9 | 20.0–39.3 | 60 (20) |
| 10–25 | 16.9 | 39.3–70.4 | 37 (17) |
| < 10 | 4.9 | 70.4–100 | 16 (11) |

3. Data analysis

The cumulant method involves the calculation of 2k-particle
azimuthal correlations, corr_n(k), and cumulants, c_n(k), where
k = 1, 2 for the analysis presented in this Letter. The two- and
four-particle correlations are defined as corr_n(2) = \(\langle e^{i(nφ_1−φ_2)}\rangle\) and
corr_n(4) = \(\langle e^{i(nφ_1+nφ_2−φ_3−φ_4)}\rangle\), respectively, where the angle brackets
denote the average in a single event over all pairs and all
combinations of four particles. After averaging over events, the
two-particle cumulant is obtained as c_n(2) = ⟨corr_n(2)⟩, and the
four-particle cumulant c_n(4) = ⟨corr_n(4)⟩ − 2 · ⟨corr_n(2)⟩. Thus the
effect of two-particle correlations is explicitly removed in the ex-
pression for c_n(4). Further details are given in Refs. [29,30,32].

These differential flow harmonics are calculated for “particles of interest” which fall into these small bins. First, the differential
cumulants, d_2(2) and d_2(4), are obtained by correlating every part-
icle of interest with one and three reference particles respectively.
The differential second harmonic, \(v_2(2k)(p_{T}, η)\), where k = 1, 2, is
then calculated with respect to the reference flow as derived in
Refs. [29,30]:

\[
\begin{align*}
v_2(2)(p_{T}, η) &= \frac{d_2(2)}{\sqrt{c_2^2(2)}}, \\
v_2(4)(p_{T}, η) &= \frac{d_2(4)}{\sqrt{c_4^2(4)}}.
\end{align*}
\]

These differential flow harmonics are then integrated over wider
phase-space bins, with each small bin weighted by the appropri-
ate charged particle multiplicity. This is obtained from the recon-
structed multiplicity by applying η- and pT-dependent efficiency
factors, determined from Monte Carlo (MC) simulation as discussed in
the previous section. Due to the small number of events in the
data sample, the final results are integrated over the full accep-
tance in η.

Fig. 2 shows the two- and four-particle cumulants, averaged
over events in each event-activity class defined in Table 1, as
a function of ΣE_T^Pb. It is observed that four-particle cumulants are
negative only in a certain range of event activity. This restricts
subsequent analysis to events with ΣE_T^Pb > 25 GeV, for which the
four-particle cumulant in data is found to be less than zero by at
least two standard deviations (statistical errors only). It was also
checked, by explicit removal of low-multiplicity events, that the
sign of c2(4) is not driven by these low-multiplicity events. For
example, defining N_0 as the value of N_{ch}^{rec} such that 20% of events
have N_{ch}^{rec} < N_20 (i.e. N_20 is the 20th percentile), it is found that
selecting N_{ch}^{rec} > N_0 leaves c2(4) unchanged in sign and magnitude,
within errors. And for ΣE_T^Pb > 25 GeV this holds for any percentile
selection [39].
Fig. 2 also shows the cumulants calculated for 50 million HIJING-generated events, using the true particle information only, as well as for one million fully simulated and reconstructed HIJING events, using the same methods as used for the data. The ΣE_T^{Pb} obtained from the HIJING sample is rescaled to match that measured in the data. It should be noted that the HIJING Monte Carlo model does not contain any collective flow, and the only correlations are those due to resonance decays, jet production and momentum conservation. The values of $c_2(2)$ for HIJING events are smaller than the values obtained from the data, and there is no significant difference between the HIJING results obtained at the generator (“truth”) level and at the reconstruction level. For $c_2(4)$, the HIJING events at $\Sigma E_T^{Pb} \sim 20$ GeV show a negative value comparable to the values seen in the data, indicating that correlations from jets or momentum conservation contribute significantly to $v_2(4)$ in events of low multiplicity. For $\Sigma E_T^{Pb} > 25$ GeV the generator-level HIJING sample’s values for $c_2(4)$ are also negative, but the magnitude is much smaller than in the data or in HIJING events with smaller ΣE_T^{Pb}. The size of the fully simulated HIJING event sample is too small to draw a definite conclusion about the sign or magnitude of $c_2(4)$.

The systematic uncertainties on $v_2(2)$ and $v_2(4)$ as a function of p_T and ΣE_T^{Pb} have been evaluated by varying several aspects of the analysis procedure. Azimuthal-angle sine terms in the Fourier expansion should be zero, but a non-zero contribution can arise due to detector biases. It was found that the magnitude of the sine terms relative to the cosine terms is negligible (below 1%) for $v_2(2)$ measured as a function of p_T, as well as for the p_T-integrated $v_2(2)$ and $v_2(4)$. In the case of the measurement of the p_T-dependent $v_2(4)$, the systematic uncertainty attributed to the residual sine term varies between 6% and 14% in the different ΣE_T^{Pb} intervals. Uncertainties related to the tracking are obtained from the differences between the main results and those using tracking modifications. Efficiency corrections are also taken into account, and found to be below 1% for the $v_2(2)$ and $v_2(4)$ measurements. The correction of the azimuthal-angle uniformity is checked by comparing the results to those obtained with all weights, w_i, set equal to one. This change leads to small relative differences, below 1%, for the $v_2(2)$ measured as a function of p_T, as well as for the p_T-integrated $v_2(2)$ and $v_2(4)$. Up to 4% differences are observed in the p_T-dependent $v_2(4)$. All individual contributions to the systematic uncertainty are added in quadrature and quoted as the total systematic uncertainty. The total systematic uncertainties are below 1% for the $v_2(2)$ measurement. The $v_2(4)$ measurement precision is limited by large statistical errors, whereas the systematic uncertainties stay below 15% for $v_2(4)(p_T)$ and below 2% for the p_T-integrated $v_2(4)$.

4. Results

Fig. 3 shows the transverse momentum dependence of $v_2(2)$ and $v_2(4)$ in four different classes of the event activity, selected according to ΣE_T^{Pb}. A significant second-order harmonic is observed. $v_2(4)$ is systematically smaller than $v_2(2)$, consistent with the suppression of non-flow effects in $v_2(4)$. This difference is most pronounced at high p_T and in collisions with low ΣE_T^{Pb} where jet-like correlations not diluted by the underlying event can contribute significantly. Thus, $v_2(4)$ appears to provide a more reliable estimate of the second-order anisotropy parameter of collective flow.

As a function of transverse momentum the second-order harmonic, $v_2(4)$, increases with p_T up to $p_T \approx 2$ GeV. Large statistical errors preclude a definite conclusion about the p_T dependence of $v_2(4)$ at higher transverse momenta.

The shape and magnitude of the p_T dependence of $v_2(4)$ is found to be similar to that observed in $p +$ Pb collisions using two-particle correlations [2,3]. The second-order harmonic, v_2, can be extracted from two-particle azimuthal correlations using charged particle pairs with a large pseudorapidity gap to suppress the short-range correlations on the near-side ($\Delta \phi \sim 0$) [3,22]. However, the two-particle correlation measured this way may still be affected by the dijet correlations on the away-side ($\Delta \phi \sim \pi$), which can span a large range in $\Delta \eta$. In Ref. [3], the away-side non-flow correlation is estimated using the yield measured in the lowest ΣE_T^{Pb} collisions and is then subtracted from the higher ΣE_T^{Pb} collisions. The result of that study, $v_2(2PC)$, is shown in Fig. 3 for the four activity intervals with largest ΣE_T^{Pb} and compared to $v_2(4)$. Good agreement is observed between $v_2(4)$ and $v_2(2PC)$ for collisions with $\Sigma E_T^{Pb} > 55$ GeV. For $\Sigma E_T^{Pb} < 55$ GeV, the disagreement could be due either to the subtraction procedure used to obtain $v_2(2PC)$ or to non-flow effects in $v_2(4)$, or to a combination.

The dependence on the collision activity of the second-order harmonic, integrated over $0.3 < p_T < 5$ GeV, is shown in Fig. 4. The large magnitude of $v_2(2)$ compared to $v_2(4)$ suggests a substantial contamination from non-flow correlations. The value of $v_2(4)$ is approximately 0.06, with little dependence on the overall event activity for $\Sigma E_T^{Pb} > 25$ GeV. The extracted values of $v_2(4)$ are also compared to the $v_2(2PC)$ values obtained from two-particle correlations. Good agreement is observed at large ΣE_T^{Pb}, while at lower ΣE_T^{Pb} the $v_2(2PC)$ is smaller than $v_2(4)$, which may be due to different sensitivity of the two methods to non-flow contributions.
that become more important in low ΣE^{PP}_T collisions. Although $v_2[4]$ is constructed to suppress local two-particle correlations, it may still include true multi-particle correlations from jets, which should account for a larger fraction of the correlated particle production in the events with the lowest ΣE^{PP}_T. If the HIJING results, shown in Fig. 2, were used to correct the measured cumulants for this non-flow contribution, the extracted $v_2[4]$ would be decreased by at most 10% for $v_2[4]$ shown in Fig. 4. However, this correction is not applied to the final results.

It is notable that the trend of the p_T dependence of both $v_2[4]$ and $v_2[2PC]$ in $p + Pb$ collisions resembles that observed for v_2 measured with the event-plane method in Pb + Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [21,22], although with a magnitude between that observed in the most central and peripheral Pb + Pb collisions. While the trend is found to be nearly independent of the Pb + Pb collision geometry, the magnitude in Pb + Pb events depends on the initial shape of the colliding system, and has been modelled for $p_T < 2$ GeV using viscous hydrodynamics [40–42].

Harmonic flow coefficients in $p + Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV have also been predicted using viscous hydrodynamics, with similar initial conditions as the Pb + Pb calculations [18]. The predicted magnitude of the second-order harmonic is compared to the measured $v_2[4]$ and $v_2[2PC]$ in Fig. 4. It can be seen that the hydrodynamic predictions agree with our measurements over the ΣE^{PP}_T range where the model predictions are available.

5. Conclusions

ATLAS has measured the second harmonic coefficient in $p + Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV using two- and four-particle cumulants. A significant magnitude of v_2 is observed using both two- and four-particle cumulants, although $v_2[2]$ is consistently larger than $v_2[4]$, indicating a sizeable contribution of non-flow correlations to $v_2[2]$. The transverse momentum dependence of $v_2[4]$ shows a behaviour similar to that measured in Pb + Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The magnitude of $v_2[4]$ increases with p_T up to about 2–3 GeV. As a function of the collision activity, $v_2[4]$ remains constant, at the level of about 0.06, for the collisions with $\Sigma E^{PP}_T > 25$ GeV, which corresponds to about 40% of the data. The measured $v_2[4]$ is found to be consistent with the second harmonic coefficient extracted by the Fourier decomposition of the long-range two-particle correlation function for collisions with $\Sigma E^{PP}_T > 55$ GeV. Good agreement is also found with the predictions of a hydrodynamic calculation for $p + Pb$ collisions.

Extending previous results based only on two-particle correlations, the multi-particle cumulant results presented here provide additional evidence for the importance of final-state effects in the highest multiplicity $p + Pb$ reactions. Final-state effects may lead to collective flow similar to that observed in the hot, dense system created in high-energy heavy-ion collisions.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLR, DNF, and DNL Foundation, Denmark; CERN; CERN; ECR and NSF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; CSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISW, Poland; GRICES and PCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, China; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, United States
41 Physics Department, University of Texas at Dallas, Richardson, TX, United States
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA — School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 Il Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
53 INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
54 Dipartimento di Fisica, Università di Milano, Milano, Italy
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, United States
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyushu University, Fukuoka, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst, MA, United States
85 Department of Physics, McGill University, Montreal, QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
88 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia