
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

MetaGrad: Adaptation using Multiple Learning Rates in Online Learning

van Erven, T.; Koolen, W.M.; van der Hoeven, D.

Publication date
2021
Document Version
Final published version
Published in
Journal of Machine Learning Research
License
CC BY

Link to publication

Citation for published version (APA):
van Erven, T., Koolen, W. M., & van der Hoeven, D. (2021). MetaGrad: Adaptation using
Multiple Learning Rates in Online Learning. Journal of Machine Learning Research, 22(161),
1-61. https://jmlr.org/papers/v22/20-1444.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2025

https://dare.uva.nl/personal/pure/en/publications/metagrad-adaptation-using-multiple-learning-rates-in-online-learning(a77fde49-b018-4c80-b67e-d5ac7ca36650).html
https://jmlr.org/papers/v22/20-1444.html

Journal of Machine Learning Research 22 (2021) 1-61 Submitted 12/20; Published 7/21

MetaGrad: Adaptation using Multiple Learning Rates
in Online Learning∗

Tim van Erven TIM@TIMVANERVEN.NL

Korteweg-de Vries Institute for Mathematics
University of Amsterdam
Science Park 107, 1098 XG Amsterdam, The Netherlands

Wouter M. Koolen WMKOOLEN@CWI.NL

Centrum Wiskunde & Informatica
Science Park 123, 1098 XG Amsterdam, The Netherlands

Dirk van der Hoeven DIRKVDERHOEVEN@GMAIL.COM

Mathematical Institute
Leiden University
Niels Bohrweg 1, 2300 RA Leiden, The Netherlands

Editor: Mehryar Mohri

Abstract

We provide a new adaptive method for online convex optimization, MetaGrad, that is ro-
bust to general convex losses but achieves faster rates for a broad class of special functions,
including exp-concave and strongly convex functions, but also various types of stochastic
and non-stochastic functions without any curvature. We prove this by drawing a connec-
tion to the Bernstein condition, which is known to imply fast rates in offline statistical
learning. MetaGrad further adapts automatically to the size of the gradients. Its main fea-
ture is that it simultaneously considers multiple learning rates, which are weighted directly
proportional to their empirical performance on the data using a new meta-algorithm. We
provide three versions of MetaGrad. The full matrix version maintains a full covariance
matrix and is applicable to learning tasks for which we can afford update time quadratic
in the dimension. The other two versions provide speed-ups for high-dimensional learning
tasks with an update time that is linear in the dimension: one is based on sketching, the
other on running a separate copy of the basic algorithm per coordinate. We evaluate all
versions of MetaGrad on benchmark online classification and regression tasks, on which
they consistently outperform both online gradient descent and AdaGrad.

Keywords: online convex optimization, adaptivity

∗. An earlier conference version of this paper appeared at NeurIPS 2016 (Van Erven and Koolen, 2016).

c©2021 Tim van Erven, Wouter M. Koolen, Dirk van der Hoeven.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v22/20-1444.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1444.html

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

1. Introduction
Methods for online convex optimization (OCO) (Shalev-Shwartz, 2012; Hazan, 2016) make
it possible to optimize parameters sequentially, by processing convex functions in a stream-
ing fashion. This is important in time series prediction where the data are inherently online;
but it may also be convenient to process offline data sets sequentially, for instance if the
data do not all fit into memory at the same time or if parameters need to be updated quickly
when extra data become available.

The difficulty of an OCO task depends on the convex functions f1, f2, . . . , fT that need
to be optimized. The argument of these functions is a d-dimensional parameter vector w
from a convex domain W . Although this is abstracted away in the general framework,
each function ft usually measures the loss of the parameters on an underlying example
(xt, yt) in a machine learning task. For example, in classification ft might be the hinge
loss ft(w) = max{0, 1 − ytw

ᵀxt} or the logistic loss ft(w) = ln
(
1 + e−ytw

ᵀxt
)
, with

yt ∈ {−1,+1}. Thus the difficulty depends both on the choice of loss and on the observed
data.

There are different methods for OCO, depending on assumptions that can be made
about the functions. The simplest and most commonly used strategy is online gradient
descent (OGD). OGD updates parameters wt+1 = wt − ηt∇ft(wt) by taking a step in
the direction of the negative gradient, where the step size is determined by a parameter ηt
called the learning rate. The goal is to minimize the regret

RuT =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

over T rounds, which measures the difference in cumulative loss between the online iterates
wt and the best offline parameters u. For learning rates ηt ∝ 1/

√
t, OGD guarantees that

the regret for general convex Lipschitz functions is bounded by O(
√
T) (Zinkevich, 2003).

Alternatively, if it is known beforehand that the functions are of an easier type, then better
regret rates are sometimes possible. For instance, if the functions are strongly convex, then
logarithmic regret O(lnT) can be achieved by OGD with much smaller learning rates ηt ∝
1/t (Hazan et al., 2007), and, if they are exp-concave, then logarithmic regret O(d lnT)
can be achieved by the Online Newton Step (ONS) algorithm (Hazan et al., 2007).

This partitions OCO tasks into categories, leaving it to the user to choose the appropriate
algorithm for their setting. Such a strict partition, apart from being a burden on the user,
depends on an extensive cataloguing of all types of easier functions that might occur in
practice. (See Section 3 for several ways in which the existing list of easy functions can
be extended.) It also immediately raises the question of whether there are cases in between
logarithmic and square-root regret (there are, see Theorem 2 in Section 3), and which
algorithm to use then. And, third, it presents the problem that the appropriate algorithm
might depend on (the distribution of) the data (again see Section 3), which makes it entirely
impossible to select the right algorithm beforehand.

2

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

These issues motivate the development of adaptive methods, which are no worse than
O(
√
T) for general convex functions, but also automatically take advantage of easier func-

tions whenever possible. An important step in this direction are the adaptive OGD algo-
rithm of Bartlett et al. (2007) and its proximal improvement by Do et al. (2009), which are
able to interpolate between strongly convex and general convex functions if they are pro-
vided with a data-dependent strong convexity parameter in each round, and significantly
outperform the main non-adaptive method (i.e. Pegasos by Shalev-Shwartz et al. 2011) in
the experiments of Do et al.. Here we consider a significantly richer class of functions,
which includes exp-concave functions, strongly convex functions, general convex func-
tions that do not change between rounds (even if they have no curvature), and stochastic
functions whose gradients satisfy the so-called Bernstein condition, which is well-known
to enable fast rates in offline statistical learning (Bartlett and Mendelson, 2006; Van Erven
et al., 2015; Koolen et al., 2016). The latter group can again include functions without
curvature, like the unregularized hinge loss. All these cases are covered simultaneously
by a new adaptive method we call MetaGrad, for multiple eta gradient algorithm. Assum-
ing that the radius of the domain W and the `2-norms of the gradients gt = ∇ft(wt) are
both bounded by constants, Theorem 7 and Corollary 8 imply that MetaGrad’s regret is
simultaneously bounded by

RuT = O(
√
T ln lnT) (1)

and by

RuT ≤
T∑
t=1

(wt − u)ᵀgt = O

(√
V uT d ln(T/d) + d ln(T/d)

)
(2)

for any u ∈ W , where

V uT :=
T∑
t=1

((u−wt)
ᵀgt)

2 .

The inequality RuT ≤ R̃uT :=
∑T

t=1(wt − u)ᵀgt is a direct consequence of convexity of
the loss and holds for any learning algorithm, so the important part of (2) is that it bounds
R̃uT in terms of a measure of variance V uT that depends on the distance of the algorithm’s
choices wt to the optimum u, and which, in favorable cases, may be significantly smaller
than T . Intuitively, this happens, for instance, when there is a stable optimum u that the
algorithm’s choices wt converge to. Formal consequences are given in Section 3, which
shows that this bound implies faster thanO(

√
T) regret rates, often logarithmic in T , for all

functions in the rich class mentioned above. In all cases the dependence on T in the rates
matches what we would expect based on related work in the literature, and in most cases
the dependence on the dimension d is also what we would expect. Only for strongly convex
functions is there an extra factor d. It seems that this is a real limitation of the method as
presented here. In Section 9 we discuss a recent extension of MetaGrad by Wang et al.
(2020) that removes this limitation.

The main difficulty in achieving the regret guarantee in (2) is tuning a learning rate
parameter η. In theory, η should be roughly proportional to 1/

√
V uT , but this is not possible

3

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

using any existing techniques, because the optimum u is unknown in advance, and tuning
in terms of a uniform upper bound maxu V

u
T ruins all desired benefits. MetaGrad therefore

runs multiple supporting expert algorithms, one for each candidate learning rate η, and
combines them with a novel controller algorithm that learns the empirically best learning
rate for the OCO task in hand. Crucially, the additive regret overhead for learning the best
expert is not of the usual order O(

√
T), which would dwarf all desired benefits, but only

costs a negligible O(ln lnT).
The experts are instances of exponential weights on the continuous parameters w with

a quadratic surrogate loss function, which in particular causes the exponential weights dis-
tributions to be multivariate Gaussian. The resulting updates are closely related to the
ONS algorithm on the original losses, with the twist that here each expert receives the con-
troller’s gradients instead of its own, so only a single gradient (for the controller) needs
to be calculated per round. We start and stop experts on the fly using a dynamic grid of
exponentially spaced η-values, which guarantees that at most dlog2 T e experts are active
at any given time. Since dlog2 T e ≤ 30 as long as T ≤ 109, this seems computationally
acceptable. If not, then the number of experts can be further reduced at the cost of slightly
worse constants in the bound by spacing the η in the grid further apart.

The version of MetaGrad described so far maintains a full covariance matrix FT =∑T
t=1 gtg

ᵀ
t of size d× d, where d is the parameter dimension. This requires O(d2) compu-

tation steps per round to update, which is prohibitive for large d. We therefore also present
two extensions that require less computation: one based on sketching and one that works
coordinatewise. The sketching extension applies the matrix sketching approach of Luo
et al. (2017) to approximate FT by a sketch of its top m − 1 eigenvectors, and requires
O(md) amortised update time per round. As shown in Theorem 12, the price we pay for
the improved run-time is that (2) is replaced by

R̃uT = O

(√
(V uT + Ωm−1) d ln(T/d) + d ln(T/d)

)
,

which includes an extra term Ωm−1 =
∑d

i=m λi to account for the remaining eigenvalues
in FT that are not captured by the sketch. Thus the hyperparameter m provides a trade-off
between regret and run-time.

Our second extension was inspired by the diagonal version of AdaGrad (Duchi et al.,
2011; McMahan and Streeter, 2010) and runs a separate copy of full MetaGrad per co-
ordinate, which takes O(d) computation per round, just like vanilla OGD and AdaGrad.
To avoid interactions between coordinates, we restrict attention to rectangular domains.
Whether this restriction can be lifted is not clear, as discussed in Section 7.2. The main
regret bound for the coordinatewise extension is obtained by summing the regret bound (2)
over the coordinates:

R̃uT = O

(
d∑
i=1

√
V ui
T,i ln(T) + d ln(T)

)
, (3)

4

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

where V ui
T,i =

∑T
t=1(ui − wt,i)

2g2
t,i is the coordinatewise variance. This is established by

Theorem 13 and Corollary 14, which also show that the coordinate extension simultane-
ously guarantees regret of order

R̃uT = O

(
d∑
i=1

‖g1:T,i‖2

√
ln lnT +

√
d ln lnT

)
= O

(√
dT ln lnT

)
, (4)

where g1:T,i := (gi,1, . . . , gi,T). While the full matrix version of MetaGrad and its sketching
approximation naturally favor parameters u with small `2-norm, the coordinatewise exten-
sion is appropriate for the `∞-norm (i.e., dense parameter vectors). Since the coordinate
version does not keep track of a full covariance matrix, we cannot expect it to exploit the
Bernstein condition for stochastic gradients in all cases. Section 7.2.2 therefore introduces
a more stringent coordinate Bernstein condition, under which (3) does always imply fast
rates, and Theorem 16 gives sufficient conditions under which the general Bernstein con-
dition implies the coordinate Bernstein condition. It is appealing that the coordinatewise
MetaGrad extension simultaneously satisfies (4), because (up to the

√
ln lnT factor) this

recovers the diagonal AdaGrad bound of O(
∑d

i=1 ‖g1:T,i‖2), which can take advantage of
sparse gradients (Duchi et al., 2011).

An important practical consideration for OCO algorithms is whether they can adapt to
the Lipschitz-constant of the losses ft, i.e. the maximum norm of the gradients. For in-
stance, this is an important feature of AdaGrad (Duchi et al., 2011; McMahan and Streeter,
2010). The MetaGrad algorithm is also Lipschitz-adaptive in this way. Our approach is a
refinement of the techniques of Mhammedi et al. (2019): whereas their procedure may oc-
casionally restart the whole MetaGrad algorithm, we only restart the controller but not the
experts. Wherever possible, we further measure the size of the gradients by the (semi-)norm
maxw∈W |(w −wt)

ᵀgt| instead of the larger maxw∈W ‖w −wt‖2‖gt‖2. The difference is
crucial in Section 5.1, where we consider a time-varying domain introduced by Luo et al.
(2017) in the context of sketching: this domain is bounded only in the direction of the gra-
dients, so our norms are under control, but has infinite diameter in all orthogonal directions.

We conclude the paper with an empirical evaluation in which we compare our new algo-
rithms (the Full, Sketching and Coordinatewise versions of MetaGrad) with AdaGrad and
OGD on 17 real-world LIBSVM regression and classification data sets. Our experiments
show that the full-matrix version of MetaGrad beats previous methods in all but one of our
experiments and delivers competitive performance throughout. Moreover, we see that the
sketching extension provides a controlled trade-off between regret and run-time, while the
fastest, coordinatewise version of MetaGrad still works surprisingly well in the majority of
experiments.

1.1 Related Work

If we disregard computational efficiency and omit Lipschitz-adaptivity, then the guarantee
from (2) can be achieved by finely discretizing the domain W and running the Squint
algorithm for prediction with experts, with each discretization point as an expert (Koolen

5

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

and Van Erven, 2015). MetaGrad may therefore also be seen as a computationally efficient
extension of Squint to the OCO setting.

Luo et al. (2017) show a lower bound on the regret of Θ(
√
dT) for the time-varying

domain mentioned above, and obtain a nearly matching upper bound of O(
√
dT lnT) us-

ing a variant of ONS. Our Theorem 7, which implies (2) when the radius of the domain
is bounded, is actually more general and also covers the time-varying domain. For this
domain it improves on the upper bound of Luo et al. by replacing the dependence on T
by V uT and by moving the log-factor into the square root. Section 6.3 provides a detailed
comparison.

As already mentioned, Wang et al. (2020) extend MetaGrad to adapt to strongly convex
functions. Zhang et al. (2019) further provide an extension for the case that the optimal
parameters u vary over time, as measured in terms of the adaptive regret. See also the
closely related extension of Squint for adaptive regret by Neuteboom (2020).

Our focus in this work is on adapting to sequences of functions ft that are easier than
general convex functions, but we require an estimate σ of the `2-norm of the optimum u as
a hyperparameter. In contrast, a different line of work designs methods that can adapt to the
norm of u over all of Rd, but without providing adaptivity to the functions ft (McMahan
and Streeter, 2012; Orabona, 2014; Cutkosky and Orabona, 2018). It was thought for some
time that these two directions could not be reconciled, because the impossibility result
of Cutkosky and Boahen (2017) blocks simultaneous adaptivity to both the size of the
gradients of the functions ft and the norm of u. The perspective has recently shifted,
however, following discoveries of ways to partially circumvent this lower bound (Kempka
et al., 2019; Cutkosky, 2019; Mhammedi and Koolen, 2020).

Another notion of adaptivity is explored in a series of works obtaining tighter bounds
for linear functions ft that vary little between rounds, as measured either by their deviation
from the mean function or by successive differences (Hazan and Kale, 2010; Chiang et al.,
2012; Steinhardt and Liang, 2014). Such bounds imply super fast rates for optimizing a
fixed linear function, but reduce to slow O(

√
T) rates in the other cases of easy functions

that we consider. Finally, the way MetaGrad’s experts maintain a Gaussian distribution on
parameters u is similar in spirit to AROW and related confidence weighted methods, as
analyzed by (Crammer et al., 2009) in the mistake bound model.

1.2 Outline

We start with the main definitions in the next section. Then Section 3 contains an extensive
set of examples where the guarantee from (2) leads to fast rates, Section 4 presents the Full
Matrix version of the MetaGrad algorithm, and Section 5 describes the faster sketching and
coordinatewise extensions. Section 6 provides the analysis leading to Theorem 7 for the
Full Matrix version of MetaGrad, which is a more detailed statement of (2) with several
quantities replaced by data-dependent versions and with exact constants. Section 7 extends
this analysis to the two other versions of MetaGrad. Then, in Section 8, we compare all
versions of MetaGrad to OGD and to AdaGrad in experiments with several benchmark
classification and regression data sets. We conclude with a discussion of possible further

6

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Protocol 1: Online Convex Optimization with First-order Information
1: for t = 1, 2, . . . do
2: Environment reveals convex domainWt ⊆ Rd containing the origin 0
3: Learner plays wt ∈ Wt

4: Environment chooses a convex loss function ft :Wt → R
5: Learner incurs loss ft(wt) and observes (sub)gradient gt = ∇ft(wt)
6: end for

extensions of MetaGrad in Section 9. Finally, most details of the proofs are postponed to
the appendix.

2. Setup
We consider algorithms for OCO, which operate according to the protocol displayed in
Protocol 1. In each round, the environment reveals a closed convex domain Wt ⊂ Rd,
which we assume contains the origin 0 (if not, it needs to be translated). In the introduction,
we assumed that Wt = W was fixed beforehand, but for the remainder of the paper we
allow it to vary between rounds, which is needed in the context of the sketching version
of MetaGrad (Section 5.1). Let wt ∈ Wt be the iterate produced by the algorithm in
round t, let ft : Wt → R be the convex loss function produced by the environment and
let gt = ∇ft(wt) be the (sub)gradient, which is the feedback given to the algorithm.1 The
regret over T rounds RuT , its linearization R̃uT and our measure of variance V uT are defined
as

RuT =
T∑
t=1

(ft(wt)− ft(u)) , R̃uT =
T∑
t=1

(wt − u)ᵀgt,

V uT =
T∑
t=1

((u−wt)
ᵀgt)

2 with respect to any u ∈
T⋂
t=1

Wt.

By convexity of ft, we always have ft(wt)− ft(u) ≤ (wt −u)ᵀgt, which implies the first
inequality in (2): RuT ≤ R̃uT . Finally, wherever possible we measure the size of the gradient
gt in the following (semi-)norm:

‖g‖t = max
w∈Wt

|(w −wt)
ᵀg|,

which takes into account the shape of the domain, and is centered at the learner’s predic-
tions wt. This is a norm in the typical case that Wt has full dimension d, and it is still a

1. If ft is not differentiable at wt, any choice of subgradient gt ∈ ∂ft(wt) is allowed. Since ft is convex,
there always exists at least one subgradient whenwt is in the interior of its domain. Existence of subgra-
dients on the boundary of Wt is guaranteed, for instance, if there exists a finite convex extension of ft
to Rd.

7

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

semi-norm in general. We note that this norm is smaller than the usual upper bounds based
on Hölder’s inequality: ‖g‖t ≤ ‖g‖∗maxw∈Wt

‖w − wt‖ for any dual norms ‖ · ‖ and
‖ · ‖∗. The difference becomes essential in Section 5.1, where we consider a domain Wt

that has an infinite radius maxw∈Wt
‖w−wt‖ in any norm ‖ · ‖, but for which ‖gt‖t is still

bounded. MetaGrad depends on (upper bounds on) the sizes of the gradients per round bt,
as well as their running maximum Bt:

bt ≥ ‖gt‖t, Bt = max
s≤t

bs, (5)

with the convention that B0 = 0. We would normally take the best upper bound bt =
‖gt‖t, except if this is difficult to compute. In such cases, we may, for example, let bt =
‖gt‖2 maxu,w∈Wt

‖u − w‖2. We assume throughout that BT > 0; otherwise the regret is
trivially bounded by zero.
We denote by dze+ = max{dze, 1} the smallest integer that is at least z and at least 1.

3. Fast Rates Examples
In this section, we motivate our interest in the adaptive bound (2) by giving a series of
examples in which it provides fast rates. For simplicity, we will in this section assume that
the domain is fixed: Wt = W , with bounded radius D2 ≥ maxu∈W ‖u‖2, and that all
gradients have length at most G2 ≥ ‖gt‖2. The fast rates are all derived from two general
sufficient conditions: one based on the directional derivative of the functions ft and one for
stochastic gradients that satisfy the Bernstein condition, which is the standard condition for
fast rates in off-line statistical learning. In Appendix A.1 we provide simple simulations
illustrating these conditions, which are exploited by MetaGrad but not by AdaGrad. Proofs
are also postponed to Appendix A.

3.1 Directional Derivative Condition

In order to control the regret with respect to some point u, the first condition requires a
quadratic lower bound on the curvature of the functions ft in the direction of u:

Theorem 1 Suppose, for a given u ∈ W , there exist constants a, b > 0 such that the
functions ft all satisfy

ft(u) ≥ ft(w) + a(u−w)ᵀ∇ft(w) + b ((u−w)ᵀ∇ft(w))2 for all w ∈ W . (6)

Then any method with regret bound (2) incurs logarithmic regret, RuT = O(d lnT), with
respect to u.

The case a = 1 of this condition was introduced by (Hazan et al., 2007), who show that
it is satisfied for all u ∈ W by exp-concave and strongly convex functions. These are both
requirements on the curvature of ft that are stronger than mere convexity: α-exp-concavity
of f for α > 0 means that e−αf is concave or, equivalently, that∇2f � α∇f∇fᵀ; α-strong

8

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

convexity means that∇2f � αI . We see that α-strong convexity implies (α/‖∇f‖2
2)-exp-

concavity. The rate O(d lnT) is also what we would expect by summing the asymptotic
offline rate obtained by ridge regression on the squared loss (Srebro et al., 2010, Sec-
tion 5.2), which is exp-concave. Our extension to general a > 0 is technically a minor
step, but it makes the condition much more liberal, because it may then also be satisfied
by functions that do not have any curvature. For example, suppose that ft = f is a fixed
convex function that does not change with t. Then, when u∗ = arg minu f(u) is the offline
minimizer, we have (u∗ −w)ᵀ∇f(w) ∈ [−2D2G2, 0], so that

f(u∗)−f(w) ≥ (u∗−w)ᵀ∇f(w) ≥ 2(u∗−w)ᵀ∇f(w)+
1

2D2G2

((u∗ −w)ᵀ∇f(w))2 ,

where the first inequality uses only convexity of f . Thus condition (6) is satisfied by any
fixed convex function, even if it does not have any curvature at all, with a = 2 and b =
1/(2D2G2).

At first sight this may appear to contradict the lower bound of order 1/
√
T for conver-

gence of the iterates by Nesterov (2004) (see also Tibshirani, 2014), which implies a lower
bound of order

√
T on the regret. Yet there is no contradiction, as Nesterov’s example re-

quires large dimension d ≥ T , in which case O(d lnT) is vacuous. In Nesterov’s example,
MetaGrad still gets the

√
T rate up to a ln lnT factor, however, because it satisfies (1).

3.2 Bernstein Stochastic Gradients

The possibility of getting fast rates even without any curvature is intriguing, because it
goes beyond the usual strong convexity or exp-concavity conditions. In the online setting,
the case of fixed functions ft = f seems rather restricted, however, and may in fact be
handled by offline optimization methods. We therefore seek to loosen this requirement by
replacing it by a stochastic condition on the distribution of the functions ft. The relation
between variance bounds like (2) and fast rates in the stochastic setting is studied in depth
by (Koolen et al., 2016), who obtain fast rate results both in expectation and in probability.
Here we provide a direct proof only for the expected regret, which allows a simplified
analysis.

Suppose the functions ft are independent and identically distributed (i.i.d.), with com-
mon distribution P. Then we say that the gradients satisfy the (B, β)-Bernstein condition
with respect to the stochastic optimum u∗ = arg minu∈W Ef∼P[f(u)] if

(w−u∗)ᵀ E
f

[∇f(w)∇f(w)ᵀ] (w−u∗) ≤ B
(
(w−u∗)ᵀ E

f
[∇f(w)]

)β for all w ∈ W .

(7)
This is an instance of the well-known Bernstein condition from offline statistical learning
(Bartlett and Mendelson, 2006; Van Erven et al., 2015), applied to the linearized excess loss
(w − u∗)ᵀ∇f(w). As shown in Appendix A.5, imposing the condition for the linearized
excess loss is a weaker requirement than imposing it for the original excess loss f(w) −
f(u∗).

9

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Theorem 2 If the gradients satisfy the (B, β)-Bernstein condition forB > 0 and β ∈ (0, 1]
with respect to u∗ = arg minu∈W Ef∼P[f(u)], then any method with regret bound (2)
incurs expected regret

E[Ru
∗

T] = O
(

(Bd lnT)1/(2−β) T (1−β)/(2−β) + d lnT
)
.

For β = 1, the rate becomes O(d lnT), just like for fixed functions, and for smaller β
it is in between logarithmic and O(

√
dT). For instance, the hinge loss on the unit ball

with i.i.d. data satisfies the Bernstein condition with β = 1, which implies an O(d lnT)
rate, albeit with a B that depends on the distribution of the data. (See Appendix A.4.) In
stochastic optimization for support vector machines, the hinge loss is combined with an
additional `2-regularization term. It is sometimes argued that this term also gives fast rates,
because it makes the loss strongly convex, but the amount of regularization used in practice
is typically too small to get any significant improvements. The present example shows that,
even without adding regularization to the loss, it is possible to get logarithmic regret.

4. Full Matrix Version of the MetaGrad Algorithm
In this section, we explain the full matrix version of the MetaGrad algorithm: MetaGrad
Full. Computationally more efficient extensions follow in Section 5. MetaGrad Full will
be defined by means of the following surrogate loss `ηt (u):

`ηt (u) := η(u−wt)
ᵀgt +

(
η(u−wt)

ᵀgt
)2
. (8)

This surrogate loss consists of a linear and a quadratic part, whose relative importance is
controlled by a learning rate parameter η > 0. The sum of the quadratic parts is what
appears in the regret bound (2). They may be viewed as causing a “time-varying regular-
izer” (Orabona et al., 2015) or “temporal adaptation of the proximal function” (Duchi et al.,
2011).

MetaGrad Full is a two-level hierarchical construction: at the top is a main controller,
shown in Algorithm 1, which manages multiple η-experts, shown in Algorithm 2. Each
η-expert produces predictions for the surrogate loss `ηt with its own value of η, and the
controller is responsible for learning the best η by starting and stopping multiple η-experts
on demand, and aggregating their predictions.

4.1 Controller

Online learning of the best learning rate η is notoriously difficult because the regret is non-
monotonic over rounds and may have multiple local minima as a function of η (see (Koolen
et al., 2014) for a study in the expert setting). The standard technique is therefore to derive
a monotonic upper bound on the regret and tune the learning rate optimally for the bound.
In contrast, our approach, inspired by the approach for combinatorial games of Koolen
and Van Erven (2015, Section 4), is to weigh the different η depending on their empirical

10

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Algorithm 1: MetaGrad Full: Controller
1: for t = 1, 2, . . . do
2: Receive domainWt

3: Start and stop η-experts to manage active set At (Equation 9). Give newly
started η-experts weight pt(η) = 1.

4: if Nobody active: At = ∅ then
5: Predict wt = 0 . Make a default prediction
6: else
7: Have active η-experts project ontoWt

8: Collect prediction wη
t for every active η-expert

9: Predict

wt =

∑
η∈At pt(η)ηwη

t∑
η∈At pt(η)η

10: end if
11: Receive gradient gt = ∇ft(wt) and range bound bt (Equation 5)
12: Update every active η-expert with unclipped surrogate loss `ηt
13: if No reset needed after round t (Equation 11) then
14: Update based on the clipped surrogate losses (Equation 12):

pt+1(η) =
pt(η) exp(−¯̀η

t (wηt))∑
η∈At

pt(η) exp(−¯̀η
t (wηt))

(
∑

η∈At pt(η)) for all η ∈ At.
15: else
16: Set pt+1(η) = 1 for all η ∈ At . Reset
17: end if
18: end for

performance using exponential weights with sleeping experts (line 14), except that in the
predictions the weights of the η-experts are tilted by their learning rates (line 9), having
the effect of giving a larger weight to larger η. Thus we never tune the controller’s weights
on learning rates based on any bounds, but always directly in terms of their empirical
performance.

To be able to adapt to the norms of the gradients, the controller maintains a finite grid
At of active learning rates η, which is dynamically adjusted over time. We will take expo-
nentially spaced learning rates from the infinite grid

G := {2i | i ∈ Z},

and the following learning rates are active in round t:

At :=

∅ while Bt−1 = 0,

G ∩
(

1

2
(∑t−1

s=1 bs
Bs−1
Bs

+Bt−1

) , 1
2Bt−1

]
afterwards.

(9)

11

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

This means that aη, the first round in which an η-expert is active, is

aη = min

t ∈ {1, 2, . . .}
∣∣∣∣∣∣η > 1

2
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)
 . (10)

Using that bs
Bs−1

Bs
≤ Bt−1, it can be seen that the number of active learning rates never

exceeds |At| ≤ dlog2 T e. In the first two rounds, or if there is a sudden enormous gradient
such thatBt−1 dwarfs

∑t−1
s=1 bsBs−1/Bs, it may also happen thatAt is empty, which signals

that all previous rounds were negligible compared to the last round. In such cases the
controller decides it has not yet learned anything, and makes a default prediction: wt = 0.

There are two further mechanisms to deal with extreme changes in the size of the gra-
dients. The first mechanism is that extremely large gradients may trigger a reset of the
controller’s weights on η-experts. This splits the controller’s learning process into epochs.
When running in an epoch starting at time τ + 1, a reset and new epoch will be triggered
after the first round t such that

Bt > Bτ

t∑
s=1

bs
Bs

. (11)

As the sum on the right-hand side will typically grow linearly in t, we only expect a reset
to occur when the effective size of the gradients grows by more than a factor t compared to
the largest size seen before the start of the epoch. This should normally be very rare except
perhaps for a few initial rounds when t is still small.

The second mechanism to protect against extreme gradients is that the controller mea-
sures performance of the experts by a clipped version of their corresponding surrogate
losses:

¯̀η
t (u) := η(u−wt)

ᵀḡt +
(
η(u−wt)

ᵀḡt
)2
, (12)

which are based on the clipped gradients

ḡt :=
Bt−1

Bt

gt.

This is a trick first used by Cutkosky (2019), which makes the effective sizes of the gradi-
ents predictable one round in advance: maxu∈Wt

|uᵀḡt| ≤ Bt−1.

4.2 η-Experts

Each η-expert is active for a single contiguous sequence of rounds for which η ∈ At. Upon
activation, its job is to issue predictions wη

t ∈ Wt for the (unclipped) surrogate loss `ηt that
achieve small regret compared to any u ∈

⋂
t:η∈AtWt. This is a standard online convex

optimization task with a quadratic loss function and time-varying domain. We use continu-
ous exponential weights with a Gaussian prior, which is a standard approach for quadratic
losses (Vovk, 2001), because the corresponding posterior exponential weights distribution
is also Gaussian with mean wη

t and covariance matrix Ση
t =

(
1
σ2I + 2η2

∑t
s=a gsg

ᵀ
s

)−1
.

12

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Algorithm 2: MetaGrad Full: η-Expert
Input: Learning rate η > 0, estimate σ > 0 of comparator norm ‖u‖2, first active

round a ≡ aη

1: Initialize w̌η
a = 0 and Λη

a = 1
σ2I . Invariant: Λη

t+1 = 1
σ2I + 2η2

∑t
s=a gsg

ᵀ
s

2: Initialize Ση
a = σ2I . Invariant: Ση

t = (Λη
t)
−1

3: for t = a, a+ 1, . . . do
4: Project wη

t = arg minu∈Wt
(u− w̌η

t)
ᵀΛη

t (u− w̌
η
t)

5: Predict wη
t

6: Observe gradient gt = ∇ft(wt) . Gradient at controller prediction wt

7: Update:

Ση
t+1 = Ση

t −
2η2(Ση

t gt)(g
ᵀ
tΣ

η
t)

1 + 2η2gᵀtΣ
η
t gt

. Sherman-Morrison

Λη
t+1 = Λη

t + 2η2gtg
ᵀ
t

w̌η
t+1 = wη

t − (1 + 2η(wη
t −wt)

ᵀgt) ηΣ
η
t+1gt

8: end for

Algorithm 2 presents the update equations in a computationally efficient form. To avoid
inverting Ση

t , it maintains its inverse Λη
t = (Ση

t)
−1 separately. For a recent overview of

continuous exponential weights see (Van der Hoeven et al., 2018). It can be seen that our
η-expert algorithm is nearly identical to Online Newton Step (ONS) (Hazan et al., 2007),
which is not surprising because ONS is minimizing a quadratic loss that is nearly identical
to our `ηt . The differences are that each η-expert receives the controller’s gradient gt =
∇ft(wt) instead of its own ∇ft(wη

t), and that an additional factor (1 + 2η(wη
t −wt)

ᵀgt)
in line 7 adjusts for the difference between the η-expert’s parameters wη

t and the con-
troller’s parameters wt. MetaGrad is therefore a bona fide first-order algorithm that only
accesses ft through gt. We also note that we have chosen the Greedy projections version
that iteratively updates and projects. One might alternatively consider the Lazy Projection
version (as in Zinkevich, 2004; Nesterov, 2009; Xiao, 2010) that forgets past projections
when updating on new data. Since projections are typically computationally expensive,
we have opted for the Greedy projection version, which we expect to project less often,
since a projected point seems less likely to update to a point outside of the domain than an
unprojected point.

4.3 Practical Considerations

Although MetaGrad Full is adaptive to the maximum effective size of the gradients BT , its
performance degrades whenBT becomes too large. In applications, it is therefore important
that the domainWt is small enough along the direction of gt to keep the effective gradient
size bt under control.

It is further required to choose the hyperparameter σ, which is an estimate of the `2-
norm of the comparator u. Theorem 7 quantifies the trade-off between underestimating

13

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

and overestimating this parameter. As discussed below the theorem, underestimating σ
always harms the rate. But, for low-dimensional settings, overestimating σ only incurs
a logarithmic penalty, so it is much less expensive to use a too large value than to use
a too small value. For high-dimensional settings the dependence on σ is similar to the
usual dependence of Online Gradient Descent on a guess for ‖u‖2, so the rate deteriorates
linearly when taking σ too large.

Finally, we note that there is no gain in pre-processing the data by scaling all gradients
by a fixed constant factor, since the regret bound in Theorem 7 already scales linearly with
the size of the gradients. In fact, the MetaGrad Full algorithm itself is almost invariant
under such rescaling, except for the grid {2i | i ∈ Z} in the definition of At. If one
wants to make the algorithm fully invariant under rescaling, the grid may be replaced by
{2i/Bτ | i ∈ Z}, where τ is the first round that Bτ > 0. Or, equivalently, one may replace
all gradients by gt/Bτ for t ≥ τ . Since we do not expect any noticeable difference in
performance from this modification, we have left it out.

4.3.1 RUN TIME

The run time of MetaGrad Full is dominated by computations for the η-experts. Ignoring
the projection step, an η-expert takes O(d2) time to update. If there are at most k active
η-experts in any round, this makes the overall computational effort O(kd2), both in time
per round and in memory. Since |At| ≤ dlog2 T e, it is guaranteed that k ≤ 30 as long as
T ≤ 109. We note that all η-experts share the same gradient gt, which is only computed
once. We remark that a potential speed-up is possible by running the η-experts in parallel. If
the factor k is still considered too large, it is possible to reduce the size of |At| by spacing
the learning rates by a factor larger than 2, at the cost of a worse constant in the regret
bound.

In addition, each η-expert may incur the cost of a projection, which depends on the
shape of the domainWt. To get a sense for the projection cost, we consider the Euclidean
ball as a typical example. If the matrix Ση

t were diagonal, we could project to any desired
precision using a few iterations of Newton’s method. Since each such iteration takes O(d)
time, this would be affordable. But for the non-diagonal Ση

t that occur in the algorithm, we
first need to reduce to the diagonal case by a basis transformation, which takes O(d3) to
compute using a singular value decomposition. We therefore see that the projection dwarfs
the other run time by an order of magnitude. This has motivated Luo et al. (2017) to define
a different domain (see Section 5.1), for which projections can be computed in closed form
with O(d) computation steps. In this case, the computation for the projections is negligible
and the total computational complexity is O(d2) per round. We refer to Duchi et al. (2011)
for examples of how to compute projections for various other domainsWt.

5. Faster Extension Algorithms
As discussed above, MetaGrad Full requires at least O(d2) computation per round, which
makes it slow in high dimensions. We therefore present two extensions to speed up the

14

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

algorithm. The first is a straightforward adaption of the sketching approach of Luo et al.
(2017), which we apply to approximate the matrix Ση

t used in each η-expert. This reduces
the computation per round to O(kd), where k is a hyperparameter that determines the
sketch size. The second extension is to run a separate copy of the algorithm per dimension,
which was inspired by the diagonal version of AdaGrad (Duchi et al., 2011). This requires
O(d) computation per round.

5.1 Sketched MetaGrad with Closed-form Projections

Algorithm 3: Sketched η-Expert
Input: Learning rate η > 0, estimate σ > 0 of comparator norm ‖u‖2, first active

round a ≡ aη

1: Initialize w̌η
a = 0

2: Get Sηa−1 andHη
a−1 from initialisation of Frequent Directions Sketching

Algorithm 4
3: for t = a, a+ 1, . . . do
4: Observe feature vector xt
5: Obtain wη

t by projection (16)
6: Issue prediction wη

t

7: Observe gradient gt = ∇ft(wt) . Gradient at controller prediction wt

8: Send gt to Frequent Directions Sketching Algorithm 4 and receive Sηt andHη
t

9: Update w̌η
t+1 as per (17)

10: end for

In this section, we are mixing matrices of different dimensions. The identity matrix Id ∈ Rd

and the all-zeros matrix 0a×b ∈ Ra×b are therefore annotated with subscripts to make their
dimensions explicit.

Luo et al. (2017) develop several sketching approaches for Online Newton Step, which
transfer directly to our η-experts. They combine these with a computationally efficient
choice of the domain that applies to loss functions of the form ft(w) = ht(w

ᵀxt), where
the input vectors xt ∈ Rd are assumed to be known at the start of round t, but the convex
functions ht : R→ R become available only after the prediction has been made. They then
choose the domain to be

Wt = {w : |wᵀxt| ≤ C} for a fixed constant C. (13)

Let aη be the round in which the η-expert is first activated and defineGη
t = (gaη , . . . , gt)

ᵀ ∈
R(t−aη+1)×d, such that Ση

t+1 = (1
σ2Id+2η2(Gη

t)
ᵀGη

t)
−1. The idea of sketching is to replace

Ση
t+1 ∈ Rd×d by an approximation

Σ̃η
t+1 =

(
1
σ2Id + 2η2(Sηt)ᵀSηt

)−1
,

15

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

where Sηt ∈ Rk×d for a given sketch size k that can be much smaller than d, so that (Sηt)ᵀSηt
has rank at most k. Abbreviating

gηt = (1 + 2η(wη
t −wt)

ᵀgt) ηgt, (14)

we then need to compute

wη
t = arg min

u∈Wt

(u− w̌η
t)

ᵀ(Σ̃η
t)
−1(u− w̌η

t) (projection)

w̌η
t+1 = wη

t − Σ̃η
t+1g

η
t . (update)

The key to an efficient implementation of these steps is to rewrite Σ̃η
t+1 using the Woodbury

identity (Golub and Van Loan, 2012):

Σ̃η
t+1 = σ2(Id − 2η2(Sηt)ᵀ(1

σ2Ik + 2η2Sηt (Sηt)ᵀ)−1Sηt) = σ2(Id − 2η2(Sηt)ᵀHη
t S

η
t),

where we have introduced the abbreviation

Hη
t = (1

σ2Ik + 2η2Sηt (Sηt)ᵀ)−1. (15)

Let sC(y) = sign(y) max{|y| − C, 0}. By Lemma 1 of Luo et al. (2017), the projection
step then becomes

wη
t = w̌η

t −
sC(xᵀ

t w̌
η
t)

(xᵀ
txt − 2η2xᵀ

t (S
η
t−1)ᵀHη

t−1S
η
t−1xt)

(xt − 2η2(Sηt−1)ᵀHη
t−1S

η
t−1xt), (16)

and the update step can be written (with gηt as in Equation 14) as

w̌η
t+1 = wη

t − σ2(gηt − 2η2(Sηt)ᵀHη
t S

η
t g

η
t). (17)

Assuming that Sηt and Hη
t can be efficiently maintained, the operations involving Sηt xt

or Sηt g
η
t require O(kd) computation time and matrix-vector products with Hη

t can be per-
formed in O(k2) time. As noted by Luo et al. (2017), both of these are only a factor k more
than theO(d) time required by first-order methods. They describe two sketching techniques
to maintain Sηt and Hη

t , each requiring O(kd) storage and O(kd) amortised computation
time per round. The first technique is based on Frequent Directions (FD) sketching; the
other one on Oja’s algorithm. We adopt the FD approach, which comes with a guaranteed
bound on the regret. Luo et al. (2017) further develop an extension of FD for sparse gra-
dients, and yet another option in the literature is the Robust Frequent Directions sketching
method of Luo et al. (2019).

5.1.1 FREQUENT DIRECTIONS SKETCHING

Some sketching approaches are randomized, but Frequent Directions sketching (Ghashami
et al., 2016) is a deterministic method. The simplest version (Luo et al., 2017, Algorithm 2)
performs a singular value decomposition (SVD) of Sηt every round at the cost of O(k2d)

16

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Algorithm 4: Frequent Directions Sketching
Input: Sketch rank m, first active round a ≡ aη

1: Initialize Sηa−1 = 02m×d, andHη
a−1 = σ2I2m.

2: for t = a, a+ 1, . . . do
3: Receive gt
4: Let τ = (t− a) mod (m+ 1) and write gᵀt to row (m+ τ) of Sηt−1 to obtain S̃
5: if τ < m then
6: Set Sηt = S̃
7: Let e ∈ R2m be the basis vector in direction m+ τ

and q = 2η2(S̃gt − gᵀt gt
2
e)

8: UpdateHη
t = H̃ − H̃eqᵀH̃

1+qᵀH̃e
, where H̃ = Hη

t−1 −
Hη
t−1qe

ᵀHη
t−1

1+eᵀHη
t−1q

9: else
10: From the SVD of S̃, compute the top-m singular values σ1 ≥ · · · ≥ σm

and corresponding right-singular vectors as V ∈ Rd×m

11: Set Sηt =

(
diag(σ2

1 − σ2
m, . . . , σ

2
m − σ2

m)1/2V ᵀ

0m×d

)
12: SetHη

t = diag(1
σ−2+2η2(σ2

1−σ2
m)
, . . . , 1

σ−2+2η2(σ2
m−σ2

m)
, 1
σ−2 , . . . ,

1
σ−2)

13: end if
14: end for

computation time, but there also exists a refined epoch-based version which only performs
an SVD once per epoch. Each epoch takes m rounds and k = 2m, leading to an amortised
runtime ofO(kd) per round. We describe here the epoch version, adapted from Algorithm 6
of Luo et al. (2017) and summarized in Algorithm 4.

Recall that (Sηt)ᵀSηt is an approximation of (Gη
t)

ᵀGη
t . At the start of each epoch, we

have the invariant that only the first m− 1 rows of Sηt contribute to this approximation and
the remaining m+ 1 rows are filled with zeros. During the τ -th round in any epoch we first
write the incoming gradient gᵀt to row m+ τ of Sηt−1 to obtain an intermediate result S̃. If
we are not yet in the last round of the epoch (i.e. τ < m), then we simply set Sηt = S̃, and
use (15) to see that

(Hη
t)−1 = (Hη

t−1)−1 + qeᵀ + eqᵀ,

where e ∈ R2m is the basis vector in direction m + τ and q = 2η2(S̃gt − gᵀt gt
2
e). It

follows that we can computeHη
t fromHη

t−1 using two rank-one updates with the Sherman-
Morrison formula:

Hη
t = H̃ − H̃eqᵀH̃

1 + qᵀH̃e
, where H̃ = Hη

t−1 −
Hη

t−1qe
ᵀHη

t−1

1 + eᵀHη
t−1q

.

Otherwise, if we are in the last round of the epoch (i.e. τ = m), the invariant is restored
by eigen decomposing S̃ᵀS̃ into WΛW ᵀ, where Λ = diag(λ1, . . . , λ2m) contains the

17

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

potentially non-zero eigenvalues in non-decreasing order λ1 ≥ · · · ≥ λ2m and the columns
of W ∈ Rd×2m contain the corresponding eigenvectors. Then we set Sηt = diag(λ1 −
λm, . . . , λm − λm, 0, . . . , 0)1/2W ᵀ. Since the rows of Sηt are now orthogonal,

Hη
t = (1

σ2I2m + 2η2Sηt (Sηt)ᵀ)−1

= diag
(1

σ−2 + 2η2(λ1 − λm)
, . . . ,

1

σ−2 + 2η2(λm − λm)
,

1

σ−2
, . . . ,

1

σ−2

)
is a diagonal matrix.

5.1.2 IMPLEMENTATION DETAILS

When implementing the FD procedure, we can calculate the eigen decomposition of S̃ᵀS̃
via an SVD of S̃, which can be performed in O(m2d) computation steps. The eigenvalues
λi then correspond to the squared singular values σ2

i of S̃, andW contains the correspond-
ing right-singular vectors. In fact, we only need the top-m singular values and the corre-
sponding m right-singular vectors V ∈ Rd×m to compute Sηt = diag(λ1 − λm, . . . , λm −
λm, 0, . . . , 0)1/2W ᵀ = diag(σ2

1 − σ2
m, . . . , σ

2
m − σ2

m)1/2V ᵀ.

5.1.3 PRACTICAL CONSIDERATIONS

Sketching introduces an extra hyperparameter k = 2m, which controls the sketch size. The
sketch keeps track of m − 1 dimensions, so in theory we expect that larger k provides a
better approximation of the full version of MetaGrad, at the cost of more computation. We
indeed observe this in practice in the experiments in Section 8.

5.2 Coordinate MetaGrad

Duchi et al. (2011) introduce a full and a diagonal version of their AdaGrad algorithm. The
diagonal version, which is the version that is widely used in applications, may be inter-
preted as running a copy of online gradient descent (Zinkevich, 2003) for each dimension
separately, with a separate data-dependent tuning of the step size per dimension. This ap-
proach of running a separate copy per dimension can be applied to any online learning
algorithm, and works out as follows.

We output a joint predictionwt = (wt,1, . . . , wt,d)
ᵀ, where each wt,i is the output of the

copy of the algorithm for dimension i. Each of these copies gets as inputs the 1-dimensional
losses ft,i(w) = wgt,i, where gt,i is the i-th component of the joint gradient gt = ∇ft(wt).
This works because the linearized regret decomposes per dimension:

T∑
t=1

(wt − u)ᵀgt =
d∑
i=1

T∑
t=1

(ft,i(wt,i)− ft,i(ui)),

so our joint linearized regret is simply the sum of the linearized regrets per dimension.
One limitation of this approach, if we apply it as is, is that the domain cannot introduce

dependencies between the dimensions, so we are limited to rectangular domains:

W rect
t = {w ∈ Rd | −Dt,i ≤ wi ≤ Dt,i for i = 1, . . . , d},

18

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

with our only freedom consisting of choosing the side lengths Dt,i.

5.2.1 PRACTICAL CONSIDERATIONS

The bounds bt on the gradients now become a separate bound per dimension:

bt,i := max
wi∈[−Dt,i,Dt,i]

|(wi − wt,i)gt,i| = (Dt,i + |wt,i|)|gt,i|, Bt,i = max
s≤t

bs,i.

Running a copy of MetaGrad per dimension potentially introduces a separate hyperparam-
eter σi per dimension i. Like Duchi et al. (2011), we reduce the complexity of hyperparam-
eter tuning by letting σi = σ be the same for all dimensions. In line with the discussion in
Section 4.3, the recommended setting for σ then becomes (an overestimate of) the `∞-norm
of the comparator u. If no specific domain is required and the components of the gradients
are approximately standardized, it is also generally sufficient to set the dimensions of the
rectangular domain to Dt,i = D∞ for a fixed parameter D∞.

6. Analysis of the Full Matrix Version of MetaGrad
Recall that MetaGrad runs multiple instances of a baseline “η-expert” algorithm, each with
a different candidate tuning of the learning rate η. A controller then aggregates the pre-
dictions of these η-experts and manages their lifetimes to always have the required tun-
ing present. The MetaGrad Full η-experts are Exponentially Weighted Average forecasters
starting from a Gaussian prior and taking in our quadratic surrogate losses. In turn, the con-
troller is a specialists (aka sleeping experts) algorithm to deal with the starting and retiring
of η-experts. When measured in the surrogate loss, the controller ensures a uniform regret
bound w.r.t. each η-expert. Yet in the original loss, which is not scaled by η, this results
in a non-uniform regret guarantee, obtaining especially small regret when the best learning
rate turns out to be high. Finally, our approach for adapting to the Lipschitz constant is
speculative. Starting at zero, we monitor the implied Lipschitz constant of the incoming
gradients. If it is increasing slowly, the controller is able to accommodate the overshoots in
a lower-order term. If it makes a large jump, then the controller may need to reset. We do
so by resetting the controller weights without changing the state of the affected η-experts.

6.1 Controller

Let us introduce the concept of expiration to capture when η-experts become inactive and
are never used again:

Definition 3 We say that η ∈ G is expired after T rounds (or, equivalently, after round T)
if η > 1

2BT−1
.

Note that expiration can be checked before the round happens (it is “predictable”). All
learning rates used by Algorithm 1 by means of the active set At (9) are not expired.
Also note the “lifecycle” of any fixed learning rate η. It starts inactive unexpired. Then
it becomes active unexpired. And finally it expires, after which it loses all relevance.

19

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

For the controller, we prove that its behavior approximates that of any η-expert not
expired, when measured in the η surrogate loss (8).

Lemma 4 (Controller Surrogate Regret Bound) For any learning rate η ∈ G not ex-
pired after T rounds and any comparator u ∈

⋂T
t=1Wt, MetaGrad Full ensures

Rη
T (u) ≤ 1

2
+ 2ηBT︸ ︷︷ ︸

tiny

+2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+︸ ︷︷ ︸

specialist regret for epoch, O(ln lnT)

+
T∑

t=aη

(`ηt (w
η
t)− `

η
t (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

,

where we interpret the last sum as 0 if aη > T .

The proof is in Appendix B. It follows the MetaGrad analysis of Mhammedi et al.
(2019), including the range clipping technique due to Cutkosky (2019), and the reset tech-
nique of Mhammedi et al. (2019), which in particular ensures that whenever a reset occurs,
the accumulated regret up until the previous reset is tiny. As such, we only have to pay for
the controller regret for the last two epochs.

We further streamline the approach by using a standard specialists (sleeping experts)
algorithm on a discrete grid of η-experts with η ∈ G as our controller algorithm. Of note
here is our use of a uniform prior on G, which is improper in the sense that it does not
sum to one. Improperness does not cause any problems, because the prior is automatically
renormalized on the sets of active learning rates A1,A2, . . . We also employ a slightly
tightened measure bt of the effective loss range.

To make further progress, we need to make use of the details of the η-experts.

6.2 Full η-Experts

Next we establish an O(d lnT) regret bound in terms of the surrogate loss for each Meta-
Grad Full η-expert. The η-experts implement the exponentially weighted average fore-
caster for the quadratic losses `ηt starting from a Gaussian prior. Alternatively, they may be
viewed as instances of mirror descent with a time-varying quadratic regularizer. The ex-
ponentially weighted average forecaster was previously used for a different quadratic loss
arising in linear regression by Vovk (2001). Mirror descent for the general quadratic case
goes back (at least) to Hazan et al. (2007). Although they do not separate the analysis for
general quadratic losses from the reduction of exp-concave losses to quadratics, the ideas
are clearly present. The explicit analysis by Van Erven and Koolen (2016) includes an
unnecessary range restriction, which was subsequently removed by Van der Hoeven et al.
(2018). As pointed out by Luo et al. (2017), the extension to time-varying domains is
trivial.

Lemma 5 (Surrogate regret bound) Consider the MetaGrad Full η-expert in Algorithm 2
with learning rate η ≤ 1

2BT
starting from time aη. Its surrogate regret after round T ≥ aη

20

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t)− `

η
t (u)) ≤ 1

2σ2
‖u‖2

2 + ln det

(
I + 2η2σ2

T∑
t=aη

gtg
ᵀ
t

)
.

We note that the condition on η in the lemma is slightly stricter than not being expired
(Definition 3), which only requires η ≤ 1

2BT−1
. The reason is that the η-expert operates off

the unclipped surrogate loss and gradients.
Proof The η-expert algorithm implements the exponentially weighted average forecaster
with `ηt as the quadratic loss, unit learning rate, and with greedy projections (of the mean)
ontoWt. By (Hazan et al., 2007, Proof of Theorem 2), we obtain that

T∑
t=aη

(`ηt (w
η
t)− `

η
t (u)) ≤ ‖u‖

2
2

2σ2
+

1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t,

where g′t = η (1 + 2η 〈wt −wη
t , gt〉) gt and where we recall that (Ση

t+1)−1 = 1
σ2I +

2η2
∑t

s=aη gsg
ᵀ
s . Expanding, we obtain

g′ᵀt Ση
t+1g

′
t =

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 · 2η2gᵀt

(
1

σ2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt.

Now we may use that

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 ≤ 1

2
(1 + 2ηbt)

2 ≤ 1

2
(1 + 1)2 = 2 (18)

by the assumed upper bound on η. Moreover, abbreviating A = 1
σ2I + 2η2

∑t
s=aη gsg

ᵀ
s

andB = 1
σ2I + 2η2

∑t−1
s=aη gsg

ᵀ
s , concavity of the log determinant implies that

2η2gᵀt

(
1

σ2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt = tr
(
A−1 (A−B)

)
≤ ln

det(A)

det(B)

= ln det

(
1

σ2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)
− ln det

(
1

σ2
I + 2η2

t−1∑
s=aη

gsg
ᵀ
s

)
.

(Lemma 12 of Hazan et al. (2007) provides a detailed proof of this inequality.) Summing
over rounds and telescoping, we find

1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t ≤ ln det

(
I + 2η2σ2

T∑
t=aη

gtg
ᵀ
t

)
and obtain the result.

21

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

6.3 Composition (bounding the actual regret)

To complete the analysis of MetaGrad Full, we put the regret bounds for the controller and
η-experts together. We then optimize η over the grid G to get our main result. For the
purpose of this section, let us define the gradient covariance matrix and essential horizon
by

FT :=
T∑
t=1

gtg
ᵀ
t and QT :=

T−1∑
t=1

bt
Bt

+ 1. (19)

Theorem 6 (Grid point regret) MetaGrad Full guarantees that the linearized regret w.r.t.
any comparator u ∈

⋂T
t=1Wt is at most

R̃uT ≤ ηV uT +
ln det (I + 2η2σ2FT) + 1

2σ2‖u‖2
2 + 2 ln d2 log2QT e+ + 1

2

η
+ 2BT ,

simultaneously for all η ∈ G such that η ≤ 1
2BT

.

Proof Combining the controller and η-expert surrogate regret bounds from Lemma 4 and
Lemma 5, we obtain

T∑
t=1

(`ηt (wt)− `ηt (u)) ≤ 1

2
+ 2ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+

+
1

2σ2
‖u‖2

2 + ln det

(
I + 2η2σ2

T∑
t=1

gtg
ᵀ
t

)
.

The definition of the surrogate loss (8) gives `ηt (wt) − `ηt (u) = η(wt − u)ᵀgt −
(
η(u −

wt)
ᵀgt
)2 and the theorem follows by reorganising and dividing by η.

The final step is to properly select the learning rate η ∈ G in the regret bound Theorem 6.
This leads to our main result. The proof is in Appendix C.

Theorem 7 (MetaGrad Full Regret Bound) For all u ∈
⋂T
t=1Wt the linearized regret

of MetaGrad Full is simultaneously bounded by

R̃uT ≤
5

2

√
V uT (1

2σ2‖u‖2
2 + ZT) + 5BT (1

2σ2‖u‖2
2 + ZT) + 2BT , (20)

where ZT = rk(FT) ln
(

1 +
σ2
∑T
t=1 ‖gt‖22

2B2
T rk(FT)

)
+ 2 ln d2 log2 T e+ + 1

2
, and by

R̃uT ≤
5

2

√√√√(V uT + 2σ2

T∑
t=1

‖gt‖2
2

)(
1

2σ2‖u‖2
2 + Z ′T

)
+ 5BT

(
1

2σ2‖u‖2
2 + Z ′T

)
+ 2BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2
.

22

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Here the rank rk(FT) ≤ d plays the role of an effective dimension. If the eigenvalues of
FT satisfy a decay condition, then a more refined bound on ZT is possible, as can be seen
from the proof. The recommended tuning is to set σ to (an upper bound on) ‖u‖2. For this
case, we obtain the following corollary, which is proved in Appendix D:

Corollary 8 Suppose the domainWt =W is fixed with finite radiusD2 := maxu∈W ‖u‖2,
and we tune σ = D2. Then, if all gradients are uniformly bounded by ‖gt‖2 ≤ G2, the
linearized regret of MetaGrad Full with respect to any u ∈ W is bounded by

R̃uT = O

(√
V uT d ln

D2G2T

d
+D2G2d ln

(
D2G2T

d

))
, (21)

and it is simultaneously bounded by

R̃uT = O
(
D2G2

√
T ln lnT

)
.

6.3.1 SENSITIVITY TO σ-TUNING

The recommended tuning for σ is to set it to (an upper bound on) ‖u‖2. In the first result
of Theorem 7, which covers the regime that rk(FT) is relatively small compared to T , the
effect of overestimating ‖u‖2 is minor, because ZT depends only logarithmically on σ. In
the second result of the Theorem, however, which covers the high-dimensional setting, the
effect of σ is similar to the usual dependence of Online Gradient Descent on a guess for
‖u‖2 (Zinkevich, 2003; Shalev-Shwartz, 2012) and taking σ much larger affects the rate
linearly. In both regimes, underestimating ‖u‖2 when tuning σ may degrade performance.

6.3.2 AN UNDESIRABLE REPARAMETRIZATION

If underestimating ‖u‖2 is a major concern, then it is possible to reparametrize in terms
of a new tuning parameter α > 0 by setting σ = 1√

αη
, as done by Luo et al. (2017). This

means that each η-expert is now using a different choice for σ, but all our results up to
Theorem 6 still go through. Optimizing η then leads to the following variant of Theorem 7,
proved in Appendix C:

Theorem 9 (The Road Not Taken) Suppose we tune each η-expert in MetaGrad Full with
σ = 1/

√
αη for a given α > 0. Then for all u ∈

⋂T
t=1Wt its linearized regret is simulta-

neously bounded by

R̃uT ≤
5

2

√
V uT ZT + 5BTZT +

α

2
‖u‖2

2 + 2BT ,

where ZT = rk(FT) ln(1 +
∑T
t=1 ‖gt‖22

BTα rk(FT)
) + 2 ln d2 log2 T e+ + 1

2
, and by

R̃uT ≤
5

2

√
V uT Z

′
T + 5BTZ

′
T +

2

α

T∑
t=1

‖gt‖2
2 +

α

2
‖u‖2

2 + 2BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2
.

23

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

This result is of a similar flavor as Theorem 7 if we set α = 1/‖u‖2
2 in the first inequality

and α = 2
√∑T

t=1 ‖gt‖2
2/‖u‖2 in the second inequality. A potential gain is that tuning α

may be easier in case of the first inequality: the term α
2
‖u‖2

2 may not be dominant even if
our choice of α is significantly off from the optimal tuning. But we pay significantly for
this convenience, because there no longer exists a single choice for α that works both for
the first and the second inequality simultaneously, which is why we do not advocate this
reparametrization in terms of α.

6.3.3 THE COMPUTATIONALLY EFFICIENT DOMAIN FROM SECTION 5.1

A further important case to consider is when Wt is the computationally efficient domain
from (13), for which the diameter is not bounded. This domain presumes that losses take
the form ft(w) = ht(w

ᵀxt) for a convex function ht. Under the Lipschitz assumption that
|h′t(z)| ≤ L for all |z| ≤ C, Luo et al. (2017) show a lower bound of Θ(

√
dT) on the

worst-case regret. They further obtain a (nearly) matching upper bound of

RuT = O
(√

dT ln
∑T
t=1 ‖gt‖22
α

+ α‖u‖2
2

)
for all u ∈

T⋂
t=1

Wt

with a variant of ONS, where α > 0 is a tuning parameter similar to the α in Theorem 9.
The first results of Theorems 7 and 9 improve on this in that they improve the dependence
on T to V uT ≤ L2C2T , they only depend on the effective dimension via rk(FT) ≤ d and
the logarithmic factor is moved inside the square root.

7. Analysis of the Faster Extension Algorithms
In this section analyse the sketched and coordinate-wise versions of MetaGrad.

7.1 Sketching: Analysis

We will refer to the Frequent Directions sketching version of MetaGrad as MetaGrad
Sketch. Its analysis with sketch size k = 2m proceeds like the analysis of the full ma-
trix version, except that we obtain a different bound for the η-expert regret. This bound
depends on the spectral decay of FT =

∑T
t=1 gtg

ᵀ
t . Let λi be the i-th eigenvalue of FT

and define Ωq =
∑d

i=q+1 λi. Then the surrogate regret of the η-expert algorithm with FD
sketching is bounded as follows:

Lemma 10 Consider the sketching version of the MetaGrad η-expert algorithm with sketch
size parameter m, learning rate η ≤ 1

2BT
, and starting from time aη. Its surrogate regret

after round T ≥ aη w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t)− `

η
t (u)) ≤ 1

2D2
||u||22 + ln(det(I + 2η2σ2(SηT)ᵀSηT)) +

2η2σ2mΩq

m− q

for any q = 0, . . . ,m− 1.

24

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Compared to Lemma 5, we see that
∑T

t=aη gtg
ᵀ
t = (Gη

T)ᵀGη
T in the logarithmic term has

been replaced by its sketching approximation (SηT)ᵀSηT . We therefore pay logarithmically
for the top m directions, which are captured by the sketch. What we lose is the rightmost
term of order O(η2Ωq), which corresponds to the remaining d − q directions that are not
captured.

The proof of Lemma 10 is a straightforward adaptation of the proof of Theorem 3 by
Luo et al. (2017). For the details, we refer to Chapter 4 of Deswarte (2018), with three
minor remarks: the first is that Deswarte imposes a slightly stricter upper bound on η,
which allows him to bound 1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 ≤ 1, whereas we get an upper bound

of 2 from (18) and therefore obtain a final result that is a factor of 2 larger. The second
remark is that our η-expert algorithm is started in round aη instead of round 1, leading to
a bound involving Ωη

q =
∑d

i=q+1 λ
η
i , where ληi is the i-th eigenvalue of

∑T
t=aη gtg

ᵀ
t . For

simplicity, we immediately use Weyl’s inequality to bound Ωη
q ≤ Ωq, because the difference

is minor. Finally, we have described the fast version of FD sketching, which corresponds to
Algorithm 6 of Luo et al. (2017) instead of the simpler slow version in their Algorithm 2.
They and Deswarte consider the slow version in their analysis, but this makes no difference
for the proof because the fast algorithm satisfies the same guarantees (Ghashami et al.,
2016). Analogously with Theorem 6, we find:

Theorem 11 (Sketching Grid Point Regret) Let η ∈ G be such that η ≤ 1
2BT

. Then
MetaGrad Sketch with sketch size parameter m guarantees that the linearized regret w.r.t.
any comparator u ∈

⋂T
t=1Wt is at most

R̃uT ≤ ηV uT +
2ησ2mΩq

m− q
+ 2BT

+
ln det (I + 2η2σ2(SηT)ᵀSηT) + 1

2σ2‖u‖2
2 + 2 ln d2 log2QT e+ + 1

2

η

for any q = 0, . . . ,m− 1. Recall that QT is defined in (19).

As shown in Appendix C, optimizing η and bounding (SηT)ᵀSηT appropriately leads to
the following final result:

Theorem 12 (MetaGrad Sketching Regret Bound) For all u ∈
⋂T
t=1Wt the linearized

regret of MetaGrad Sketch with sketch size parameter m is simultaneously bounded by

R̃uT ≤
5

2

√(
V uT +

2σ2mΩq

m− q

)(
1

2σ2‖u‖2
2 + ZT

)
+ 5BT (1

2σ2‖u‖2
2 + ZT) + 2BT ,

where ZT = 2m ln
(

1 +
σ2
∑T
t=1 ‖gt‖22

4B2
Tm

)
+ 2 ln d2 log2 T e+ + 1

2
= O(m lnT), and by

R̃uT ≤
5

2

√√√√(V uT + 2σ2

T∑
t=1

‖gt‖2
2 +

2σ2mΩq

m− q

)(
1

2σ2‖u‖2
2 + Z ′T

)
+ 5BT

(
1

2σ2‖u‖2
2 + Z ′T

)
+ 2BT

25

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

for any q = 0, . . . ,m− 1, where Z ′T = 2 ln d2 log2 T e+ + 1
2
.

Compared to Theorem 7, we see the additional term involving Ωq, which corresponds to
the directions not captured by the sketch. We also see that rk(FT) ≤ d got replaced by 2m
in the definition of ZT . This comes from the analogous upper bound rk((SηT)ᵀSηT) ≤ 2m.

7.2 Coordinate MetaGrad: Analysis

The analysis of the coordinate version of MetaGrad, which we call MetaGrad Coord, is
straightforward as we can simply apply the regret bound of MetaGrad Full to each dimen-
sion and add up the bounds:

Theorem 13 Let V ui
T,i =

∑T
t=1(ui − wt,i)

2g2
t,i. For any u ∈

⋂T
t=1W rect

t , the linearized
regret of MetaGrad Coord is simultaneously bounded by

R̃uT ≤
d∑
i=1

{5

2

√
V ui
T,i(

1
2σ2u2

i + ZT,i) + 5BT,i(
1

2σ2u
2
i + ZT,i) + 2BT,i

}
, (22)

where ZT,i = ln

(
1 +

σ2
∑T
t=1 g

2
t,i

8B2
T,i

)
+ 2 ln d2 log2 T e+ 1

2
, and by

R̃uT ≤
d∑
i=1

{5

2

√√√√(V ui
T,i + 2σ2

T∑
t=1

g2
t,i

)(
1

2σ2u2
i + Z ′T

)
+ 5BT,i

(
1

2σ2u
2
i + Z ′T

)
+ 2BT,i

}
,

(23)
where Z ′T = 2 ln d2 log2 T e+ 1

2
.

The recommended tuning is to set σ to (an upper bound on) ‖u‖∞. For this case, we obtain
the following corollary, which is proved in Appendix D:

Corollary 14 Suppose the domain is a fixed rectangle: Wt = W rect, and we tune σ =
D∞ := maxu∈W rect ‖u‖∞ based on the size of the domain. Let g1:T,i := (gi,1, . . . , gi,T).
Then the linearized regret of MetaGrad Coord with respect to any u ∈ W rect is bounded by

R̃uT = O

(
d∑
i=1

√
V ui
T,i ln(D∞G∞T) +D∞G∞d ln(D∞G∞T)

)
, (24)

provided that ‖gt‖∞ ≤ G∞ for all t, and it is simultaneously bounded by

R̃uT = O

(
D∞

d∑
i=1

‖g1:T,i‖2

√
ln lnT +D∞G2

√
d ln lnT

)
= O

(
D∞G2

√
dT ln lnT

)
,

(25)
provided that ‖gt‖2 ≤ G2 for all t.

26

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

The first result of the corollary, (24), is sufficient to obtain fast rates under a coordinate ver-
sion of the Bernstein condition, which is discussed below. The second result, (25), shows
that we simultaneously recover the regret bound of order Õ

(∑d
i=1D∞

∑d
i=1 ‖g1:T,i‖2

)
that is the main feature of the diagonal version of AdaGrad. As pointed out by Duchi
et al. (2011), the norms ‖g1:T,i‖2 can be significantly smaller than T when the gradients
are sparse, and the dependence on D∞ is appropriate when the optimal parameters u form
a dense vector. When the gradients are not sparse the bound degrades to Õ

(
D∞
√
dT
)

,
which is optimal over rectangular domains under an `2 or even `1 bound on the gradients:
if we encounter T/d axis-aligned gradients per dimension, then each dimension can con-
tribute Ω(

√
T/d) to the regret, which gives Ω(

√
dT) regret in total.

7.2.1 OPEN PROBLEM: RESTRICTED DOMAINS

Most online learning methods can deal with arbitrary convex domains using projections, but
we have presented Coordinate MetaGrad only for rectangular domains. Can it be extended
to other domains, preferably without incurring any significant computational overhead?
One approach we have tried is to apply the black-box reduction of Cutkosky and Orabona
(2018), which would run MetaGrad Coord with fake gradients g̃t to obtain iterates w̃t from
a rectangular domain, which are then projected onto the true domain Wt to obtain final
iterates wt. Formally, this reduction goes through, but it leads to a regret bound in which
the terms V ui

T,i are replaced by unsatisfactory surrogates Ṽ ui
T,i that are measured in terms of

the fake gradients g̃t,i and the wrong, unprojected parameters w̃t,i. This can partially be
remedied, because the reduction guarantees that

‖g̃t‖∗ ≤ ‖gt‖∗, (26)

where ‖ · ‖∗ is the dual norm of the norm ‖ · ‖ that is used to project w̃t onto the domain. If
ft(w) = ht(w

ᵀxt) for a convex function ht and xt ∈ Rd is available before we choosewt,
then ∇ft(w) = h′t(w

ᵀxt)xt and we can project with the norm ‖w‖xt =
∑d

i=1 |xt,i||wi|,
which leads to the dual norm ‖g‖xt,∗ = maxi

|gi|
|xt,i| . Plugging this into (26) and simplifying,

we then find that
|g̃t,i| ≤ |gt,i| for i = 1, . . . , d,

which implies that

Ṽ ui
T,i =

T∑
t=1

(ui − w̃t,i)2g̃2
t,i ≤

T∑
t=1

(ui − w̃t,i)2g2
t,i.

We can thus get rid of the dependence on the fake gradients, but the dependence on the
wrong iterates w̃t remains, so in the end the black-box reduction only gets us half of the
way. This is unsatisfying, because the wrong iterates w̃t do not lead to fast rates under the
coordinate Bernstein condition described below. It is an open problem whether there exists
another (computationally efficient) approach that fully preserves the original regret bounds

27

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

from Corollary 14 for non-rectangular domains, and therefore does achieve these fast rates.
In light of this open problem, it is interesting to remark that the black-box reduction can be
made to work for MetaGrad Full, as exploited by Mhammedi et al. (2019, Theorem 10).

7.2.2 COORDINATE BERNSTEIN CONDITION

Since the coordinate version of MetaGrad does not keep track of a full covariance matrix
ΣT , we cannot expect it to exploit the Bernstein condition in all cases. An appropriate
modification is the following coordinate (B, β)-Bernstein condition:

d∑
i=1

(wi − u∗i)2 E
f

[
[∇f(w)]2i

]
≤ B

(
(w − u∗)ᵀ E

f
[∇f(w)]

)β for all w ∈ W , (27)

where we have again assumed that the domainWt =W does not vary between rounds, and
that the losses ft are independent, identically distributed. The following theorem, proved
in Appendix A, is analogous to Theorem 2: it shows that, under the coordinate Bernstein
condition, the coordinate version of MetaGrad achieves fast rates:

Theorem 15 If the gradients satisfy the coordinate (B, β)-Bernstein condition for B > 0
and β ∈ (0, 1] with respect to u∗ = arg minu∈W Ef∼P[f(u)], then any method with regret
bound (24) incurs expected regret

E[Ru
∗

T] = O
(

(Bd lnT)1/(2−β) T (1−β)/(2−β) + d lnT
)
.

So when can we expect the coordinate Bernstein condition to hold? If the covariances
between the coordinates of the gradients are zero, then the ordinary Bernstein condition
reduces to the coordinate Bernstein condition with the same B and β, but this is a very
strong assumption that seems of limited practical use. The following result captures how
this assumption may be significantly relaxed while still obtaining the same dependence
on β, albeit at the cost of a worse constant B. It considers the case that the losses are of the
form ft(w) = ht(w

ᵀxt) for a convex function ht, with (x1, h1), . . . , (xT , hT) independent,
identically distributed. Let h′t(z) denote the (sub)derivative of ht at z.

Theorem 16 Suppose that 0 < L− ≤ |h′t(wᵀx)| ≤ L+ for all w ∈ W and that E[xxᵀ] �
C diag(E[xxᵀ]) for some C > 0. Then

E
f

[∇f(w)∇f(w)ᵀ] �
CL2

−

L2
+

E
f

[
diag([∇f(w)]21, . . . , [∇f(w)]2d)

]
for allw ∈ W , and consequently the (B, β)-Bernstein condition (7) implies the coordinate
(B′, β)-Bernstein condition (27) with a constant B′ = L2

+

CL2
−
B instead of B.

The condition E[xxᵀ] � C diag(E[xxᵀ]) expresses that the (uncentered) covariances be-
tween features should be weak.2 In particular, it is satisfied with C = 1 if all pairs

2. The highest C ≥ 0 satisfying the condition is given by the smallest eigenvalue of the (uncentered) corre-
lation matrix, i.e. λmin

(
diag(E[xxᵀ])−1/2 E[xxᵀ] diag(E[xxᵀ])−1/2

)
.

28

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

of features have covariance zero. The conditions on ht are satisfied by the logistic loss
ht(z) = ln(1 + e−ytz) when the margins ytwᵀxt are uniformly bounded. For the hinge loss
ht(z) = max{1 − ytz, 0} they are also satisfied if the margins are strictly less than 1, but
we get L− = 0 for ytwᵀxt > 1.
Proof (Theorem 16) The main inequality is established as follows:

E
f

[∇f(w)∇f(w)ᵀ] = E
f

[
h′t(w

ᵀx)2xxᵀ
]
� E

f

[
L2
−xx

ᵀ
]
� CL2

− diag(E
f

[xxᵀ])

�
CL2

−

L2
+

diag(E
f

[
h′t(w

ᵀx)2xxᵀ
]
) =

CL2
−

L2
+

E
f

[
diag([∇f(w)]21, . . . , [∇f(w)]2d)

]
.

Multiplying both sides of the inequality by (w−u∗)ᵀ on the left and (w−u∗) on the right,
we see that the left-hand side of (7) dominates the left-hand side of (27) up to a factor of
CL2
−

L2
+

, which is responsible for the difference between B and B′.

8. Experiments
The goal of this experiments section is to quantify the performance of the proposed Meta-
Grad variants in comparison with existing algorithms for Online Convex Optimization. The
corresponding Python code is available from GitHub (van Erven et al., 2021). We set things
up as follows.

8.1 Setup

We describe the data we used, the specific prediction task we considered, and the algorithms
we evaluated. We also discuss the choice of domain and hyper-parameters.

8.1.1 DATA

We evaluate on real-world regression and binary classification data sets from the standard
LIBSVM library (Chang and Lin, 2011). A summary of the data sets can be found in Ta-
ble 2 in Appendix E. We have included data sets of dimension up to 300, so that MetaGrad
Full is tractable. We exclude the mushrooms data set, because it is linearly separable.
This makes the best offline parameters u∗ non-unique for the hinge loss and have infinite
norm for the logistic loss, which is incompatible with our parameter tuning below. The
resulting seventeen data sets have sample sizes T ranging from 252 to 581 012 and dimen-
sions d ranging from 6 to 300. When available we used the normalised version of the data
set with features in [−1, 1].

8.1.2 TASK

Each data set is a sequence of labelled examples (xt, yt) for t = 1, . . . , T . We define our
task to be sequential prediction of the labels yt from the features xt using a linear model

29

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

ŷt = wᵀ
txt. We use a linear model with intercept, which we implement by appending

a constant 1 to each feature vector. For the classification data with yt ∈ {−1, 1}, we
consider both the hinge loss ft(w) = max{0, 1 − ytwᵀxt} and the logistic loss ft(w) =
ln
(
1 + e−ytw

ᵀxt
)
. For the regression data with yt ∈ R, we consider the absolute loss

ft(w) = |yt −wᵀxt| and the squared loss ft(w) = (yt −wᵀxt)
2.

8.1.3 METHODS

We compare 9 methods: two popular versions of Online Gradient Descent, the diagonal
version of AdaGrad, and six versions of MetaGrad. We include the Online Gradient De-
scent scheme wt+1 = arg minw∈W w

ᵀgt + 1
2ηt
‖w − wt‖2 with time-decreasing learning

rate ηt = σ√
t maxs≤t‖gs‖2

(abbreviated as OGDt) and with the gradient-norm-adaptive learn-
ing rate ηt = σ√∑t

s=1 ‖gs‖22
(abbreviated as OGDnorm). In both cases, σ is a hyperparame-

ter. Diagonal AdaGrad can be viewed as OGDnorm applied to each coordinate separately,
and predicts with iterates wt+1 = arg minw∈W w

ᵀgt +
∑

i
1

2ηt,i
(wi − wt,i)2 with separate

learning rates per dimension ηt,i = σ√∑t
s=1 g

2
s,i

. Note that for both AdaGrad and Gradi-

ent Descent we use the standard mirror descent version, as opposed to the FTRL/primal-
dual version. The six versions of MetaGrad are the full version presented in Section 4
(abbreviated as MGFull), the coordinate version presented in Section 5.2 (abbreviated as
MGCo), and the Frequent Directions sketching version presented in Section 5.1 for m = 2,
m = min{11, d + 1}, m = min{26, d + 1}, and m = min{51, d + 1} (abbreviated as
MGFm). Note that in each case the number of directions maintained is m − 1, so this
corresponds to effective dimensions 1, 10, 25 and 50, or d when d is smaller.

8.1.4 DOMAIN

Each of our algorithms requires a choice of domainW . While algorithm and domain are
independent in principle, in practice computational convenience is paramount, and only
the convenient default domain choice is prevalent for each algorithm. In this sense one
may think of the choice of algorithm as importing (additional) regularisation through its
associated domain. For the two versions of Gradient Descent we use the `2-norm ball
W = {w : ‖w‖2 ≤ D2}. For the two diagonal algorithms, AdaGrad and MGCo, we use
the `∞-norm ballW = {w : ‖w‖∞ ≤ D∞}. For the other versions of MetaGrad we use
the time-varying domain Wt = {w : |wᵀxt| ≤ C} from (13), recalling its major benefit
that projections on Wt can be computed efficiently (see the discussion in Section 5.1).
Having fixed the domain shape, we still have to fix the domain sizes D2, D∞ and C. We
note that this is part of the art of employing machine learning in practice. To simulate the
availability of weak prior knowledge about the appropriate domain bound, we first compute
the unconstrained optimizer of the cumulative loss u∗ = arg minu∈Rd

∑T
t=1 ft(u). We then

set the size bounds to fit the comparator up to the small factor 3, i.e. setting D2 = 3‖u∗‖2,
D∞ = 3‖u∗‖∞ and C = 3 maxt |x

ᵀ
tu
∗|. We overprovision the domain by the factor 3 > 1

30

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Algorithm # best # better than OGDt MedianRatio
AdaGrad 0 0 3.54
OGDnorm 0 4 1.41
OGDt 1 34 1.00
MGCo 12 33 0.32
MGF2 2 31 0.31
MGF11 14 31 0.27
MGF26 15 33 0.27
MGF51 17 33 0.25
MGFull 21 33 0.25

Table 1: Comparison of algorithms with OGDt. The MedianRatio column contains the
median ratio of the regret of each algorithm over that of OGDt. Columns “# best”
and “# better than OGDt” count cases where the algorithm is at most one regret
unit above the best algorithm or OGDt, respectively.

to prevent possibly beneficiary effects that may kick in when the comparator lies on the
boundary of the domain (Huang et al., 2016).

8.1.5 HYPERPARAMETER TUNING

We now discuss tuning the hyperparameter σ that is present in all methods. To keep the
playing field level and convey the same tuning advantage to all algorithms, we provide the
optimal theoretical tuning of σ for all methods, even though ‖u∗‖ is unknown in practice.
Theoretical guidance on this optimal setting comes in two types, depending on the makeup
of the algorithm, and in particular control of a telescoping term in its regret bound (see
e.g. Zinkevich 2003 or Duchi et al. 2011, Corollary 11). For all versions of MetaGrad, the
optimal setting σ = ‖u∗‖ is the norm of the comparator itself (see Sections 4.3 and 5.2.1).
For algorithms in the mirror descent family (including OGD and AdaGrad), the optimal
theoretical setting is σ = maxw∈W‖w−u∗‖/

√
2 (see e.g. Duchi et al. 2011, Corollary 11,

Orabona and Pál 2018, Theorem 2). For our norm-ball domain of radius 3‖u∗‖ this yields
σ =
√

8‖u∗‖. We also study the effect of tuning σ with hindsight in Appendix E.1.

8.2 Experimental Results

Table 3 in Appendix E lists the regrets of all 9 algorithms on all 17 data sets measured in 2
loss functions each.

8.2.1 BEST OVERALL ALGORITHM

We first try to answer the question which algorithm is best. To this end, we present a
summary of the results in Table 1. The table shows how often each algorithm achieves the
lowest loss on our 17 data sets as measured in either of the two relevant loss functions (for

31

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

10
1

10
2

10
3

10
4

10
5

10
6

10
7

MetaGrad Coordinate MetaGrad F11

101 102 103 104 105 106

10
1

10
2

10
3

10
4

10
5

10
6

10
7

AdaGrad

101 102 103 104 105 106

hinge
logistic
absolute
squared

MetaGrad Full

Regret of Online Gradient Descent

R
eg

re
t

Figure 1: Comparison of the logarithm of the regret of three versions of MetaGrad and
AdaGrad and the logarithm of the regret of OGDt. Each marker represents a
combination of data set and loss function.

32

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

some data sets ties result in several algorithms being counted as best). It further lists how
often each algorithm beats OGDt, and what the median ratio of regrets is between each
algorithm and OGDt. We choose OGDt as the baseline, as it is empirically best among our
competitors AdaGrad, OGDnorm and OGDt. We see that versions of MetaGrad, especially
MetaGrad Full, are often the best algorithm overall (there is only 1 of 34 cases where
no MetaGrad version is the winner). Moreover, the experiments corroborate the intuition
that the performance of the MetaGrad sketching versions improves as more dimensions are
retained. The table suggests the recommendation to use sketched MetaGrad in practice,
retaining as many dimensions as are computationally affordable.

8.2.2 PREDICTING THE WINNER

The next question is if we can observe any patterns in the circumstances for which each al-
gorithm shines. To gain insight here, we compare in Figure 1 the regrets of MGCo, MGF11,
AdaGrad and MGFull each with OGDt. There does not seem to be a visually discernible
pattern allowing us to predict the advantage over OGDt (vertical position) from the OGDt
regret on the data set (horizontal position) or the loss function (color). We looked into the
blue diamond (i.e. square loss) at the far left in each plot, on which OGDt dominates. This
data set is mg. One feature that stands out for this set is that its optimal unconstrained coef-
ficient vector assigns a large coefficient to the constant 1 feature we added to implement the
intercept, while using much smaller (three orders of magnitude) coefficients for all other
features. This results in an essentially sparse optimal weight vector. It is not clear to us
how OGDt is especially able to exploit this. For sure its regret bound does not give a hint.

Comparing MetaGrad Full to MGF11 in Figure 1, we see that most data set markers are
very similarly positioned, except for two (one green, one red) that moved slightly upwards.
This is the covtype data set. For this set we indeed see the loss rise dramatically when
we sketch to smaller sizes or use the coordinatewise approximation. Apparently, for this
data set all features are important, and the intrinsic orientation is not the coordinate basis.
Overall, the coordinatewise version of MetaGrad is close to the performance of the Full
version of MetaGrad (the median regret ratio is 1.09), which suggests that on most data
sets the correlations between the features are of little importance.

8.2.3 SURPRISES

To our surprise, AdaGrad has the worst performance of all algorithms. Upon closer review
of the literature we observe that the hyperparameter (σ) of AdaGrad is often optimized in
hindsight based on the data. In Appendix E.1, we tested by how much we could improve
the performance of all methods by tuning σ in hindsight. We find there that the benefits
are especially large for AdaGrad. For instance, on w8a with the logistic loss, we find that
we can tune AdaGrad such that the regret improves from 86921 to 1147, improving upon
the theoretically recommended tuning of AdaGrad by an astounding factor 76, as well as
beating the best theoretically tuned algorithm (MGCo) by a factor 2.9. See Appendix E.1
for a further study of this phenomenon. However, such post-hoc tuning is not available in

33

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

sequential decision-making applications. We take this as a clear motivation to study the
effects of tuning, and develop algorithms that tune themselves.

A second surprise is that OGDt beats OGDnorm (median regret ratio 1.41). Worst-
case regret bounds indicate that the reverse should occur. There exist tighter “luckiness”
analyses for stochastic cases in the literature (Gaillard et al., 2014; Koolen et al., 2016;
Mourtada and Gaı̈ffas, 2019), but these are not sharp enough to explain the difference
between OGDnorm and OGDt. Moreover, these analyses require conditions for which it
seems implausible that a large majority of data sets should satisfy them to the same degree,
so these analyses cannot explain why the dominance of OGDt is so consistent.

Conclusion Overall, we see that MetaGrad outperforms AdaGrad and Online Gradient
Descent consistently across a range of real-world data sets. We conclude that MetaGrad
is the best choice for sequential scenarios where safety requirements dictate tuning for
theoretical guarantees, as we have studied here.

8.3 Additional Experiments with Hypertuning

In Appendix E.1 we provide additional experiments to investigate the best performance that
can be achieved in principle by each of the 9 algorithms, by tuning the hyperparameter σ
in hindsight for each data set. For all methods, σ directly influences the effective learning
rate η, so this hypertuning provides a loophole to optimize η for the data. Although such
post-hoc tuning is impossible in a fully online setting, these experiments give insight into
whether the theoretical tunings are good advice in practice for non-adversarial data. In
general, all methods gain from hypertuning, but some more than others. A striking differ-
ence with the previous experiments is that AdaGrad, OGDnorm and MetaGrad all achieve
very similar performance when they use hypertuning. It therefore seems to matter more if
the hyperparameters are optimally tuned to the data set, than which algorithm is chosen.
This suggests that the empirical superiority of MetaGrad in the primary experiments may
be attributed to its ability to better adapt to the optimal learning rate η.

9. Conclusion and Possible Extensions
We provide a new adaptive method, MetaGrad, which is robust to general convex losses
but simultaneously can take advantage of special structure in the losses, like curvature in
the loss function or if the data come from a fixed distribution. The main new technique is
to consider multiple learning rates in parallel: each learning rate η has its own surrogate
loss (8) and there is a single controller method that aggregates the predictions of η-experts
corresponding to the different surrogate losses.

An important feature of the controller is that its contribution to the final regret is only
the log of the number of experts, and since the number of experts is O(lnT) this leads
to an additional O(ln lnT) term that is typically dominated by other terms in the bound.
It is therefore also cheap to add more experts for possibly different surrogate losses. To
make the proof go through, a sufficient requirement on any such surrogates is that they

34

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

replace the term
(
η(u − wt)

ᵀgt
)2 in (8) by an upper bound. This possibility is exploited

by Wang et al. (2020), who add extra experts with surrogates that contain
(
ηG‖u−wt‖2

)2

instead, where G is a known upper bound on ‖gt‖.3 Since these surrogates are quadratic in
all directions, and not just in the direction of gt, they are better suited for strongly convex
losses, which then leads to an even more adaptive extension of MetaGrad that also gets the
optimal rate O(lnT) for strongly convex losses, without any dependence on d. The price
of this extension is that it doubles the number of experts, which adds a negligible constant
ln 2 to the regret, but doubles the run-time of the algorithm.

If we are willing to increase the number of experts, then another appealing extension
would be to adapt to the σ hyperparameter. This is possible by adding multiple copies
of each η-expert with different values for σ. If σ ranges over a set of candidate values
S := {σ1, . . . , σp}, then our overhead compared to the best choice of σ from S is an
additional small constant ln p in the regret, but our run-time multiplies by p, so we would
still need to keep p relatively small. For example, we might take an exponentially spaced
grid S := {2i ∈ [σmin, σmax] | i ∈ Z}, so that p ≤ dlog2 σmax/σmine.

Another way to extend MetaGrad is to replace the exponential weights update in the
controller by a different experts algorithm. Zhang et al. (2019) use this to extend Meta-
Grad for the case that the optimal parameters u vary over time, as measured in terms of
the adaptive regret. See also Neuteboom (2020), who provides a similar extension of the
closely related Squint algorithm for adaptive regret.

As a final possible extension, we mention the sliding window variant of Full Matrix
AdaGrad (Agarwal et al., 2019). The same sliding window idea could be used to base the
covariance matrix Ση

t in our Algorithm 2 only on the k most recent gradients. This has both
computational advantages, because Ση

t then becomes a matrix of fixed rank d + k, and it
could be beneficial for non-convex optimization when older covariance information needs
to be discarded.

Acknowledgments

The authors would like to thank Raphaël Deswarte and Zakaria Mhammedi for collab-
orations on earlier versions of MetaGrad (Deswarte, 2018; Mhammedi et al., 2019) and
the anonymous reviewers for insightful comments on the manuscript. This research was
supported by the Netherlands Organization for Scientific Research (NWO): grant numbers
VI.Vidi.192.095 for Van Erven and TOP2EW.15.211 for Van der Hoeven.

Appendix A. Extra Material Related to Fast Rate Conditions
In this section we gather extra material related to the fast rate examples from Sections 3
and 7.2. We first provide simulations. Then we present the proofs of Theorems 1, 2 and

3. To make a Lipschitz-adaptive version of their approach, we might replace the constant G by the quantity
‖gt‖ that it upper bounds.

35

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

15. And finally we give an example in which the unregularized hinge loss satisfies the
Bernstein condition.

A.1 Simulations: Logarithmic Regret without Curvature

We provide two simple simulation examples to illustrate the sufficient conditions for The-
orems 1 and 2, and to show that the resulting fast rates are not automatically obtained by
previous methods for general functions. Both our examples are one-dimensional, and have
a stable optimum (that good algorithms will converge to); yet the functions are based on
absolute values, which are neither strongly convex nor smooth, so the gradient norms do
not vanish near the optimum. As our baseline we include AdaGrad (Duchi et al., 2011),
because it is commonly used in practice (Mikolov et al., 2013; Schmidhuber, 2015) and
because, in the one-dimensional case, it coincides with OGD with an adaptive tuning of
the learning rate that is applicable to general convex functions. See the description of Ada-
Grad/OGDnorm in Section 8 for a full description.

In the first example, we consider offline convex optimization of the fixed function
ft(w) ≡ f(w) = |w − 1

4
|, which satisfies the directional derivative condition (6) be-

cause it is convex. In the second example, we look at stochastic optimization with con-
vex functions ft(w) = |w − xt|, where the outcomes xt = ±1

2
are chosen i.i.d. with

probabilities 0.4 and 0.6. These probabilities satisfy (7) with β = 1. Their values are
by no means essential, as long we avoid the worst case where the probabilities are equal.
In both examples, the domain is W = [−1, 1]. We tune AdaGrad with hyperparameter
σ = maxw,u∈W |w − u|/

√
2 =
√

2 and MetaGrad with σ = maxu∈W |u| = 1.

Figure 2 graphs the results. We see that in both cases the regret of AdaGrad follows
its O(

√
T) bound, while MetaGrad achieves an O(lnT) rate, as predicted by Theorems 1

and 2. This shows that MetaGrad achieves a type of adaptivity that is not achieved by
AdaGrad.

A.2 Proof of Theorem 1

Proof By (6), applied with w = wt, and (2), there exists a C > 0 (depending on a) such
that, for all sufficiently large T ,

RuT ≤ aR̃uT − bV uT ≤ C
√
V uT d lnT + Cd lnT − bV uT

≤ γ

2
CV uT +

(
1

2γ
+ 1

)
Cd lnT − bV uT for all γ > 0,

where the last inequality is based on
√
xy = minγ>0

γ
2
x + y

2γ
for all x, y > 0. The result

follows upon taking γ = 2b
C

.

36

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

0 2000 4000 6000 8000 10000
T

0

20

40

60

80

100

120

140
Re

gr
et

AdaGrad
MetaGrad

(a) Offline: ft(u) = |u− 1/4|

0 2000 4000 6000 8000 10000
T

0

20

40

60

80

100

120

140

Re
gr

et

AdaGrad
MetaGrad

(b) Stochastic Online: ft(u) = |u − xt| where
xt = ± 1

2 i.i.d. with probabilities 0.4 and 0.6.

Figure 2: Examples of fast rates on functions without curvature. MetaGrad incurs logarith-
mic regret O(lnT), while AdaGrad incurs O(

√
T) regret, matching its bound.

A.3 Proofs of Theorems 2 and 15

Proof (Theorem 2) By (2) there exists a constant C > 0 such that, for all sufficiently
large T ,

E
[
R̃u

∗

T

]
≤ C E

[√
V u

∗
T d lnT

]
+ Cd lnT.

Abbreviating r̃ut = (wt −u)ᵀgt, we see that R̃u∗T =
∑T

t=1 r̃
u∗
t , V u∗T =

∑T
t=1(r̃u

∗
t)2 and the

Bernstein condition with w = wt becomes

E[(r̃u
∗

t)2 | wt] ≤ B E[r̃u
∗

t | wt]
β.

Combining the above with multiple applications of Jensen’s inequality, the expected lin-
earized regret is at most

E
[
R̃u

∗

T

]
≤ C

√
E [V u

∗
T] d lnT + Cd lnT

≤ C

√√√√B
T∑
t=1

E
wt

[
(E [r̃u

∗
t |wt])

β
]
d lnT + Cd lnT

≤ C

√√√√B
T∑
t=1

(E [r̃u
∗

t])
β
d lnT + Cd lnT. (28)

In the following, we will repeatedly use the fact that

xαy1−α = cα inf
γ>0

(
x

γ
+ γ

α
1−αy

)
for any x, y ≥ 0 and α ∈ (0, 1), (29)

37

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

where cα = (1 − α)1−ααα. Applying this first with α = 1/2, x = Bd lnT and y =∑T
t=1

(
E[r̃u

∗
t]
)β , we obtain

√√√√B
T∑
t=1

(E[r̃u
∗

t])
β
d lnT ≤ c1/2γ1

T∑
t=1

(
E[r̃u

∗

t]
)β

+
c1/2

γ1

Bd lnT for any γ1 > 0.

If β = 1, then
∑T

t=1

(
E[r̃u

∗
t]
)β

= E[R̃u
∗

T] and the result follows by taking γ1 = 1
2Cc1/2

.

Alternatively, if β < 1, then we apply (29) a second time, with α = β, x = E[r̃u
∗

t] and
y = 1, to find that, for any γ2 > 0,

√√√√B
T∑
t=1

(E[r̃u
∗

t])
β
d lnT ≤ cβc1/2γ1

T∑
t=1

(
E[r̃u

∗
t]

γ2

+ γ
β/(1−β)
2

)
+
c1/2

γ1

Bd lnT

=
cβc1/2γ1

γ2

E[R̃u
∗

T] + cβc1/2γ1γ
β/(1−β)
2 T +

c1/2

γ1

Bd lnT.

Taking γ1 = γ2
2cβc1/2C

, this yields

E[R̃u
∗

T] ≤ γ
1/(1−β)
2 T +

4C2c2
1/2cβBd lnT

γ2

+ 2Cd lnT.

We may optimize over γ2 by a third application of (29), now with x = 4C2c2
1/2cβBd lnT ,

y = T and α = 1/(2− β), such that α/(1− α) = 1/(1− β):

E[R̃u
∗

T] ≤ 1

c1/(2−β)

(
4C2c2

1/2cβBd lnT
)1/(2−β)

T (1−β)/(2−β) + 2Cd lnT

= O
(

(Bd lnT)1/(2−β) T (1−β)/(2−β) + d lnT
)
,

which completes the proof.

Proof (Theorem 15) We will show that (28) from the proof of Theorem 2 also holds under
the conditions of Theorem 15. The rest of the proof then proceeds in the same way. To this
end, we use that (24) implies the existence of a constant C > 0 such that, for all sufficiently
large T ,

R̃u
∗

T ≤ C

d∑
i=1

√
V ui
T,i ln(T) + Cd ln(T).

38

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Multiple applications of Jensen’s inequality, together with the coordinate Bernstein condi-
tion, then imply that

E
[
R̃u

∗

T

]
≤ C E

[
d∑
i=1

√
V
u∗i
T,i ln(T)

]
+ Cd ln(T) = CdE

[
d∑
i=1

1

d

√
V
u∗i
T,i ln(T)

]
+ Cd ln(T)

≤ Cd

√√√√E

[
d∑
i=1

1

d

(
V
u∗i
T,i ln(T)

)]
+ Cd ln(T)

= C

√√√√ T∑
t=1

E
wt

[
d∑
i=1

(wt,i − u∗i)2 E[g2
t,i | wt]

]
d ln(T) + Cd ln(T)

≤ C

√√√√B
T∑
t=1

E
wt

[
(E[r̃u

∗
t | wt])

β
]
d ln(T) + Cd ln(T)

≤ C

√√√√B
T∑
t=1

(E[r̃u
∗

t])
β
d ln(T) + Cd ln(T).

This establishes the same inequality as in (28), and the remainder of the proof is the same
as for Theorem 2.

A.4 Unregularized Hinge Loss Example

As shown by Koolen et al. (2016), the Bernstein condition is satisfied in the following
classification task:

Lemma 17 (Unregularized Hinge Loss Example) Suppose that (X1, Y1), (X2, Y2), . . . are
i.i.d. with Yt taking values in {−1,+1}, and let ft(u) = max{0, 1−YtuᵀXt} be the hinge
loss. Assume that both W and the domain for Xt are the d-dimensional unit ball. Then
the (B, β)-Bernstein condition is satisfied with β = 1 and B = 2λmax

‖µ‖2 , where λmax is the
maximum eigenvalue of E [XXᵀ] and µ = E[YX], provided that ‖µ‖2 > 0.

In particular, if Xt is uniformly distributed on the sphere and Yt = sign(〈ū,Xt〉) is
the noiseless classification of Xt according to the hyperplane with normal vector ū, then
B ≤ c√

d
for some absolute constant c > 0.

Thus the version of the Bernstein condition that implies anO(d lnT) rate is always satisfied
for the hinge loss on the unit ball, except when ‖µ‖2 = 0, which is very natural to exclude,
because it implies that the expected hinge loss is 1 (its maximal value) for all u, so there is
nothing to learn. It is common to add `2-regularization to the hinge loss to make it strongly
convex, but this example shows that that is not necessary to get logarithmic regret.

For completeness, we repeat the proof of Lemma 17 from Koolen et al. (2016):

39

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Proof (Lemma 17) Since, by assumption, u and X have length at most 1, the hinge loss
simplifies to f(u) = 1− Y uᵀX with gradient∇f(u) = −YX . This implies that

u∗ := arg min
u

E [f(u)] =
µ

‖µ‖
, (30)

and

(w − u∗)ᵀ E [∇f(w)∇f(w)ᵀ] (w − u∗) = (w − u∗)ᵀ E [XXᵀ] (w − u∗)
≤ λmax(w − u∗)ᵀ(w − u∗) ≤ 2λmax(1−wᵀu∗)

=
2λmax

‖µ‖
(w − u∗)ᵀ(−µ) =

2λmax

‖µ‖
(w − u∗)ᵀ E [∇f(w)] ,

which proves the first part of the lemma
For the second part, we first observe that λmax = 1/d. Then, to compute ‖µ‖, assume

without loss of generality that ‖ū‖ = 1, in which case ū = u∗. Now symmetry of the
distribution ofX conditional onXᵀu∗ gives

E [YX |Xᵀu∗] = sign(Xᵀu∗)E [X |Xᵀu∗] = sign(Xᵀu∗)Xᵀu∗u∗ = |Xᵀu∗|u∗.

By rotational symmetry, we may further assume without loss of generality that u∗ = e1 is
the first unit vector in the standard basis, and therefore

‖µ‖ = ‖E [|Xᵀu∗|]u∗‖ = E [|X1|] .

If Z = (Z1, . . . , Zd) is multivariate Gaussian N (0, I). Then X = Z/‖Z‖ is uniformly
distributed on the sphere, so

E[|X1|] = E
[
|Z1|
‖Z‖

]
≥ 1

4
√
d

Pr
(
|Z1| ≥ 1

2
∧ ‖Z‖ ≤ 2

√
d
)
.

Since Pr
(
|Z1| < 1

2

)
≤ 0.4 and Pr

(
‖Z‖ ≥ 2

√
d
)
≤ 1

4d
E [‖Z‖2] = 1

4
, we have

Pr
(
|Z1| ≥ 1

2
∧ ‖Z‖ ≤ 2

√
d
)
≥ 1− 0.4− 1

4
= 0.35,

from which the conclusion of the second part follows with c = 8/0.35.

A.5 Bernstein for Linearized Excess Loss

Let f : W → R be a convex function drawn from distribution P with stochastic optimum
u∗ = arg minu∈W Ef∼P[f(u)]. For anyw ∈ W , we now show that the Bernstein condition
for the excess loss X := f(w) − f(u∗) implies the Bernstein condition with the same
exponent β for the linearized excess loss Y := (w − u∗)ᵀ∇f(w). These variables satisfy
Y ≥ X by convexity of f and Y ≤ C := 2D2G2.

40

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Lemma 18 For β ∈ (0, 1], let X be a (B, β)-Bernstein random variable:

E[X2] ≤ B E[X]β.

Then any bounded random variable Y ≤ C with Y ≥ X pointwise satisfies the (B′, β)-
Bernstein condition

E[Y 2] ≤ B′ E[Y]β

for B′ = max
{
B, 2

β
C2−β

}
.

Proof For β ∈ (0, 1) we will use the fact that

zβ = cβ inf
γ>0

(
z

γ
+ γ

β
1−β

)
for any z ≥ 0,

with cβ = (1− β)1−βββ . For γ =
(

1−β
β

E[Y]
)1−β

we therefore have

E[X2]−B′ E[X]β ≥ E[X2]−B′cβ
(
E[X]

γ
+ γ

β
1−β

)
≥ E[Y 2]−B′cβ

(
E[Y]

γ
+ γ

β
1−β

)
= E[Y 2]−B′ E[Y]β, (31)

where the second inequality holds because x2−cβB′x/γ is a decreasing function of x ≤ C

for γ ≤ cβB
′

2C
, which is satisfied by the choice of B′. This proves the lemma for β ∈ (0, 1).

The claim for β = 1 follows by taking the limit β → 1 in (31).

Appendix B. Controller Regret Bound (Proof of Lemma 4)
We prove the lemma in two parts.

B.1 Decomposing the Surrogate Regret

Fix a comparator point u ∈
⋂T
t=1Wt. We will first bound the surrogate regret

Rη
T (u) :=

T∑
t=1

(`ηt (wt)− `ηt (u))

for any η ∈ G not expired after T rounds (see Definition 3). Note that by definition (8),
the surrogate loss `ηt (wt) of the controller is always zero, but we believe writing it helps
interpretation. We will then use this surrogate regret bound to control the (non-surrogate)
regret.

For the first half of this section, we fix a final time T , and a grid-point η ∈ G that is still not
expired after time T (see Definition 3). We redefine aη from (10) as follows:

41

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Definition 19 We define the wakeup time of learning rate η ∈ G by

aη := inf

t ≤ T

∣∣∣∣∣∣η > 1

2
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)
 ∧ (T + 1).

The difference with (10) is that we now manually set to T + 1 the wakeup time of an η that
does not wake up during the first T rounds. We do this so that [1, aη−1] and [aη, T] always
partition rounds [1, T].

Our strategy will be to split the regret in three parts, which we will analyse separately.

Proposition 20 We have

Rη
T (u) =

aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

+
T∑

t=aη

(`ηt (w
η
t)− `

η
t (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

.

Proof The choice of aη makes all wη
t defined. We can hence merge the sums.

We think of the three sums as follows. The first sum is “startup nuisance”, and it will turn
out to be tiny. The second sum is controlled by the controller, and it only depends on its
construction. The third sum is controlled by the η-experts, and it only depends on their
construction.

We will now proceed to bound the three parts above. First, we reduce to the clipped
surrogate losses (12) at almost negligible cumulative cost using the clipping technique of
Cutkosky (2019).

Lemma 21 (Clipping in the controller is cheap)
aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

≤
aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

+
T∑

t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. η-expert

+ηBT

Proof For any u ∈ Wt (which includes the case u = wη
t), we may use the definition of

the range bound (5), the surrogate loss (8) and its clipped version (12) to find

(`ηt (wt)− `ηt (u))−
(
¯̀η
t (wt)− ¯̀η

t (u)
)

= η
Bt −Bt−1

Bt

(wt − u)ᵀgt − η2B
2
t −B2

t−1

B2
t

(
(u−wt)

ᵀgt
)2

︸ ︷︷ ︸
≥0

≤ η
Bt −Bt−1

Bt

bt ≤ η (Bt −Bt−1) .

42

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Summing over rounds completes the proof.

Next we deal with the clipped surrogate regret. We first handle the case of the early rounds
before aη. The key idea is that when η has not yet woken up, it is very small. Since the
surrogate loss scales with η, it is small as well, even in sum.

Lemma 22 For any η and any u ∈
⋂aη−1
s=1 Ws

aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

≤ 1

2
.

Proof By definition of the clipped surrogate loss ¯̀η
t in (12), the range bound bt in (5) and

the wakeup time at in Definition 19,

aη−1∑
t=1

¯̀η
t (wt)− ¯̀η

t (u) ≤
aη−1∑
t=1

η(wt − u)ᵀḡt ≤
∑

t:η≤ 1

2

(∑t−1
s=1 bs

Bs−1
Bs

+Bt−1

)
ηbt

Bt−1

Bt

≤ 1

2
.

In the next subsection we deal with the middle sum in Proposition 20. This part only
depends on the construction of the controller. We deal with the final sum in the section
after that.

B.2 Controller surrogate regret bound

The controller is a specialists algorithm, which sometimes resets. We call the time segments
between resets epochs. In every epoch, the controller guarantees a certain specialists regret
bound w.r.t. any η-expert in its grid.

The η-expert that we need can be active during several epochs. Our strategy, following
Mhammedi et al. (2019), will be the following. We incur the controller regret in the last
and one-before-last epochs. We further separately prove, using the reset condition, that the
total regret in all earlier epochs is tiny.

Lemma 23 Consider an epoch starting at time τ + 1 and fix any later time t in that same
epoch. Fix any grid point η ∈ G not expired after t rounds (meaning η ≤ 1

2Bt−1
). Then the

MetaGrad controller guarantees

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t)
)

︸ ︷︷ ︸
specialist ¯̀η-regret of controller w.r.t. η-expert on (τ, t]

≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

.

43

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Note that it is not important what the η-experts do at this point, the only feature that we
use in the proof is that wη

t ∈ Wt for each active η. Also, note that the right-hand side is
O(ln lnT).
Proof We first observe that Algorithm 1, as far as it maintains the weights pt(η) between
resets, implements Specialists Exponential Weights (called SBayes by Freund et al., 1997).
In our particular case it is applied to specialists η ∈ G, loss function η 7→ `ηt (w

η
t), active

set At ⊆ G and uniform (improper) prior on G. The specialists regret bound (Freund et al.,
1997, Theorem 1) directly yields4

∑
s∈(τ,t]:s≥aη

− ln E
pt(η)

[
e−

¯̀η
t (wηt)

]
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣+
∑

s∈(τ,t]:s≥aη

¯̀η
t (w

η
t).

Algorithm 1 further chooses the controller iterate

wt =
Ept(η) [ηwη

t]

Ept(η) [η]

which we claim ensures that

0 ≤ − ln E
pt(η)

[
e−

¯̀η
t (wηt)

]
.

To see why, we use the definition (12) of clipped loss and gradient to obtain (wt−wη
t)

ᵀḡt ≥
−Bt−1, and we further use that pt is supported on At, which implies that η ≤ 1

2Bt−1
.

Together these license5 the “prod bound” (ex−x2 ≤ 1 + x for x ≥ −1
2
) yielding

− ln E
pt(η)

[
e−

¯̀η
t (wηt)

]
≥ − ln E

pt(η)
[1 + η(wt −wη

t)
ᵀḡt] = 0.

Inserting `ηt (wt) = 0, this implies

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t)
)
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ .
4. Our improper prior does not cause any trouble here, because renormalizing the prior, in hindsight, to the

finite set of η-experts that were ever active preserves the algorithm’s output and hence its regret bound.
5. Here we motivate our controller algorithm using the loss function η 7→ ¯̀η

t (wη
t). One can alternatively

base it on the loss function η 7→ − ln (1 + η(wt −wη
t)ᵀḡt) (These two versions are called Squint and

iProd respectively by Koolen and Van Erven, 2015). As the second is always smaller (by the prod bound),
using it would give a strictly tighter theorem here. We do not see a way to ultimately harvest this gain, as
we would still need to invoke the prod bound at a later point in the analysis to express our regret bound
in second-order form. We chose to present the “Squint-style” version here as we believe it is the more
intuitive of the two.

44

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

It remains to bound the maximum number of active grid-points during any epoch. Recall
from (9) that the active set at any time t is

At =

 1

2
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

) , 1

2Bt−1

 ∩ G.
Both endpoints are decreasing with t. Since our epoch starts at time τ + 1, the maximal η
active in the epoch is

max
{
η ∈ G

∣∣∣ η ≤ 1

2Bτ

}
.

As we consider the part of the epoch up to time t ≥ τ+1, the smallest η active in the epoch
is

min

{
η ∈ G

∣∣∣∣ η ≥ 1

2
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)}.
And since G is exponentially spaced with base 2, the maximum number of η that could
possibly have been active islog2

(∑t−1
s=1 bs

Bs−1

Bs
+Bt−1

)
Bτ

 ≤
log2

Bt−1

(∑t−1
s=1

bs
Bs

+ 1
)

Bτ

≤

⌈
log2

((
t−1∑
s=1

bs
Bs

)(
t−1∑
s=1

bs
Bs

+ 1

))⌉

≤

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

,

where the second inequality holds because of the reset condition (11). All together, we
conclude that our prior costs for the improper (uniform on G) prior are upper bounded by

ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ ≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

. (32)

We now have a specialists regret bound that we can apply to each epoch.

Lemma 24 (Total regret in far past is tiny) Consider two consecutive epochs, starting af-
ter τ1 < τ2, and let η be not expired after τ1 rounds. Then∑

s∈[1,τ1],s≥aη

(
¯̀η
s(ws)− ¯̀η

s(w
η
s)
)
≤ ηBτ2 .

45

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Proof

−
∑

s∈[1,τ1],s≥aη

¯̀η
s(w

η
s) ≤ η

τ1∑
s=1

bs
Bs−1

Bs

≤ ηBτ1

τ1∑
s=1

bs
Bs

≤ ηBτ1

τ2∑
s=1

bs
Bs

≤ ηBτ2 ,

where the last inequality is the reset condition (11) at time τ2.

We are now ready to compose the previous two lemmas to obtain the following result:

Lemma 25 (Overall controller specialists regret bound) Let η be not expired after T rounds.
Then

T∑
t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t)
)
≤ ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
. (33)

Proof We make a case distinction based on the number of epochs started by the algorithm.
First, let us check the general case of ≥ 3 epochs (at least two normal epochs after the
startup epoch). We apply the controller regret bound, Lemma 23, to the last two epochs
each. Suppose these start after τ1 and τ2. For any η ∈ G that has not expired after T rounds,
we find

−
∑

t∈(τ1,τ2],t≥aη

¯̀η
t (w

η
t)−

∑
t∈(τ2,T],t≥aη

¯̀η
t (w

η
t)

≤ ln

⌈
2 log2

(
τ2−1∑
s=1

bs
Bs

+ 1

)⌉
+ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
.

The regret on all epochs except the last two is bounded by Lemma 24. So together we
obtain (33). Alternatively, suppose there are 2 epochs. Then, since we get no clipped regret
in the 1st epoch (as Bt−1 = 0 throughout it, and hence ḡt = 0 and ¯̀η

t (·) = 0), we apply the
controller regret bound only in the second epoch to get

−
∑

t∈[1,T],t≥aη

¯̀η
t (w

η
t) ≤ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
,

and (33) also holds. Finally, if there is only 1 epoch, then our clipped regret is 0, so (33)
also holds.

The proof of Lemma 4 is completed by plugging in the upper bounds from Lemmas 21,
22 and 25 into Proposition 20.

Appendix C. Composition Proofs of Theorems 7, 9 and 12
We combine the proofs of Theorems 7 and 12, which are both special cases of the abstract
result Theorem 26 below. The proof of Theorem 9 is very similar in spirit, but sufficiently
different that we postpone it to the end of the section.

46

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Theorem 26 Suppose there exist a number V ≥ 0 and positive semi-definite matrices F η

(possibly dependent on η) such that rk(F η) ≤ r, tr(F η) ≤ s and the linearized regret is at
most

R̃uT ≤ ηV +
ln det (I + 2η2σ2F η) + 1

2σ2‖u‖2
2 + 2 ln d2 log2 T e+ + 1

2

η
+ 2BT

simultaneously for all η ∈ G such that η ≤ 1
2BT

. Then the linearized regret is both bounded
by

R̃uT ≤
5

2

√
V (1

2σ2‖u‖2
2 + ZT) + 5BT (1

2σ2‖u‖2
2 + ZT) + 2BT ,

where ZT = r ln
(

1 + σ2s
2B2

T r

)
+ 2 ln d2 log2 T e+ + 1

2
, and by

R̃uT ≤
5

2

√(
V + 2σ2s

)(
1

2σ2‖u‖2
2 + Z ′T

)
+ 5BT

(
1

2σ2‖u‖2
2 + Z ′T

)
+ 2BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2
.

Theorem 7 corresponds to the case V = V uT andF η = FT , such that tr(F η) =
∑T

t=1 ‖gt‖2
2;

Theorem 12 is obtained with V = V uT + 2σ2mΩq
m−q and F η = (SηT)ᵀSηT . To bound tr(F η)

we use that (SηT)ᵀSηT � (Gη
T)ᵀGη

T =
∑T

t=aη gtg
ᵀ
t � FT , where the first inequality holds

because SηT is the Frequent Directions approximation of Gη
T (Ghashami et al., 2016). It

follows that tr(F η) ≤ tr(FT) =
∑T

t=1 ‖gt‖2
2. We may further use that rk(F η) ≤ 2m, by

the dimensionality of SηT . The precondition of Theorem 26 is established by Theorems 6
and 11, respectively, and the observation that QT ≤ T .

To prove Theorem 26 we start with a general lemma about optimizing in η:

Lemma 27 For any X, Y > 0,

min
η∈G : η≤ 1

2BT

ηX +
Y

η
≤ 5

2

√
XY + 5BTY.

Proof Let us denote the unconstrained optimizer of the left-hand side by η̂ =
√
Y/X . We

distinguish two cases: first, when η̂ ≤ 1
2BT

, we upper bound the left-hand side by choosing
the closest grid point η ∈ G below η̂ (which, in the worst case, is at η̂/2) to obtain

min
η∈G : η≤ 1

2BT

ηX +
Y

η
≤ max

η∈[η̂/2,η̂]

ηX +
Y

η
=

5

2

√
XY .

In the second case, if η̂ > 1
2BT

, we plug in the highest available grid point (for which the
worst case is 1

4BT
) to find

min
η∈G : η≤ 1

2BT

ηX +
Y

η
≤ 1

4BT

X + 4BTY < 5BTY,

47

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

where the second inequality follows by the assumption that η̂ > 1
2BT

. In both cases the
conclusion of the lemma follows.

Proof (Theorem 26) We start with the first claim of the theorem. By assumption, for any
η ≤ 1

2BT
in the grid G, we have

R̃uT ≤ ηV +
Aη

η
+ 2BT ≤ ηV +

A

η
+ 2BT ,

where

Aη = ln det
(
I + 2η2σ2F η

)
+

1

2σ2
‖u‖2

2 + 2 ln d2 log2 T e+
1

2

A = r ln
(

1 +
σ2s

2B2
T r

)
+

1

2σ2
‖u‖2

2 + 2 ln d2 log2 T e+
1

2
,

and Aη ≤ A follows from η ≤ 1/(2BT), the first inequality in Lemma 28 below and
the fact that the expression r ln

(
1 + s

r

)
is increasing in r ≥ 0 for all s ≥ 0. Lemma 27

therefore implies that

R̃uT ≤
5

2

√
V A+ 5BTA+ 2BT ,

which establishes the first claim of the theorem.
For the second claim of the theorem, we upper bound Aη differently, using the second

inequality in Lemma 28, to obtain

R̃uT ≤ ηV + 2ησ2s+
A′

η
+ 2BT , where A′ =

1

2σ2
‖u‖2

2 + 2 ln d2 log2 T e+
1

2
.

Using Lemma 27, the second claim follows, which completes the proof of the theorem.

Lemma 28 For any positive semi-definite matrixM ∈ Rd×d

ln det(I +M) ≤ rk(M) ln

(
1 +

tr(M)

rk(M)

)
≤ tr(M),

where the middle term is extended by continuity to equal zero atM = 0.

Proof If M = 0 then all three equal zero and we are done. Otherwise, let λ1, . . . , λd be
the eigenvalues of M . Then (1 + λ1), . . . , (1 + λd) are the eigenvalues of I + M , and
Jensen’s inequality implies

ln det(I +M) =
d∑
i=1

ln(1 + λi) = rk(M)
∑
i:λi 6=0

1

rk(M)
ln(1 + λi)

≤ rk(M) ln

(
1 +

∑
i:λi 6=0

λi
rk(M)

)
= rk(M) ln

(
1 +

tr(M)

rk(M)

)
,

48

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

which proves the first inequality. The second inequality follows by ln(1 + x) ≤ x for all
x ≥ 0.

To conclude the section, it remains to prove Theorem 9.

Proof (Theorem 9) Starting from Theorem 6, which still holds even though σ depends
on η, we plug in σ = 1/

√
αη to obtain

R̃uT ≤ ηV uT +
A

η
+
α

2
‖u‖2

2 + 2BT ,

where A = ln det

(
I +

1

BTα
FT

)
+ 2 ln d2 log2 T e+ +

1

2
,

for all η ∈ G such that η ≤ 1/(2BT). Lemma 27 therefore implies that

R̃uT ≤
5

2

√
V uT A+ 5BTA+

α

2
‖u‖2

2 + 2BT ,

and the first claim of the theorem follows upon applying the first inequality from Lemma 28
withM = 1

BTα
FT and observing that tr(FT) =

∑T
t=1 ‖gt‖2

2.

For the second claim of the theorem, we again start from Theorem 6 and now apply the
second inequality from Lemma 28 forM = 2η

α
FT to obtain

R̃uT ≤ ηV uT +
Z ′T
η

+
2

α
tr(FT) +

α

2
‖u‖2

2 + 2BT .

Using Lemma 27 and tr(FT) =
∑T

t=1 ‖gt‖2
2, the second claim follows, which completes

the proof of the theorem.

Appendix D. Proofs of Corollaries 8 and 14

Proof (Corollary 8) If we ignore the corner case that B2
T in the definition of ZT is ex-

ceedingly small, then (21) follows from (20) upon bounding ‖gt‖2
2 ≤ G2

2, BT ≤ 2D2G2,
and observing that ZT is increasing in rk(FT) ≤ d. To see that (21) holds in general,
even for very small B2

T , we need to verify that V uT ZT = O(V uT d ln(D2G2T/d)) and

49

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

BTZT = O(D2G2 ln(D2G2T/d)). To establish the first of these, we reason as follows:

V uT rk(FT) ln

(
1 +

σ2
∑T

t=1 ‖gt‖2
2

8B2
T rk(FT)

)

≤ V uT d ln

(
1 +

D2
2G

2
2T

8B2
Td

)
= V uT d ln

(
D2

2G
2
2T

3

d

)
+ V uT d ln

(
d

D2
2G

2
2T

3
+

1

8B2
TT

2

)
≤ V uT d ln

(
D2

2G
2
2T

3

d

)
+ V uT

(
d2

D2
2G

2
2T

3
+

d

8B2
TT

2

)
≤ V uT d ln

(
D2

2G
2
2T

3

d

)
+

2d2

T 2
+

d

8T
= O

(
V uT d ln

D2G2T

d

)
,

where the last inequality follows from V uT ≤ B2
TT ≤ 2D2

2G
2
2T . To establish the second

case, we observe that

BT rk(FT) ln

(
1 +

σ2
∑T

t=1 ‖gt‖2
2

8B2
T rk(FT)

)
≤ BTd ln

(
1 +

D2
2G

2
2T

8B2
Td

)
= BTd ln

(
B2
T +

D2
2G

2
2T

8d

)
− 2dBT lnBT

≤ 2D2G2d ln(4D2
2G

2
2 +

D2
2G

2
2T

8d
) +

2d

e
= O

(
D2G2d ln

(
D2G2T

d

))
,

where the last inequality uses that x lnx ≥ −1/e. This completes the proof of (21).

Proof (Corollary 14) To see that (24) follows from (22), we need to verify that V ui
T,iZT,i =

O(V ui
T,i ln(D∞G∞T)) and BT,iZT,i = O(D∞G∞ ln(D∞G∞T)). These follow as the one-

dimensional special cases of the analogous quantities in the proof of Corollary 8.
The first part of (25) then follows from (23) upon observing thatBT,i ≤ 2D∞maxt ‖gt‖1 ≤

2D∞G2

√
d. The second part follows because

d∑
i=1

‖g1:T,i‖2 = d

d∑
i=1

1

d

√√√√ T∑
t=1

g2
t,i ≤ d

√√√√ d∑
i=1

1

d

T∑
t=1

g2
t,i =

√√√√d

T∑
t=1

‖gt‖2
2 ≤ G2

√
dT

by Jensen’s inequality.

50

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Appendix E. Experimental Results

Data set T d Outcome P (y = 1)
a9a 32561 123 binary 0.24
australian 690 14 binary 0.44
breast-cancer 683 9 binary 0.35
covtype 581012 54 binary 0.49
diabetes 768 8 binary 0.65
heart 270 13 binary 0.44
ijcnn1 91701 22 binary 0.10
ionosphere 351 34 binary 0.64
phishing 11055 68 binary 0.56
splice 1000 60 binary 0.52
w8a 49479 300 binary 0.03
abalone 4177 8 real
bodyfat 252 14 real
cpusmall 8192 12 real
housing 506 13 real
mg 1385 6 real
space ga 3107 6 real

Table 2: Summary of the data sets

51

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Data set Loss AdaGrad GDnorm OGDt MGCo MGF2 MGF11 MGF26 MGF51 MGFull
a9a hinge 232414 37708 22472 17012 13754 12230 11671 11160 11045

logistic 30910 7176 3817 1340 2249 1990 1910 1813 1783
australian hinge 279 99 68 41 40 34 34 34 34

logistic 1250 492 359 48 52 45 45 45 45
breast-cancer hinge 214 106 84 24 26 25 25 25 25

logistic 288 147 119 25 26 26 26 26 26
covtype hinge 1317765 254930 141706 66797 83958 71218 62087 31368 31355

logistic 78430 33935 14042 4713 12214 10516 8941 3668 3663
diabetes hinge 553 306 185 75 63 59 59 59 59

logistic 474 241 133 53 40 39 39 39 39
heart hinge 329 217 148 35 42 35 35 35 35

logistic 376 246 155 30 35 32 31 31 31
ijcnn1 hinge 12292 3925 1198 885 1633 1327 901 901 901

logistic 15303 4473 1344 976 1798 1415 1086 1086 1086
ionosphere hinge 2672 1102 753 169 252 211 206 205 205

logistic 5786 1897 1426 240 280 242 238 238 238
phishing hinge 6752 3162 1757 610 635 607 547 518 518

logistic 22814 7394 3320 1208 967 890 802 767 767
splice hinge 2451 777 694 243 303 290 277 288 280

logistic 3014 819 726 183 182 181 179 177 175
w8a hinge 349174 139920 255346 18789 34395 31966 32080 31823 29661

logistic 86921 21095 40519 3324 4546 4230 4049 3977 3865
abalone absolute 12650 7395 5027 1317 2194 748 748 748 748

squared 73507 44166 37398 6725 7642 6179 6179 6179 6179
bodyfat absolute 319 98 75 30 24 23 23 23 23

squared 351 37 28 10 7 8 8 8 8
cpusmall absolute 533948 199595 182464 40537 22251 14301 14287 14287 14287

squared 12109845 2740512 3082005 561505 353329 351253 351257 351257 351257
housing absolute 9979 3557 3067 946 949 776 746 746 746

squared 154729 52053 55064 20191 16103 15973 15975 15975 15975
mg absolute 277 110 92 30 40 28 28 28 28

squared 112 32 15 19 17 18 18 18 18
space ga absolute 1393 908 523 133 259 65 65 65 65

squared 1451 534 528 40 75 55 55 55 55

Table 3: The regret of each algorithm for the various data sets and loss functions (rounded
to whole numbers). Boldface indicates that the regret is within one unit of the
minimum for the row.

52

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

E.1 Hypertune Results

In this section we investigate the effect of hyperparameter tuning. Each of the algorithms
that we consider has one free parameter, σ, for which the theory advocates tuning it in
terms of the (unknown) norm of the comparator, or the maximal distance from the com-
parator within the domain. This theoretical recommendation is what we employed in our
experiments in Section 8. In contrast, we now ask what performance one may reach by
optimizing the σ parameter for the data in hand. Our approach will be to evaluate all algo-
rithms on a discrete grid of parameter settings. For convenience of comparison between full
and coordinate-wise algorithms, we parameterise our grid by the factor by which we scale
the theoretically optimal tuning from Section 8. We include in our grid exponentially small
factors 2j for j = −7, . . . ,−3, followed by a linear grid running from 2−3 to 3 with steps
of size 1/8, resulting in a grand total of 28 grid points. We visualise the entire performance
profile for four selected data sets in Figure 3. There we see that the optimal tuning for σ
can be either higher or lower than the theoretical recommendation, and whether it should
be higher or lower can be different for different algorithms even on the same data set.

We evaluate our algorithms on all data sets. (Recall that a helpful summary of the prop-
erties of each data set can be found in Table 2). First, in Table 5, which parallels Table 3,
we present the hypertuned regret for each algorithm on each data set. These results are
subsequently summarised by Table 4, which is the hypertuned analogue of Table 1. Here
we compare all algorithms to AdaGrad instead of OGDt, as it has the best hypertuned per-
formance among prior existing algorithms. (Interestingly, the theoretical prediction that
OGDnorm dominates OGDt does materialise for the hypertuned regret, while it did not
under the bonafide tuning of Section 8.) We can conclude from Table 4 that AdaGrad,
OGDnorm and MetaGrad, in either full or sketched forms, all have very similar perfor-
mance. As discussed in Section 8.3, this suggests that the empirical superiority of Meta-
Grad in the experiments from Section 8 may be attributed to its ability to better adapt to the
optimal learning rate η. We should also remember that the hypertuned performance is not
a-priori indicative of practical results. It is an interesting challenge to develop new methods
that achieve as much of this hypertuned performance in practice as possible, but which also
come with corresponding theoretical guarantees. In this quest MetaGrad constitutes a solid
first step.

53

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

0.0 0.5 1.0 1.5 2.0 2.5
factor wrt theoretical tuning

2000

3000

4000

5000

6000

7000

8000

re
gr

et

AdaGrad
GDnorm
GDt
MGCo
MGF2
MGF11
MGF26
MGF51
MGFull

(a) covtype with logistic loss

0.0 0.5 1.0 1.5 2.0 2.5 3.0
factor wrt theoretical tuning

10000

15000

20000

25000

30000

re
gr

et

AdaGrad
GDnorm
GDt
MGCo
MGF2
MGF11
MGF26
MGF51
MGFull

(b) housing with squared loss

0.0 0.5 1.0 1.5 2.0 2.5 3.0
factor wrt theoretical tuning

30

40

50

60

70

80

re
gr

et

AdaGrad
GDnorm
GDt
MGCo
MGF2
MGF11
MGF26
MGF51
MGFull

(c) australian with hinge loss

0.0 0.5 1.0 1.5 2.0 2.5 3.0
factor wrt theoretical tuning

60

80

100

120

140

160

180

200

220

re
gr

et

AdaGrad
GDnorm
GDt
MGCo
MGF2
MGF11
MGF26
MGF51
MGFull

(d) space ga with absolute loss

Figure 3: Performance of all algorithms as a function of the tuning parameter σ on four
selected data sets. We have parameterised σ by a factor times its theoretically
optimal tuning. The dotted line indicates the standard tuning (corresponding
to factor 1), at which the results from Table 3 are reproduced. Note that with
different σ, the algorithms produce different iterates wt, and as a result see dif-
ferent gradients. For MetaGrad, these further affect the set of active experts that
are maintained by the master. These effects make the curves interestingly non-
smooth.

54

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Algorithm # best # better than AdaGrad MedianRatio
AdaGrad 14 34 1.00
OGDnorm 8 18 0.99
OGDt 8 14 1.07
MGCo 1 6 1.15
MGF2 1 10 1.09
MGF11 6 18 1.01
MGF26 4 18 1.01
MGF51 7 18 1.01
MGFull 9 18 1.01

Table 4: Comparison of algorithms with AdaGrad, with the σ hyperparameter optimized
in hindsight for the data. The MedianRatio column contains the median ratio of
the regret of each algorithm over that of AdaGrad. Columns “# best” and “# better
than AdaGrad” count cases where the algorithm is at most one regret unit above
the best algorithm or AdaGrad, respectively.

55

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Data set Loss AdaGrad OGDnorm OGDt MGCo MGF2 MGF11 MGF26 MGF51 MGFull
a9a hinge 1512 484 504 664 627 592 588 583 585

logistic 304 412 472 527 512 484 478 473 473
australian hinge 35 33 31 40 38 34 34 34 34

logistic 25 26 24 33 36 34 34 34 34
breast-cancer hinge 20 20 19 23 23 22 22 22 22

logistic 21 19 26 23 24 24 24 24 24
covtype hinge 8070 6382 6205 9095 6811 5648 5067 4939 4939

logistic 3339 4077 4222 3844 4017 3214 2240 1927 1926
diabetes hinge 58 73 76 71 62 59 59 59 59

logistic 36 50 55 49 40 39 39 39 39
heart hinge 34 35 33 35 35 33 34 34 34

logistic 28 28 30 30 30 29 29 29 29
ijcnn1 hinge 419 550 542 597 751 640 502 502 502

logistic 500 663 782 804 1021 823 715 715 715
ionosphere hinge 106 103 110 110 110 108 108 108 108

logistic 106 98 111 106 104 103 103 103 103
phishing hinge 290 471 433 378 326 311 301 303 303

logistic 258 457 492 423 345 335 331 330 330
splice hinge 210 200 211 179 175 177 180 178 177

logistic 150 147 174 137 139 138 137 136 136
w8a hinge 3299 1458 2545 935 875 875 875 873 873

logistic 1147 1123 2764 1224 1159 1133 1124 1121 1117
abalone absolute 1038 1040 1033 1211 1131 692 692 692 692

squared 6204 6950 7627 6698 7127 6179 6179 6179 6179
bodyfat absolute 23 18 17 28 24 23 23 23 23

squared 6 3 4 7 6 6 6 6 6
cpusmall absolute 11379 10608 10577 15284 10489 9922 9976 9976 9976

squared 479645 478014 694804 545240 279054 278921 278947 278947 278947
housing absolute 666 794 795 866 894 776 746 746 746

squared 10425 11150 15954 13368 12790 12002 11995 11995 11995
mg absolute 20 15 14 30 36 28 28 28 28

squared 9 6 4 13 13 12 12 12 12
space ga absolute 99 108 108 113 109 60 60 60 60

squared 40 43 43 40 45 45 45 45 45

Table 5: The regret of each algorithm for the various data sets and loss functions, with the
σ hyperparameter of each method optimized in hindsight for the data. Boldface
indicates the regret differs less than 1 from the minimum regret for the row.

56

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

References
Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and

Yi Zhang. Efficient full-matrix adaptive regularization. In Proceedings of the 36th An-
nual International Conf. on Machine Learning (ICML), volume 97, pages 102–110, June
2019.

Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probability Theory and
Related Fields, 135(3):311–334, 2006.

Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In
Advances in Neural Information Processing Systems (NeurIPS) 20, pages 65–72, 2007.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Le, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin,
and Shenghuo Zhu. Online optimization with gradual variations. In Proc. of the 25th
Annual Conf. on Learning Theory (COLT), pages 6.1–6.20, 2012.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vec-
tors. In Advances in Neural Information Processing Systems (NeurIPS) 22, pages 414–
422, 2009.

Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Pro-
ceedings of the 32nd Annual Conference on Learning Theory (COLT), volume 99, pages
874–894, June 2019.

Ashok Cutkosky and Kwabena A. Boahen. Online learning without prior information. In
Proceedings of the 30th Annual Conference on Learning Theory (COLT), pages 643–
677, 2017.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in Banach spaces. In Proceedings of the 31st Annual Conference on Learning
Theory (COLT), volume 75, pages 1493–1529, 2018.

Raphaël Deswarte. Linear regression and learning: contributions to regularization and
aggregation methods. PhD thesis, Université Paris-Saclay, 2018.

Chuong B. Do, Quoc V. Le, and Chuan-Sheng Foo. Proximal regularization for online and
batch learning. In Proc. of the 26th Annual International Conf. on Machine Learning
(ICML), pages 257–264, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159, 2011.

57

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Tim van Erven and Wouter M. Koolen. MetaGrad: Multiple learning rates in online learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS) 29, pages 3666–
3674, December 2016.

Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, and Robert C.
Williamson. Fast rates in statistical and online learning. Journal of Machine Learn-
ing Research, 16:1793–1861, 2015.

Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. Using and
combining predictors that specialize. In Proc. 29th Annual ACM Symposium on Theory
of Computing, pages 334–343. ACM, 1997.

Pierre Gaillard, Gilles Stoltz, and Tim van Erven. A second-order bound with excess losses.
In Proc. of the 27th Annual Conf. on Learning Theory (COLT), pages 176–196, 2014.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–
1792, 2016.

Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. JHU Press,
2012.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Opti-
mization, 2(3–4):157–325, 2016.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. Machine learning, 80(2-3):165–188, 2010.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Machine Learning, 69(2-3):169–192, 2007.

Dirk van der Hoeven, Tim van Erven, and Wojciech Kotłowski. The many faces of expo-
nential weights in online learning. In Annual Conference on Learning Theory (COLT),
pages 2067–2092, 2018.

Ruitong Huang, Tor Lattimore, András György, and Csaba Szepesvari. Following the
leader and fast rates in linear prediction: Curved constraint sets and other regularities. In
Advances in Neural Information Processing Systems 29, pages 4970–4978, 2016.

Michal Kempka, Wojciech Kotłowski, and Manfred K. Warmuth. Adaptive scale-invariant
online algorithms for learning linear models. In Proceedings of the 36th Annual Inter-
national Conf. on Machine Learning (ICML), pages 3321–3330, 2019.

Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts and
combinatorial games. In Proc. of the 28th Annual Conf. on Learning Theory (COLT),
pages 1155–1175, 2015.

58

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Wouter M. Koolen, Tim van Erven, and Peter D. Grünwald. Learning the learning rate for
prediction with expert advice. In Advances in Neural Information Processing Systems
(NeurIPS) 27, pages 2294–2302, 2014.

Wouter M. Koolen, Peter D. Grünwald, and Tim van Erven. Combining adversarial guar-
antees and stochastic fast rates in online learning. In Advances in Neural Information
Processing Systems (NeurIPS) 29, pages 4457–4465, 2016.

Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, and John Langford. Efficient sec-
ond order online learning by sketching. In Advances in Neural Information Processing
Systems 29, pages 902–910, 2016.

Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, and John Langford. Efficient second
order online learning by sketching. ArXiv preprint: arXiv:1602.02202v4, 2017. This is
an updated version of Luo et al. (2016) with corrections.

Luo Luo, Cheng Chen, Zhihua Zhang, Wu-Jun Li, and Tong Zhang. Robust frequent
directions with application in online learning. Journal of Machine Learning Research,
20(45):1–41, 2019.

Brendan McMahan and Matthew Streeter. No-regret algorithms for unconstrained online
convex optimization. In Advances in Neural Information Processing Systems (NeurIPS)
25, pages 2402–2410, 2012.

H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online
convex optimization. In Proc. of the 23rd Annual Conf. on Learning Theory (COLT),
pages 244–256, 2010.

Zakaria Mhammedi and Wouter M. Koolen. Lipschitz and comparator-norm adaptivity
in online learning. In Proceedings of the 33rd Annual Conference on Learning Theory
(COLT), pages 2858–2887, July 2020.

Zakaria Mhammedi, Wouter M. Koolen, and Tim van Erven. Lipschitz adaptivity with
multiple learning rates in online learning. In Proceedings of the 32nd Annual Conference
on Learning Theory (COLT), pages 2490–2511, June 2019.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. International Conf. on Learning Representations, 2013.
URL http://arxiv.org/abs/1301.3781.

Jaouad Mourtada and Stéphane Gaı̈ffas. On the optimality of the Hedge algorithm in the
stochastic regime. Journal of Machine Learning Research, 20(83):1–28, 2019.

Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Applied
optimization. Kluwer Academic Publ., 2004.

59

http://arxiv.org/abs/1301.3781

VAN ERVEN, KOOLEN, AND VAN DER HOEVEN

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009.

Thom W. H. Neuteboom. Modifying Squint for prediction with expert ad-
vice in a changing environment. Bachelor Thesis, 2020. To appear
at https://www.universiteitleiden.nl/en/science/mathematics/
education/theses#bachelor-theses-mathematics.

Francesco Orabona. Simultaneous model selection and optimization through parameter-
free stochastic learning. In Advances in Neural Information Processing Systems
(NeurIPS) 27, pages 1116–1124, 2014.

Francesco Orabona and Dávid Pál. Scale-free online learning. Theoretical Computer Sci-
ence, 716:50–69, 2018. Special Issue on ALT 2015.

Francesco Orabona, Koby Crammer, and Nicolò Cesa-Bianchi. A generalized online mirror
descent with applications to classification and regression. Machine Learning, 99(3):411–
435, 2015.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 4(2):107–194, 2012.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Pri-
mal estimated sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30,
2011.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast
rates. In Advances in Neural Information Processing Systems (NeurIPS) 23, pages 2199–
2207, 2010.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated
gradient algorithm. In Proc. of the 31th Annual International Conf. on Machine Learning
(ICML), pages 1593–1601, 2014.

Ryan Tibshirani. Optimal rates in convex optimization. With Larry Wasserman, 2014.
URL http://www.stat.cmu.edu/˜larry/=sml/optrates.pdf.

Tim van Erven, Wouter M. Koolen, and Dirk van der Hoeven. Code for experiments in the
paper “MetaGrad: Adaptation using multiple learning rates in online learning”. https:
//github.com/DirkvdH/Online-Appendix-MetaGrad, 2021.

Volodya Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–
248, 2001.

60

https://www.universiteitleiden.nl/en/science/mathematics/education/theses#bachelor-theses-mathematics
https://www.universiteitleiden.nl/en/science/mathematics/education/theses#bachelor-theses-mathematics
http://www.stat.cmu.edu/~larry/=sml/optrates.pdf
https://github.com/DirkvdH/Online-Appendix-MetaGrad
https://github.com/DirkvdH/Online-Appendix-MetaGrad

METAGRAD: ADAPTATION USING MULTIPLE LEARNING RATES

Guanghui Wang, Shiyin Lu, and Lijun Zhang. Adaptivity and optimality: A universal
algorithm for online convex optimization. In Proc. of the 35th Uncertainty in Artificial
Intelligence Conference, pages 659–668, 2020.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-
tion. Journal of Machine Learning Research, 11:2543–2596, 2010.

Lijun Zhang, Guanghui Wang, Weiwei Tu, and Zhi-Hua Zhou. Dual adaptivity: A
universal algorithm for minimizing the adaptive regret of convex functions. CoRR,
abs/1906.10851, 2019. URL http://arxiv.org/abs/1906.10851.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient as-
cent. In Proc. of the 20th Annual International Conf. on Machine Learning (ICML),
pages 928–936, 2003.

Martin Zinkevich. Theoretical Guarantees for Algorithms in Multi-Agent Settings. PhD
thesis, Carnegie Mellon University, 2004.

61

http://arxiv.org/abs/1906.10851

