Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

Cambridge Crystallographic Data Centre
CCDC
#
This CIF contains data from an original supplementary publication
deposited with the CCDC, and may include chemical, crystal, experimental, refinement, atomic coordinates,
anisotropic displacement parameters and molecular geometry data,
as required by the journal to which it was submitted.
This CIF is provided on the understanding that it is used for bona fide research purposes only. It may contain copyright material
of the CCDC or of third parties, and may not be copied or further disseminated in any form, whether machine-readable or not,
except for the purpose of generating routine backup copies
on your local computer system.
#
For further information on the CCDC, data deposition and data retrieval see:
www.ccdc.cam.ac.uk
#
Bona fide researchers may freely download Mercury and enCIFer from this site to visualise CIF-encoded structures and
to carry out CIF format checking respectively.
#
data_da465_0m
_database_code_depmnum_ccdc_archive 'CCDC 893436'
#TrackingRef 'DA465_0mX.cif'
audit_creation_method SHELXL-97
_chemical_name_systematic
_;?
_;chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C84 H113 N10 O4 P Zn2'
_chemical_formula_weight 1488.55
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Zn Zn 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting Triclinic
_symmetry_space_group_name_H-M P-1
loop_
_symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, -y, -z'
_cell_length_a 15.4322(9)
_cell_length_b 18.2236(12)
_cell_length_c 31.756(2)
_cell_angle_alpha 84.459(3)
_cell_angle_beta 83.048(3)
_cell_angle_gamma 74.347(3)
_cell_volume 8517.2(9)
_cell_formula_units_Z 4
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used 9949
_cell_measurement_theta_min 2.16
_cell_measurement_theta_max 23.84
_exptl_crystal_description plate
_exptl_crystal_colour yellow
_exptl_crystal_size_max 0.20
_exptl_crystal_size_mid 0.20
_exptl_crystal_size_min 0.03
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.161
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 3176
_exptl_absorp_coefficient_mu 0.634
_exptl_absorp_correction_type empirical
_exptl_absorp_correction_T_min 0.8837
_exptl_absorp_correction_T_max 0.9812
_exptl_special_details

It should be noted that the esd's of the cell dimensions are probably too low;
they should be multiplied by a factor of 2 to 10

_diffrn_ambient_temperature 100(2)
_diffrn_measurement_specimen_suppport 'magnetic support whith MicroMount'
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK'a
_diffrn_source 'rotating anode X-ray tube'
_diffrn_source_type 'Bruker-Nonius FR 591'
_diffrn_source_power 50
diffrn_source_current 70
diffrn_source_size '3 mm x 0.3 mm fine focus'
diffrn_radiation_monochromator 'Multilayer Montel 200 mirrors'
diffrn_detector_type '4K CCD area detector APEX II'
diffrn_measurement_device_type 'Kappa 4-axis goniometer bruker-nonius'
diffrn_measurement_method ;
;
Fullsphere data collection, phi and omega scans
;
diffrn_detector_area_resol_mean 512
diffrn_reflns_number 90843
diffrn_reflns_av_R_equivalents 0.0565
diffrn_reflns_av_signal/netl 0.0740
diffrn_reflns_limit_h_min -17
diffrn_reflns_limit_h_max 18
diffrn_reflns_limit_k_min -21
diffrn_reflns_limit_k_max 21
diffrn_reflns_limit_l_min -37
diffrn_reflns_limit_l_max 37
diffrn_reflns_theta_min 0.65
diffrn_reflns_theta_max 25.07
reflns_number_total 29658
reflns_number_gt 20704
reflns_threshold_expression >2sigma(I)
computing_data_collection 'Bruker APEX2 v2011.4-0'
computing_cell_refinement 'Bruker APEX2 v2011.4-0'
computing_data_reduction 'Bruker SAINT V7.60A'
computing_structure_solution Sir2011
computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
computing_molecular_graphics 'Bruker SHELXTL'
computing_publication_material 'Bruker SHELXTL'
refine_special_details ;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
refine_ls_structure_factor_coef Fsqd
refine_ls_matrix_type full
refine_ls_weighting_scheme calc
refine_ls_weighting_details
'calc w=1/[s^2^(Fo^2^)+(0.0813P)^2^+13.3698P] where P=(Fo^2^+2Fc^2^)/3'
atom_sites_solution_primary direct
atom_sites_solution_secondary difmap
atom_sites_solution_hydrogens geom
refine_ls_hydrogen_treatment noref
refine_ls_extinction_method none
refine_ls_extinction_coef ?
refine_ls_number_reflns 29658
refine_ls_number_parameters 2070
Refinement Details

- **Refine ls number restraints**: 738
- **Refine ls R factor all**: 0.0942
- **Refine ls R factor gt**: 0.0648
- **Refine ls wR factor ref**: 0.1772
- **Refine ls wR factor gt**: 0.1650
- **Refine ls goodness of fit ref**: 1.048
- **Refine ls restrained_S all**: 1.142
- **Refine ls shift/su_max**: 0.002
- **Refine ls shift/su_mean**: 0.000

Atom Site Information

<table>
<thead>
<tr>
<th>Atom Site Label</th>
<th>Type Symbol</th>
<th>Fract x</th>
<th>Fract y</th>
<th>Fract z</th>
<th>U_iso_or_equiv</th>
<th>Symmetry Multiplicity</th>
<th>Occupancy</th>
<th>Calc Flag</th>
<th>Disorder Assembly</th>
<th>Disorder Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1A</td>
<td>Zn</td>
<td>0.35380(3)</td>
<td>0.26533(3)</td>
<td>0.997121(16)</td>
<td>0.02488(14)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn2A</td>
<td>Zn</td>
<td>0.52602(3)</td>
<td>0.36651(3)</td>
<td>0.834301(16)</td>
<td>0.02215(13)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B</td>
<td>Zn</td>
<td>1.03026(4)</td>
<td>0.81004(3)</td>
<td>0.355599(17)</td>
<td>0.02419(14)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn2B</td>
<td>Zn</td>
<td>0.76597(3)</td>
<td>1.11371(3)</td>
<td>0.379184(16)</td>
<td>0.02027(13)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1A</td>
<td>N</td>
<td>0.3846(2)</td>
<td>0.3072(2)</td>
<td>1.05134(12)</td>
<td>0.0267(9)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2A</td>
<td>N</td>
<td>0.4945(2)</td>
<td>0.2224(2)</td>
<td>0.99421(11)</td>
<td>0.0256(9)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3A</td>
<td>N</td>
<td>0.5582(2)</td>
<td>0.2482(2)</td>
<td>0.84262(11)</td>
<td>0.0217(8)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4A</td>
<td>N</td>
<td>0.4691(3)</td>
<td>0.3368(2)</td>
<td>0.78287(11)</td>
<td>0.0251(9)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B</td>
<td>N</td>
<td>0.9893(3)</td>
<td>0.7441(2)</td>
<td>0.31545(12)</td>
<td>0.0247(9)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B</td>
<td>N</td>
<td>1.0124(2)</td>
<td>0.8815(2)</td>
<td>0.29967(12)</td>
<td>0.0232(9)</td>
<td>U ani 1 d . E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3B</td>
<td>N</td>
<td>0.8935(2)</td>
<td>1.1258(2)</td>
<td>0.35225(12)</td>
<td>0.0219(8)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>N</td>
<td>0.8045(2)</td>
<td>1.1696(2)</td>
<td>0.42497(11)</td>
<td>0.0205(8)</td>
<td>U ani 1 d . E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1A</td>
<td>O</td>
<td>0.2250(2)</td>
<td>0.3000(2)</td>
<td>1.01953(10)</td>
<td>0.0358(9)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2A</td>
<td>O</td>
<td>0.3501(2)</td>
<td>0.18293(19)</td>
<td>0.96209(10)</td>
<td>0.0298(8)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3A</td>
<td>O</td>
<td>0.6123(2)</td>
<td>0.36702(18)</td>
<td>0.87469(10)</td>
<td>0.0264(7)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>O</td>
<td>0.5366(2)</td>
<td>0.45914(18)</td>
<td>0.79964(10)</td>
<td>0.0298(8)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B</td>
<td>O</td>
<td>1.0560(2)</td>
<td>0.71893(18)</td>
<td>0.39585(10)</td>
<td>0.0303(8)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>O</td>
<td>1.1053(2)</td>
<td>0.87162(18)</td>
<td>0.37280(10)</td>
<td>0.0268(7)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>O</td>
<td>0.7376(2)</td>
<td>1.10449(18)</td>
<td>0.32181(10)</td>
<td>0.0255(7)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>O</td>
<td>0.64319(19)</td>
<td>1.13622(18)</td>
<td>0.41040(10)</td>
<td>0.0268(7)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1A</td>
<td>C</td>
<td>0.1861(3)</td>
<td>0.3168(3)</td>
<td>1.05713(14)</td>
<td>0.0264(11)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2A</td>
<td>C</td>
<td>0.0904(3)</td>
<td>0.3251(3)</td>
<td>1.06687(15)</td>
<td>0.0306(12)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3A</td>
<td>C</td>
<td>0.0519(3)</td>
<td>0.3425(3)</td>
<td>1.10765(16)</td>
<td>0.0366(13)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3A</td>
<td>H</td>
<td>-0.0099</td>
<td>0.3474</td>
<td>1.1136</td>
<td>0.044 Uiso 1 d calc R .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>C</td>
<td>0.0991(3)</td>
<td>0.3531(3)</td>
<td>1.14043(17)</td>
<td>0.0394(13)</td>
<td>U ani 1 d . A .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5A</td>
<td>C</td>
<td>0.1895(3)</td>
<td>0.3460(3)</td>
<td>1.13141(16)</td>
<td>0.0360(13)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5A</td>
<td>H</td>
<td>0.2226</td>
<td>0.3528</td>
<td>1.1526</td>
<td>0.043 Uiso 1 d calc R .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6A</td>
<td>C</td>
<td>0.2346(3)</td>
<td>0.3285(3)</td>
<td>1.09036(15)</td>
<td>0.0284(11)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7A</td>
<td>C</td>
<td>0.3291(3)</td>
<td>0.3223(3)</td>
<td>1.08545(15)</td>
<td>0.0285(11)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7A</td>
<td>H</td>
<td>0.3541</td>
<td>0.3300</td>
<td>1.1094</td>
<td>0.034 Uiso 1 d calc R .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8A</td>
<td>C</td>
<td>0.4776(3)</td>
<td>0.3029(3)</td>
<td>1.05147(14)</td>
<td>0.0260(11)</td>
<td>U ani 1 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H28L H 0.0624 0.3166 1.2434 0.156 Uiso 0.40 1 calc PR A 2
H28M H 0.1484 0.3440 1.2253 0.156 Uiso 0.40 1 calc PR A 2
H28N H 0.1307 0.2722 1.2080 0.156 Uiso 0.40 1 calc PR A 2
C29A C 0.2898(3) 0.0674(3) 0.92754(16) 0.0344(12) Uani 1 1 d . . .
C30A C 0.2417(3) 0.1384(4) 0.90078(17) 0.0441(15) Uani 1 1 d . . .
H30A H 0.2721 0.1380 0.8725 0.066 Uiso 1 1 calc R . .
H30B H 0.2430 0.1836 0.9136 0.066 Uiso 1 1 calc R . .
H30C H 0.1801 0.1377 0.8995 0.066 Uiso 1 1 calc R . .
C31A C 0.2898(3) 0.0674(3) 0.92754(16) 0.0344(12) Uani 1 1 d . . .
C30A C 0.2417(3) 0.1384(4) 0.90078(17) 0.0441(15) Uani 1 1 d . . .
H30A H 0.2721 0.1380 0.8725 0.066 Uiso 1 1 calc R . .
H30B H 0.2430 0.1836 0.9136 0.066 Uiso 1 1 calc R . .
H30C H 0.1801 0.1377 0.8995 0.066 Uiso 1 1 calc R . .
C32A C 0.2898(3) 0.0674(3) 0.92754(16) 0.0344(12) Uani 1 1 d . . .
C30A C 0.2417(3) 0.1384(4) 0.90078(17) 0.0441(15) Uani 1 1 d . . .
H30A H 0.2721 0.1380 0.8725 0.066 Uiso 1 1 calc R . .
H30B H 0.2430 0.1836 0.9136 0.066 Uiso 1 1 calc R . .
H30C H 0.1801 0.1377 0.8995 0.066 Uiso 1 1 calc R . .
C33A C 0.6247(3) -0.0685(3) 0.89549(16) 0.0300(11) Uani 1 1 d . . .
C34A C 0.5883(8) -0.1211(6) 0.8702(4) 0.042(3) Uani 0.65 1 d P B 1
H34A H 0.6379 -0.0022 0.8771 0.073 Uiso 0.65 1 calc PR B 1
H34B H 0.5924 -0.0356 0.8366 0.088 Uiso 0.35 1 calc PR B 2
H34C H 0.5420 -0.0947 0.8595 0.088 Uiso 0.35 1 calc PR B 2
H68B H 0.3013 0.6815 0.6706 0.063 Uiso 1 1 calc R .
H68C H 0.3342 0.7096 0.7160 0.064 Uiso 1 1 calc R .
C69A C 0.5970(3) 0.5892(3) 0.76621(16) 0.0326(12) Uani 1 1 d .
C70A C 0.6156(4) 0.6607(3) 0.74159(18) 0.0402(13) Uani 1 1 d .
H70A H 0.6428 0.6483 0.7135 0.060 Uiso 1 1 calc R .
H70B H 0.6558 0.6791 0.7561 0.060 Uiso 1 1 calc R .
H70C H 0.5597 0.6995 0.7398 0.060 Uiso 1 1 calc R .
C71A C 0.5970(3) 0.5892(3) 0.76621(16) 0.0326(12) Uani 1 1 d .
C72A C 0.6156(4) 0.6607(3) 0.74159(18) 0.0402(13) Uani 1 1 d .
H71A H 0.6428 0.6483 0.7135 0.060 Uiso 1 1 calc R .
H71B H 0.6558 0.6791 0.7561 0.060 Uiso 1 1 calc R .
H71C H 0.5597 0.6995 0.7398 0.060 Uiso 1 1 calc R .
P1A P 0.29364(8) 0.51447(8) 0.92938(4) 0.0576(5) Uani 1 1 d RD .
N5A N 0.40719(9) 0.39813(8) 0.87793(4) 0.0242(9) Uani 1 1 d RD .
N6A N 0.34120(9) 0.35645(8) 0.94777(4) 0.0245(9) Uani 1 1 d RD .
N7A N 0.23757(8) 0.40953(8) 0.88801(4) 0.0556(15) Uani 1 1 d RD .
H72A H 0.4999 0.6426 0.8122 0.076 Uiso 1 1 calc R .
H72B H 0.5978 0.6231 0.8265 0.076 Uiso 1 1 calc R .
H72C H 0.5481 0.5585 0.8271 0.076 Uiso 1 1 calc R .
C73A C 0.41993(9) 0.34325(10) 0.91595(4) 0.0277(11) Uani 1 1 d RD .
H73A H 0.4324 0.2918 0.9069 0.033 Uiso 1 1 calc R .
H73B H 0.4721 0.3471 0.9289 0.033 Uiso 1 1 calc R .
C74A C 0.26192(8) 0.35084(7) 0.92752(4) 0.0392(14) Uani 1 1 d RD .
H74A H 0.2099 0.3588 0.9486 0.047 Uiso 1 1 calc R .
H74B H 0.2734 0.2995 0.9184 0.047 Uiso 1 1 calc R .
C75A C 0.32544(8) 0.39643(7) 0.89009(4) 0.0440(14) Uani 1 1 d RD .
H75A H 0.3364 0.3473 0.8463 0.052 Uiso 1 1 calc R .
H75B H 0.3169 0.4352 0.8271 0.052 Uiso 1 1 calc R .
C76A C 0.39650(8) 0.47510(7) 0.89009(4) 0.0440(14) Uani 1 1 d RD .
H76A H 0.3926 0.5091 0.8645 0.053 Uiso 1 1 calc R .
H76B H 0.4505 0.4762 0.9025 0.053 Uiso 1 1 calc R .
C77A C 0.32627(9) 0.42972(8) 0.96730(4) 0.0478(15) Uani 1 1 d RD .
H77A H 0.3812 0.4307 0.9789 0.057 Uiso 1 1 calc R .
H77B H 0.2790 0.4329 0.9907 0.057 Uiso 1 1 calc R .
C78A C 0.21639(8) 0.35084(7) 0.92752(4) 0.0392(14) Uani 1 1 d RD .
H78A H 0.1592 0.4792 0.9162 0.045 Uiso 1 1 calc R .
H78B H 0.2042 0.5063 0.8731 0.045 Uiso 1 1 calc R .
C1B C 1.0739(3) 0.6472(3) 0.38885(15) 0.0268(11) Uani 1 1 d .
C2B C 1.1109(3) 0.5899(3) 0.42138(16) 0.0366(13) Uani 1 1 d .
C3B C 1.1311(5) 0.5145(3) 0.41236(18) 0.0548(18) Uani 1 1 d .
H3B H 1.1556 0.4781 0.4333 0.066 Uiso 1 1 calc R E .
C4B C 1.1180(5) 0.4882(3) 0.37452(18) 0.061(2) Uani 1 1 d D D .
C5B C 1.0818(4) 0.5423(3) 0.34412(17) 0.0436(15) Uani 1 1 d .
H5B H 1.0726 0.5267 0.3184 0.052 Uiso 1 1 calc R E .
C6B C 1.0577(3) 0.6213(3) 0.35061(16) 0.0320(12) Uani 1 1 d .
C7B C 1.1063(3) 0.6706(3) 0.31622(15) 0.0287(11) Uani 1 1 d .
H7B H 1.0083 0.6474 0.2926 0.034 Uiso 1 1 calc R E .
C8B C 0.9461(3) 0.7870(3) 0.28077(15) 0.0264(11) Uani 1 1 d .
C9B C 0.8921(3) 0.7623(3) 0.25653(15) 0.0300(11) Uani 1 1 d .
H9B H 0.8844 0.7133 0.2620 0.036 Uiso 1 1 calc R .
C10B C 0.8497(3) 0.8094(3) 0.22451(17) 0.0353(13) Uani 1 1 d .
H10B H 0.8144 0.7921 0.2080 0.042 Uiso 1 1 calc R E .
C11B C 0.8600(3) 0.8830(3) 0.21694(16) 0.0341(12) Uani 1 1 d .
H11B H 0.8313 0.9150 0.1953 0.041 Uiso 1 1 calc R .
C12B C 0.9128(3) 0.9095(3) 0.24133(15) 0.0294(11) Uani 1 1 d . . .
H12B H 0.9182 0.9593 0.2365 0.035 Uiso 1 1 calc R E .
C13B C 0.9570(3) 0.8614(3) 0.27274(14) 0.0233(10) Uani 1 1 d . . .
C14B C 1.0556(3) 0.9328(3) 0.28721(14) 0.0219(10) Uani 1 1 d . . .
H14B H 1.0460 0.9574 0.2605 0.026 Uiso 1 1 calc R E .
C15B C 1.1224(3) 1.0349(3) 0.30603(15) 0.0258(11) Uani 1 1 d . . .
C16B C 1.1585(3) 1.0013(3) 0.28896(14) 0.0219(10) Uani 1 1 d . . .
H16B H 1.1419 1.0309 0.2622 0.030 Uiso 1 1 calc R E .
C17B C 1.2224(3) 1.0349(3) 0.30603(15) 0.0258(11) Uani 1 1 d . . .
C18B C 1.2463(3) 1.0013(3) 0.34625(15) 0.0279(11) Uani 1 1 d . . .
H18B H 1.2903 1.0168 0.3580 0.034 Uiso 1 1 calc R E .
C19B C 1.2097(3) 0.9476(3) 0.36936(14) 0.0237(10) Uani 1 1 d . . .
C20B C 1.1413(3) 0.9221(3) 0.35179(14) 0.0247(10) Uani 1 1 d . . .
C21B C 1.1873(6) 0.6712(6) 0.4582(3) 0.049(2) Uani 0.75 1 d PDU C 1
H22D H 1.0510 0.6710 0.5145 0.053 Uiso 0.75 1 calc PR C 1
H22E H 1.0035 0.6154 0.4975 0.053 Uiso 0.75 1 calc PR C 1
H22F H 1.0041 0.6936 0.4723 0.053 Uiso 0.75 1 calc PR C 1
C23B C 1.1226(16) 0.6364(17) 0.4483(9) 0.046(5) Uani 0.25 1 d PDU C 2
H24D H 1.2324 0.5208 0.4796 0.109 Uiso 0.75 1 calc PR C 1
H24E H 1.1379 0.5127 0.5008 0.109 Uiso 0.75 1 calc PR C 1
H24F H 1.1852 0.5674 0.5188 0.109 Uiso 0.75 1 calc PR C 1
C25B C 1.1012(11) 0.4071(6) 0.3810(16) 0.038(6) Uani 0.25 1 d PDU C 2
H26D H 1.0574 0.3781 0.3999 0.080 Uiso 0.70 1 calc PR D 1
H26E H 1.1480 0.3618 0.4311 0.080 Uiso 0.70 1 calc PR D 1
H26F H 1.1357 0.3053 0.3994 0.080 Uiso 0.70 1 calc PR D 1
C27B C 1.2632(6) 0.3800(5) 0.3690(3) 0.0506(17) Uani 0.70 1 d PDU D 1
H27D H 1.2787 0.3892 0.3960 0.076 Uiso 0.70 1 calc PR D 1
H27E H 1.2894 0.4095 0.3469 0.076 Uiso 0.70 1 calc PR D 1
H27F H 1.2861 0.3267 0.3642 0.076 Uiso 0.70 1 calc PR D 1
C28B C 1.1218(7) 0.3579(4) 0.4057(3) 0.0532(17) Uani 0.70 1 d PDU D 1
H28D H 1.0574 0.3781 0.4099 0.080 Uiso 0.70 1 calc PR D 1
H28E H 1.1480 0.3618 0.4311 0.080 Uiso 0.70 1 calc PR D 1
H28F H 1.1357 0.3053 0.3994 0.080 Uiso 0.70 1 calc PR D 1
C29" C 1.1012(11) 0.4071(6) 0.3810(16) 0.038(6) Uani 0.25 1 d PDU C 2
C30" C 1.0978(14) 0.3897(14) 0.3234(4) 0.053(4) Uani 0.30 1 d PDU D 2
H26G H 1.1356 0.4151 0.3045 0.080 Uiso 0.30 1 calc PR D 2
<table>
<thead>
<tr>
<th>Atom</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
<th>Uiso</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H26H</td>
<td>1.0367</td>
<td>0.4073</td>
<td>0.3161</td>
<td>0.080</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26I</td>
<td>1.0367</td>
<td>0.4073</td>
<td>0.3161</td>
<td>0.080</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27"</td>
<td>1.1931(11)</td>
<td>0.3814(5)</td>
<td>0.0506(17)</td>
<td>Uani</td>
<td>0.30</td>
<td>1 d PDU D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27G</td>
<td>1.2329</td>
<td>0.3920</td>
<td>0.3811</td>
<td>0.076</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27H</td>
<td>1.2186</td>
<td>0.3207</td>
<td>0.3618</td>
<td>0.076</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28"</td>
<td>1.0294(12)</td>
<td>0.3788(10)</td>
<td>0.3973(6)</td>
<td>0.0532(17)</td>
<td>Uani</td>
<td>0.30</td>
<td>1 d PDU D 2</td>
<td></td>
</tr>
<tr>
<td>H28G</td>
<td>1.0424</td>
<td>0.3233</td>
<td>0.3964</td>
<td>0.080</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28H</td>
<td>0.9710</td>
<td>0.4011</td>
<td>0.3877</td>
<td>0.080</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28I</td>
<td>1.0294</td>
<td>0.3904</td>
<td>0.4260</td>
<td>0.080</td>
<td>Uiso 0.30</td>
<td>1 calc PR D 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29B</td>
<td>1.2685(3)</td>
<td>1.0945(3)</td>
<td>0.2829(16)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30B</td>
<td>1.3690(4)</td>
<td>1.0563(4)</td>
<td>0.2719(2)</td>
<td>0.0611(19)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30D</td>
<td>1.3977</td>
<td>1.0396</td>
<td>0.2976</td>
<td>0.092</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30E</td>
<td>1.3972</td>
<td>1.0922</td>
<td>0.2555</td>
<td>0.092</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H30F</td>
<td>1.3751</td>
<td>1.0130</td>
<td>0.2557</td>
<td>0.092</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31B</td>
<td>1.2601(4)</td>
<td>1.1593(19)</td>
<td>0.3116(19)</td>
<td>0.0449(14)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H31D</td>
<td>1.1975</td>
<td>1.1851</td>
<td>0.3178</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H31E</td>
<td>1.2918</td>
<td>1.1947</td>
<td>0.2974</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H31F</td>
<td>1.2859</td>
<td>1.1386</td>
<td>0.3377</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>1.2261(4)</td>
<td>1.1286(4)</td>
<td>0.2424(19)</td>
<td>0.0549(17)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H32D</td>
<td>1.2325</td>
<td>1.0889</td>
<td>0.2237</td>
<td>0.082</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H32E</td>
<td>1.2560</td>
<td>1.1658</td>
<td>0.2289</td>
<td>0.082</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H32F</td>
<td>1.1631</td>
<td>1.1527</td>
<td>0.2492</td>
<td>0.082</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33B</td>
<td>1.2422(3)</td>
<td>0.9120(3)</td>
<td>0.4124(16)</td>
<td>0.0325(12)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34B</td>
<td>1.1627(4)</td>
<td>0.9238(3)</td>
<td>0.4476(16)</td>
<td>0.0397(13)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H34L</td>
<td>1.1346</td>
<td>0.9775</td>
<td>0.4493</td>
<td>0.059</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H34M</td>
<td>1.1846</td>
<td>0.9028</td>
<td>0.4744</td>
<td>0.059</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H34N</td>
<td>1.1192</td>
<td>0.8987</td>
<td>0.4411</td>
<td>0.059</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35B</td>
<td>1.2859(4)</td>
<td>0.8264(3)</td>
<td>0.4091(19)</td>
<td>0.0457(15)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H35L</td>
<td>1.3091</td>
<td>0.8046</td>
<td>0.4355</td>
<td>0.069</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H35M</td>
<td>1.3344</td>
<td>0.8191</td>
<td>0.3867</td>
<td>0.069</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H35N</td>
<td>1.2414</td>
<td>0.8019</td>
<td>0.4030</td>
<td>0.069</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36B</td>
<td>1.3122(4)</td>
<td>0.9476(3)</td>
<td>0.4268(18)</td>
<td>0.0447(14)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36L</td>
<td>1.2854</td>
<td>1.0008</td>
<td>0.4307</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36M</td>
<td>1.3630</td>
<td>0.9421</td>
<td>0.4056</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36N</td>
<td>1.3322</td>
<td>0.9221</td>
<td>0.4532</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>0.7835(3)</td>
<td>1.1061(3)</td>
<td>0.2844(15)</td>
<td>0.0241(10)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38B</td>
<td>0.7427(3)</td>
<td>1.0983(3)</td>
<td>0.2472(15)</td>
<td>0.0265(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>0.7930(3)</td>
<td>1.1000(3)</td>
<td>0.2080(15)</td>
<td>0.0302(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H39B</td>
<td>0.7661</td>
<td>1.0948</td>
<td>0.1843</td>
<td>0.036</td>
<td>Uiso 1 1 calc R E .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>0.8810(3)</td>
<td>1.1090(3)</td>
<td>0.2014(15)</td>
<td>0.0280(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>0.9183(3)</td>
<td>1.1181(3)</td>
<td>0.2370(15)</td>
<td>0.0260(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>0.9461(3)</td>
<td>1.1402(3)</td>
<td>0.2339(15)</td>
<td>0.0311</td>
<td>Uiso 1 1 calc R E .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43B</td>
<td>1.0397(3)</td>
<td>1.1294(3)</td>
<td>0.3763(15)</td>
<td>0.0253(10)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H45B</td>
<td>1.0721</td>
<td>1.1114</td>
<td>0.3511</td>
<td>0.030</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>1.0840(3)</td>
<td>1.1456(3)</td>
<td>0.4082(15)</td>
<td>0.0280(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H46B</td>
<td>1.1461</td>
<td>1.1399</td>
<td>0.4040</td>
<td>0.034</td>
<td>Uiso 1 1 calc R E .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C47B</td>
<td>1.0371(3)</td>
<td>1.1700(3)</td>
<td>0.4461(15)</td>
<td>0.0287(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H47B</td>
<td>1.0675</td>
<td>1.1815</td>
<td>0.4672</td>
<td>0.034</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>0.9446(3)</td>
<td>1.1776(3)</td>
<td>0.4533(15)</td>
<td>0.0256(11)</td>
<td>Uani</td>
<td>1 1 d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>Uiso</td>
<td>Calc R</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>0.9138</td>
<td>1.1919</td>
<td>0.4795</td>
<td>0.031</td>
<td>Uiso 1 1</td>
<td>calc R E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C49B</td>
<td>0.8979(3)</td>
<td>1.1638(3)</td>
<td>0.42148(14)</td>
<td>0.0205(10)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50B</td>
<td>0.7493(3)</td>
<td>1.2137(3)</td>
<td>0.45146(14)</td>
<td>0.0220(10)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C51B</td>
<td>0.6538(3)</td>
<td>1.2240(3)</td>
<td>0.49383(14)</td>
<td>0.0247(10)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>0.5079(3)</td>
<td>1.1628(3)</td>
<td>0.26905(18)</td>
<td>0.0384(13)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C53B</td>
<td>0.5812(3)</td>
<td>1.1628(3)</td>
<td>0.26905(18)</td>
<td>0.0384(13)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>0.6163(4)</td>
<td>1.0799(4)</td>
<td>0.20787(18)</td>
<td>0.0480(16)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H54B</td>
<td>0.6086</td>
<td>1.2642</td>
<td>0.4869</td>
<td>0.032</td>
<td>Uiso 1 1</td>
<td>calc R .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55B</td>
<td>0.5554</td>
<td>1.0750</td>
<td>0.2116</td>
<td>0.072</td>
<td>Uiso 1 1</td>
<td>calc R .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C56B</td>
<td>0.6296</td>
<td>1.1067(3)</td>
<td>0.15609(16)</td>
<td>0.0374(13)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C57B</td>
<td>0.6455(3)</td>
<td>1.0901(3)</td>
<td>0.25128(15)</td>
<td>0.0316(12)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C58B</td>
<td>0.5180(3)</td>
<td>1.2031(3)</td>
<td>0.44932(14)</td>
<td>0.0230(10)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H58B</td>
<td>0.6048(3)</td>
<td>1.1856(3)</td>
<td>0.43820(14)</td>
<td>0.0233(10)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59B</td>
<td>0.6455(3)</td>
<td>1.0901(3)</td>
<td>0.25128(15)</td>
<td>0.0316(12)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H59B</td>
<td>0.5792</td>
<td>1.0104</td>
<td>0.2778</td>
<td>0.056</td>
<td>Uiso 1 1</td>
<td>calc R .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H60B</td>
<td>0.6386</td>
<td>1.0306</td>
<td>0.3094</td>
<td>0.056</td>
<td>Uiso 1 1</td>
<td>calc R .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C60B</td>
<td>0.9296(4)</td>
<td>1.1067(3)</td>
<td>0.15609(16)</td>
<td>0.0374(13)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C61B</td>
<td>0.8726(5)</td>
<td>1.1683(4)</td>
<td>0.12711(18)</td>
<td>0.0597(18)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62B</td>
<td>0.8726(5)</td>
<td>1.1683(4)</td>
<td>0.12711(18)</td>
<td>0.0597(18)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H62B</td>
<td>0.8138</td>
<td>1.1597</td>
<td>0.1274</td>
<td>0.090</td>
<td>Uiso 1 1</td>
<td>calc R .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63B</td>
<td>1.0244(5)</td>
<td>1.1174(5)</td>
<td>0.15501(19)</td>
<td>0.068(2)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>U</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4422</td>
<td>1.0508</td>
<td>0.4307</td>
<td>0.095</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
</tr>
<tr>
<td>0.4589</td>
<td>1.0728</td>
<td>0.4750</td>
<td>0.095</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
</tr>
<tr>
<td>0.3489(3)</td>
<td>1.1937(3)</td>
<td>0.44209(17)</td>
<td>0.0377(13)</td>
<td>Uani 1 1 d . .</td>
<td></td>
</tr>
<tr>
<td>0.3372</td>
<td>1.1871</td>
<td>0.4724</td>
<td>0.057</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
</tr>
<tr>
<td>0.4515</td>
<td>1.2244</td>
<td>0.3711</td>
<td>0.094</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
</tr>
<tr>
<td>0.73503(18)</td>
<td>0.86523(17)</td>
<td>0.42508(10)</td>
<td>0.0397(7)</td>
<td>Uani 0.55 1 d PD E 1</td>
<td></td>
</tr>
<tr>
<td>0.9111(4)</td>
<td>0.8686(4)</td>
<td>0.3905(2)</td>
<td>0.0213(11)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.8014(5)</td>
<td>0.9941(4)</td>
<td>0.4019(2)</td>
<td>0.0225(10)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.8600(4)</td>
<td>0.9092(3)</td>
<td>0.46542(17)</td>
<td>0.0318(12)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.8781(5)</td>
<td>0.9499(5)</td>
<td>0.3752(2)</td>
<td>0.0217(13)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.9275</td>
<td>0.9739</td>
<td>0.3735</td>
<td>0.026</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.9606</td>
<td>0.9520</td>
<td>0.3467</td>
<td>0.026</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.9892(5)</td>
<td>0.9018(3)</td>
<td>0.4465(2)</td>
<td>0.0272(13)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.7771</td>
<td>1.0201</td>
<td>0.4635</td>
<td>0.033</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.8767</td>
<td>1.0167</td>
<td>0.4446</td>
<td>0.033</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.9354(4)</td>
<td>0.8663(4)</td>
<td>0.43475(19)</td>
<td>0.0270(14)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.9869</td>
<td>0.8875</td>
<td>0.4339</td>
<td>0.032</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.9353</td>
<td>0.8133</td>
<td>0.4456</td>
<td>0.032</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.8429(4)</td>
<td>0.8271(4)</td>
<td>0.3904(2)</td>
<td>0.0257(14)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.8683</td>
<td>0.7742</td>
<td>0.3996</td>
<td>0.031</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.8283</td>
<td>0.8282</td>
<td>0.3614</td>
<td>0.031</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.7211(4)</td>
<td>0.9647(3)</td>
<td>0.4018(2)</td>
<td>0.0278(14)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.7066</td>
<td>0.9671</td>
<td>0.3727</td>
<td>0.033</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.6702</td>
<td>0.9979</td>
<td>0.4176</td>
<td>0.033</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.7996(5)</td>
<td>0.8783(5)</td>
<td>0.47228(19)</td>
<td>0.0336(19)</td>
<td>Uani 0.55 1 d PDU E 1</td>
<td></td>
</tr>
<tr>
<td>0.7551</td>
<td>0.9068</td>
<td>0.4931</td>
<td>0.040</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.8241</td>
<td>0.8280</td>
<td>0.4857</td>
<td>0.040</td>
<td>Uiso 0.55 1 calc PR E 1</td>
<td></td>
</tr>
<tr>
<td>0.7984(2)</td>
<td>0.8929(2)</td>
<td>0.47295(9)</td>
<td>0.0285(8)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.7956(6)</td>
<td>0.9978(5)</td>
<td>0.4009(2)</td>
<td>0.0231(11)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.8978(5)</td>
<td>0.8682(5)</td>
<td>0.3929(2)</td>
<td>0.0204(11)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.7291(4)</td>
<td>0.8863(4)</td>
<td>0.39739(15)</td>
<td>0.0273(13)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.8840(6)</td>
<td>0.9504(5)</td>
<td>0.3828(3)</td>
<td>0.0204(13)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.8888</td>
<td>0.9600</td>
<td>0.3522</td>
<td>0.025</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.9321</td>
<td>0.9663</td>
<td>0.3933</td>
<td>0.025</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.8239(4)</td>
<td>0.8430(4)</td>
<td>0.3775(2)</td>
<td>0.0225(14)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.8329</td>
<td>0.7886</td>
<td>0.3846</td>
<td>0.027</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.8266</td>
<td>0.8515</td>
<td>0.3468</td>
<td>0.027</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.7224(5)</td>
<td>0.9703(4)</td>
<td>0.3862(3)</td>
<td>0.0254(14)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.7238</td>
<td>0.9797</td>
<td>0.3556</td>
<td>0.031</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.6646</td>
<td>1.0001</td>
<td>0.3986</td>
<td>0.031</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.7884(6)</td>
<td>0.9919(3)</td>
<td>0.4472(2)</td>
<td>0.0237(15)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.7306</td>
<td>1.0247</td>
<td>0.4576</td>
<td>0.028</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.8353</td>
<td>1.0114</td>
<td>0.4563</td>
<td>0.028</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.9032(4)</td>
<td>0.8494(5)</td>
<td>0.4390(2)</td>
<td>0.0228(15)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.9527</td>
<td>0.8661</td>
<td>0.4474</td>
<td>0.027</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.9171</td>
<td>0.7943</td>
<td>0.4443</td>
<td>0.027</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.71695(13)</td>
<td>0.87168(13)</td>
<td>0.43522(6)</td>
<td>0.032(2)</td>
<td>Uani 0.45 1 d PDU E 2</td>
<td></td>
</tr>
<tr>
<td>0.7195</td>
<td>0.8177</td>
<td>0.4396</td>
<td>0.038</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
<tr>
<td>0.6558</td>
<td>0.8995</td>
<td>0.4447</td>
<td>0.038</td>
<td>Uiso 0.45 1 calc PR E 2</td>
<td></td>
</tr>
</tbody>
</table>
N1R N 0.83170(13) 0.01046(13) 0.80867(6) 0.0699(16) Uani 1 1 d RU . .
C1R C 0.85094(13) 0.15565(13) 0.80929(6) 0.0569(16) Uani 1 1 d RU . .
C2R C 0.87433(13) 0.22654(13) 0.81041(6) 0.0591(16) Uani 1 1 d RU . .
H2R1 H 0.8483 0.2617 0.7880 0.089 Uiso 1 1 calc R . .
H2R2 H 0.9389 0.1767 0.8067 0.089 Uiso 1 1 calc R . .
H2R3 H 0.8514 0.2477 0.8373 0.089 Uiso 1 1 calc R . .
N1T N 0.20716(13) 0.74257(13) 0.29376(6) 0.092(2) Uani 0.60 1 d PRDU E 1
C1T C 0.25480(13) 0.78791(13) 0.28497(6) 0.068(2) Uani 0.60 1 d PRDU E 1
C2T C 0.33221(13) 0.83507(13) 0.27093(6) 0.065(2) Uani 0.60 1 d PRDU E 1
H2T1 H 0.3913 0.8002 0.2711 0.097 Uiso 0.60 1 calc PR E 1
H2T2 H 0.3261 0.8733 0.2907 0.097 Uiso 0.60 1 calc PR E 1
H2T3 H 0.3244 0.8591 0.2429 0.097 Uiso 0.60 1 calc PR E 1
N1T' N 0.22253(13) 0.69381(13) 0.28122(6) 0.092(2) Uani 0.40 1 d PRDU E 2
C1T' C 0.26089(13) 0.65310(13) 0.30724(6) 0.089(3) Uani 0.40 1 d PRDU E 2
C2T' C 0.32745(13) 0.59845(13) 0.33682(6) 0.086(4) Uani 0.40 1 d PRDU E 2
H2T4 H 0.3795 0.5706 0.3199 0.129 Uiso 0.40 1 calc PR E 2
H2T5 H 0.3297 0.5633 0.3530 0.129 Uiso 0.40 1 calc PR E 2
H2T6 H 0.3460 0.6278 0.3559 0.129 Uiso 0.40 1 calc PR E 2
N1T" N 0.55959(13) 0.25750(13) 0.67954(6) 0.117(7) Uani 0.40 1 d PRU . 3
C1T" C 0.39429(13) 0.77660(13) 0.29914(6) 0.059(3) Uani 0.40 1 d PRDU . 3
C2T" C 0.33221(13) 0.83507(13) 0.33682(6) 0.086(4) Uani 0.40 1 d PRDU E 3
H2T7 H 0.2905 0.8720 0.2882 0.091 Uiso 0.40 1 calc PR E 3
H2T8 H 0.2993 0.8096 0.2561 0.091 Uiso 0.40 1 calc PR E 3
H2T9 H 0.3678 0.8603 0.2507 0.091 Uiso 0.40 1 calc PR E 3
N1U N 0.80614(13) 0.67717(13) 0.47261(6) 0.0763(18) Uani 1 1 d RDU . .
C1U C 0.82481(13) 0.64171(13) 0.66070(6) 0.070(4) Uani 0.60 1 d RDU . .
C2U C 0.84918(13) 0.59115(13) 0.40738(6) 0.085(2) Uani 1 1 d RDU . .
H2U1 H 0.9129 0.5671 0.4051 0.127 Uiso 1 1 calc R . .
H2U2 H 0.8337 0.6215 0.3816 0.127 Uiso 1 1 calc R . .
H2U3 H 0.8164 0.5527 0.4120 0.127 Uiso 1 1 calc R . .
N1V N 0.2795(6) 0.2773(6) 0.6676(2) 0.100(3) Uani 1 1 d U . .
C1V C 0.3425(7) 0.2267(7) 0.6626(2) 0.087(3) Uani 1 1 d U . .
C2V C 0.4229(7) 1.1669(6) 0.6559(3) 0.098(3) Uani 1 1 d . .
H2V1 H 0.4740 1.1842 0.6610 0.147 Uiso 1 1 calc R . .
H2V2 H 0.4300 1.1526 0.6271 0.147 Uiso 1 1 calc R . .
H2V3 H 0.4190 1.1236 0.6751 0.147 Uiso 1 1 calc R . .
N1W N 0.2585(7) 0.6323(5) 0.8441(2) 0.085(3) Uani 0.70 1 d PD . 1
C1W C -0.2607(9) 0.3468(12) 1.1955(7) 0.080(2) Uani 0.70 1 d PU . 1
C2W C -0.2660(5) 0.6905(5) 0.7638(2) 0.044(2) Uani 0.70 1 d PD . 1
H2W1 H 0.2196 0.6835 0.7482 0.066 Uiso 0.70 1 calc PR . 1
H2W2 H 0.3242 0.6949 0.7489 0.066 Uiso 0.70 1 calc PR . 1
H2W3 H 0.2580 0.7440 0.7663 0.066 Uiso 0.70 1 calc PR . 1
N1W' N -0.3153(14) 0.3128(12) 1.1738(8) 0.086(4) Uani 0.30 1 d PDU F 2
C1W' C -0.2752(2) 0.3463(3) 1.1901(17) 0.080(2) Uani 0.30 1 d PDU F 2
C2W' C -0.2509(17) 0.4023(14) 1.2185(9) 0.085(4) Uani 0.30 1 d PDU F 2
H2W4 H -0.2863 0.4533 1.2121 0.127 Uiso 0.30 1 calc PR F 2
H2W5 H -0.1878 0.4003 1.2129 0.127 Uiso 0.30 1 calc PR F 2
H2W6 H -0.2641 0.3876 1.2479 0.127 Uiso 0.30 1 calc PR F 2

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>Anisotropic Thermal Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1A</td>
<td>0.0194(3) 0.0342(3) 0.0173(3) -0.0039(2) -0.0010(2) -0.0002(2)</td>
</tr>
<tr>
<td>Zn2A</td>
<td>0.0263(3) 0.0232(3) 0.0166(3) -0.0041(2) -0.0054(2)</td>
</tr>
<tr>
<td>Zn1B</td>
<td>0.0253(3) 0.0202(3) 0.0255(3) -0.0050(2) -0.0016(2)</td>
</tr>
<tr>
<td>Zn2B</td>
<td>0.0162(3) 0.0210(3) 0.0225(3) -0.0034(2) -0.0050(2)</td>
</tr>
<tr>
<td>N1A</td>
<td>0.019(2) 0.037(2) 0.020(2) -0.0056(17) 0.0016(16) -0.0009(17)</td>
</tr>
<tr>
<td>N2A</td>
<td>0.021(2) 0.036(2) 0.018(2) -0.0039(17) -0.0022(16)</td>
</tr>
<tr>
<td>N3A</td>
<td>0.024(2) 0.023(2) 0.0192(19) -0.0019(16) -0.0005(16)</td>
</tr>
<tr>
<td>N4A</td>
<td>0.031(2) 0.028(2) 0.017(2) -0.0006(17) -0.0040(16)</td>
</tr>
<tr>
<td>N1B</td>
<td>0.026(2) 0.024(2) 0.023(2) -0.0048(17) -0.0054(16)</td>
</tr>
<tr>
<td>N2B</td>
<td>0.022(2) 0.024(2) 0.022(2) -0.0057(16) -0.0014(17)</td>
</tr>
<tr>
<td>N3B</td>
<td>0.0201(19) 0.020(2) 0.025(2) -0.0031(16) -0.0045(16)</td>
</tr>
<tr>
<td>O1A</td>
<td>0.0210(17) 0.062(3) 0.0208(18) -0.0036(17) -0.0008(14)</td>
</tr>
<tr>
<td>O2A</td>
<td>0.0223(17) 0.038(2) 0.0260(18) -0.0073(15) -0.0037(14)</td>
</tr>
<tr>
<td>O3A</td>
<td>0.0298(18) 0.0243(18) 0.0237(17) -0.0008(14) -0.0076(14)</td>
</tr>
<tr>
<td>O4A</td>
<td>0.042(2) 0.0275(19) 0.0222(17) -0.0044(14) -0.0100(15)</td>
</tr>
<tr>
<td>O1B</td>
<td>0.0363(19) 0.0231(19) 0.0313(19) -0.0024(15) -0.0060(15)</td>
</tr>
<tr>
<td>O2B</td>
<td>0.0317(18) 0.0289(19) 0.0213(17) -0.0006(14) -0.0055(14)</td>
</tr>
<tr>
<td>O3B</td>
<td>0.0220(16) 0.0328(19) 0.0228(17) -0.0056(14) 0.0011(13)</td>
</tr>
<tr>
<td>O4B</td>
<td>0.0168(16) 0.0273(18) 0.0344(19) -0.0093(15) 0.0038(14)</td>
</tr>
<tr>
<td>C1A</td>
<td>0.023(2) 0.029(3) 0.0192(19) -0.0019(16) -0.0005(16)</td>
</tr>
<tr>
<td>C2A</td>
<td>0.027(3) 0.030(3) 0.0283(2) -0.002(2) 0.000(2)</td>
</tr>
<tr>
<td>C3A</td>
<td>0.025(3) 0.043(3) 0.036(3) -0.0112(2) 0.0092(2) -0.002(2)</td>
</tr>
<tr>
<td>C4A</td>
<td>0.031(3) 0.049(4) 0.034(3) -0.0143(2) 0.0092(2) -0.005(3)</td>
</tr>
<tr>
<td>C5A</td>
<td>0.037(3) 0.045(3) 0.024(3) -0.0162(2) 0.0042(2) -0.005(3)</td>
</tr>
<tr>
<td>C6A</td>
<td>0.026(3) 0.033(3) 0.022(2) -0.0072(2) 0.0042(2) 0.000(2)</td>
</tr>
<tr>
<td>C7A</td>
<td>0.0313(3) 0.030(3) 0.023(2) -0.0042(2) -0.003(2) -0.004(2)</td>
</tr>
<tr>
<td>C8A</td>
<td>0.021(2) 0.031(3) 0.023(2) -0.0072(2) -0.0044(19) 0.001(2)</td>
</tr>
<tr>
<td>C9A</td>
<td>0.032(3) 0.0383(3) 0.0283(2) -0.0152(2) 0.003(2) -0.003(2)</td>
</tr>
<tr>
<td>C10A</td>
<td>0.032(3) 0.0463(3) 0.0383(3) -0.0183(2) -0.0082(2) -0.006(3)</td>
</tr>
<tr>
<td>C11A</td>
<td>0.0273(3) 0.0514(4) 0.0363(3) -0.0153(2) -0.002(2) -0.008(3)</td>
</tr>
<tr>
<td>C12A</td>
<td>0.0213(3) 0.0383(3) 0.0393(3) -0.0092(2) -0.0032(2) -0.002(2)</td>
</tr>
<tr>
<td>C13A</td>
<td>0.0242(3) 0.0353(3) 0.023(3) -0.0042(2) -0.004819 -0.003(2)</td>
</tr>
<tr>
<td>C14A</td>
<td>0.0172(3) 0.0353(3) 0.0192(2) -0.0042(2) 0.0013(18) 0.003(2)</td>
</tr>
<tr>
<td>C15A</td>
<td>0.0252(3) 0.0323(3) 0.0172(2) -0.0042(2) -0.000519 -0.005(2)</td>
</tr>
<tr>
<td>C16A</td>
<td>0.0212(3) 0.0323(3) 0.0182(2) 0.0042(2) -0.0023(18) 0.000(2)</td>
</tr>
<tr>
<td>C17A</td>
<td>0.0263(3) 0.0283(3) 0.0192(2) 0.0022(2) -0.000819 -0.005(2)</td>
</tr>
<tr>
<td>C18A</td>
<td>0.0363(3) 0.0303(3) 0.0223(3) 0.0002(2) -0.0032(2) -0.011(2)</td>
</tr>
<tr>
<td>C19A</td>
<td>0.0313(3) 0.0323(3) 0.0182(2) 0.0012(2) -0.002519 -0.010(2)</td>
</tr>
<tr>
<td>C20A</td>
<td>0.0253(3) 0.0373(3) 0.0182(2) 0.0012(2) 0.000019 -0.004(2)</td>
</tr>
<tr>
<td>C21A</td>
<td>0.0213(3) 0.0943(5) 0.0283(3) -0.0063(2) -0.0023(2) -0.006(3)</td>
</tr>
<tr>
<td>C22A</td>
<td>0.0464(4) 0.1547(4) 0.0655(5) 0.0395(5) -0.0123(3) -0.021(4)</td>
</tr>
<tr>
<td>C23A</td>
<td>0.0343(3) 0.1417(4) 0.11466 -0.0995(5) 0.0014(4) -0.011(4)</td>
</tr>
<tr>
<td>C24A</td>
<td>0.0253(3) 0.0674(3) 0.0373(3) -0.0083(2) 0.0012(2) -0.001(3)</td>
</tr>
<tr>
<td>C25A</td>
<td>0.0424(4) 0.0976(3) 0.0313(3) -0.0263(3) 0.0133 -0.010(4)</td>
</tr>
<tr>
<td>C26A</td>
<td>0.0656(6) 0.1321(10) 0.0466 -0.0617(6) 0.0215 -0.023(8)</td>
</tr>
<tr>
<td>Atom</td>
<td>U1</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>C27A</td>
<td>0.078(7)</td>
</tr>
<tr>
<td>C28A</td>
<td>0.053(6)</td>
</tr>
<tr>
<td>C26'</td>
<td>0.053(7)</td>
</tr>
<tr>
<td>C27'</td>
<td>0.053(7)</td>
</tr>
<tr>
<td>C28'</td>
<td>0.053(7)</td>
</tr>
<tr>
<td>C29A</td>
<td>0.053(7)</td>
</tr>
<tr>
<td>C30A</td>
<td>0.053(7)</td>
</tr>
<tr>
<td>C31A</td>
<td>0.053(7)</td>
</tr>
</tbody>
</table>

... (remaining data entries)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N6A</td>
<td>0.025(2)</td>
<td>0.027(2)</td>
<td>0.020(2)</td>
<td>-0.0057(16)</td>
<td>-0.0005(16)</td>
</tr>
<tr>
<td>N7A</td>
<td>0.033(3)</td>
<td>0.097(5)</td>
<td>0.037(3)</td>
<td>0.001(3)</td>
<td>0.007(2)</td>
</tr>
<tr>
<td>C73A</td>
<td>0.026(3)</td>
<td>0.053(4)</td>
<td>0.033(3)</td>
<td>0.014(3)</td>
<td>-0.004(2)</td>
</tr>
<tr>
<td>C75A</td>
<td>0.027(3)</td>
<td>0.068(4)</td>
<td>0.026(3)</td>
<td>0.002(3)</td>
<td>-0.006(2)</td>
</tr>
<tr>
<td>C76A</td>
<td>0.056(4)</td>
<td>0.032(3)</td>
<td>0.037(3)</td>
<td>-0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C77A</td>
<td>0.067(4)</td>
<td>0.039(3)</td>
<td>0.033(3)</td>
<td>-0.012(3)</td>
<td></td>
</tr>
<tr>
<td>C78A</td>
<td>0.015(2)</td>
<td>0.066(4)</td>
<td>0.026(3)</td>
<td>0.028(3)</td>
<td></td>
</tr>
<tr>
<td>C1B</td>
<td>0.024(2)</td>
<td>0.022(3)</td>
<td>0.030(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C2B</td>
<td>0.035(3)</td>
<td>0.029(3)</td>
<td>0.034(3)</td>
<td>-0.004(2)</td>
<td></td>
</tr>
<tr>
<td>C3B</td>
<td>0.090(5)</td>
<td>0.022(3)</td>
<td>0.031(3)</td>
<td>0.001(2)</td>
<td></td>
</tr>
<tr>
<td>C4B</td>
<td>0.115(6)</td>
<td>0.023(3)</td>
<td>0.031(3)</td>
<td>0.001(2)</td>
<td></td>
</tr>
<tr>
<td>C5B</td>
<td>0.071(4)</td>
<td>0.022(3)</td>
<td>0.029(3)</td>
<td>0.001(2)</td>
<td></td>
</tr>
<tr>
<td>C6B</td>
<td>0.035(3)</td>
<td>0.031(3)</td>
<td>0.022(2)</td>
<td>-0.007(2)</td>
<td></td>
</tr>
<tr>
<td>C7B</td>
<td>0.035(3)</td>
<td>0.031(3)</td>
<td>0.022(2)</td>
<td>-0.007(2)</td>
<td></td>
</tr>
<tr>
<td>C8B</td>
<td>0.020(2)</td>
<td>0.027(3)</td>
<td>0.030(3)</td>
<td>-0.006(2)</td>
<td></td>
</tr>
<tr>
<td>C9B</td>
<td>0.028(3)</td>
<td>0.032(3)</td>
<td>0.032(3)</td>
<td>-0.007(2)</td>
<td></td>
</tr>
<tr>
<td>C10B</td>
<td>0.026(3)</td>
<td>0.045(3)</td>
<td>0.038(3)</td>
<td>-0.014(3)</td>
<td></td>
</tr>
<tr>
<td>C11B</td>
<td>0.030(3)</td>
<td>0.040(3)</td>
<td>0.032(3)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C12B</td>
<td>0.026(3)</td>
<td>0.030(3)</td>
<td>0.030(3)</td>
<td>-0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C13B</td>
<td>0.018(2)</td>
<td>0.029(3)</td>
<td>0.023(2)</td>
<td>-0.009(2)</td>
<td></td>
</tr>
<tr>
<td>C14B</td>
<td>0.019(2)</td>
<td>0.024(3)</td>
<td>0.019(2)</td>
<td>-0.0037(19)</td>
<td></td>
</tr>
<tr>
<td>C15B</td>
<td>0.021(2)</td>
<td>0.023(2)</td>
<td>0.021(2)</td>
<td>-0.0044(19)</td>
<td></td>
</tr>
<tr>
<td>C16B</td>
<td>0.020(2)</td>
<td>0.030(3)</td>
<td>0.020(2)</td>
<td>-0.004(2)</td>
<td></td>
</tr>
<tr>
<td>C17B</td>
<td>0.021(2)</td>
<td>0.026(3)</td>
<td>0.030(3)</td>
<td>-0.006(2)</td>
<td></td>
</tr>
<tr>
<td>C18B</td>
<td>0.018(2)</td>
<td>0.029(3)</td>
<td>0.036(3)</td>
<td>-0.011(2)</td>
<td></td>
</tr>
<tr>
<td>C19B</td>
<td>0.023(2)</td>
<td>0.021(2)</td>
<td>0.026(3)</td>
<td>-0.007(2)</td>
<td></td>
</tr>
<tr>
<td>C20B</td>
<td>0.020(2)</td>
<td>0.026(3)</td>
<td>0.025(2)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C21B</td>
<td>0.036(3)</td>
<td>0.033(3)</td>
<td>0.038(3)</td>
<td>-0.010(2)</td>
<td></td>
</tr>
<tr>
<td>C22B</td>
<td>0.043(6)</td>
<td>0.041(6)</td>
<td>0.019(7)</td>
<td>-0.002(4)</td>
<td></td>
</tr>
<tr>
<td>C23B</td>
<td>0.033(5)</td>
<td>0.062(7)</td>
<td>0.047(5)</td>
<td>-0.025(5)</td>
<td></td>
</tr>
<tr>
<td>C24B</td>
<td>0.117(11)</td>
<td>0.034(6)</td>
<td>0.051(6)</td>
<td>-0.025(5)</td>
<td></td>
</tr>
<tr>
<td>C25B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C26B</td>
<td>0.036(5)</td>
<td>0.017(4)</td>
<td>0.050(3)</td>
<td>-0.008(3)</td>
<td></td>
</tr>
<tr>
<td>C27B</td>
<td>0.067(3)</td>
<td>0.031(3)</td>
<td>0.041(3)</td>
<td>-0.013(3)</td>
<td></td>
</tr>
<tr>
<td>C28B</td>
<td>0.081(4)</td>
<td>0.024(3)</td>
<td>0.051(3)</td>
<td>-0.006(3)</td>
<td></td>
</tr>
<tr>
<td>C29B</td>
<td>0.069(4)</td>
<td>0.023(4)</td>
<td>0.044(4)</td>
<td>-0.002(3)</td>
<td></td>
</tr>
<tr>
<td>C30B</td>
<td>0.074(8)</td>
<td>0.042(7)</td>
<td>0.019(7)</td>
<td>-0.002(4)</td>
<td></td>
</tr>
<tr>
<td>C31B</td>
<td>0.067(3)</td>
<td>0.031(3)</td>
<td>0.041(3)</td>
<td>-0.013(3)</td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>0.081(4)</td>
<td>0.024(3)</td>
<td>0.051(3)</td>
<td>-0.006(3)</td>
<td></td>
</tr>
<tr>
<td>C33B</td>
<td>0.059(4)</td>
<td>0.019(3)</td>
<td>0.039(3)</td>
<td>-0.002(3)</td>
<td></td>
</tr>
<tr>
<td>C34B</td>
<td>0.056(5)</td>
<td>0.017(4)</td>
<td>0.050(3)</td>
<td>-0.008(3)</td>
<td></td>
</tr>
<tr>
<td>C35B</td>
<td>0.067(3)</td>
<td>0.031(3)</td>
<td>0.041(3)</td>
<td>-0.013(3)</td>
<td></td>
</tr>
<tr>
<td>C36B</td>
<td>0.081(4)</td>
<td>0.024(3)</td>
<td>0.051(3)</td>
<td>-0.006(3)</td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C38B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>0.038(3)</td>
<td>0.031(3)</td>
<td>0.030(3)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>0.058(4)</td>
<td>0.039(3)</td>
<td>0.024(3)</td>
<td>0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C43B</td>
<td>0.038(3)</td>
<td>0.031(3)</td>
<td>0.030(3)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C44B</td>
<td>0.058(4)</td>
<td>0.039(3)</td>
<td>0.024(3)</td>
<td>0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C45B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C47B</td>
<td>0.038(3)</td>
<td>0.031(3)</td>
<td>0.030(3)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>0.058(4)</td>
<td>0.039(3)</td>
<td>0.024(3)</td>
<td>0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C49B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C50B</td>
<td>0.027(3)</td>
<td>0.043(3)</td>
<td>0.033(3)</td>
<td>-0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C51B</td>
<td>0.038(3)</td>
<td>0.031(3)</td>
<td>0.030(3)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>0.030(3)</td>
<td>0.028(3)</td>
<td>0.023(3)</td>
<td>0.000(2)</td>
<td>0.001(2)</td>
</tr>
<tr>
<td>C41B</td>
<td>0.023(2)</td>
<td>0.025(3)</td>
<td>0.029(3)</td>
<td>-0.001(2)</td>
<td>0.001(2)</td>
</tr>
<tr>
<td>C42B</td>
<td>0.021(2)</td>
<td>0.021(2)</td>
<td>0.026(3)</td>
<td>-0.0015(19)</td>
<td>-0.0019(19)</td>
</tr>
<tr>
<td>C43B</td>
<td>0.019(2)</td>
<td>0.020(2)</td>
<td>0.034(3)</td>
<td>0.002(2)</td>
<td>0.003(2)</td>
</tr>
<tr>
<td>C44B</td>
<td>0.021(2)</td>
<td>0.021(2)</td>
<td>0.025(2)</td>
<td>-0.001(2)</td>
<td>0.001(2)</td>
</tr>
<tr>
<td>C45B</td>
<td>0.013(2)</td>
<td>0.035(3)</td>
<td>0.036(3)</td>
<td>-0.001(2)</td>
<td>-0.002(2)</td>
</tr>
<tr>
<td>C46B</td>
<td>0.021(2)</td>
<td>0.035(3)</td>
<td>0.029(3)</td>
<td>-0.002(2)</td>
<td>-0.009(2)</td>
</tr>
<tr>
<td>C47B</td>
<td>0.023(2)</td>
<td>0.025(3)</td>
<td>0.026(3)</td>
<td>-0.005(2)</td>
<td>0.0030(19)</td>
</tr>
<tr>
<td>C48B</td>
<td>0.021(2)</td>
<td>0.021(2)</td>
<td>0.026(2)</td>
<td>0.0016(19)</td>
<td>-0.0009(18)</td>
</tr>
<tr>
<td>C49B</td>
<td>0.021(2)</td>
<td>0.027(3)</td>
<td>0.018(2)</td>
<td>0.0014(19)</td>
<td>-0.0064(18)</td>
</tr>
<tr>
<td>C50B</td>
<td>0.025(2)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0001(19)</td>
<td>-0.0043(19)</td>
</tr>
<tr>
<td>C51B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C52B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C53B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C54B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C55B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C56B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
<tr>
<td>C57B</td>
<td>0.025(3)</td>
<td>0.027(3)</td>
<td>0.020(2)</td>
<td>0.0013(18)</td>
<td>-0.0033(19)</td>
</tr>
</tbody>
</table>
C1R 0.056(4) 0.064(4) 0.042(3) -0.011(3) 0.010(3) -0.006(3)
C2R 0.056(4) 0.067(4) 0.049(4) -0.010(3) 0.015(3) -0.013(3)
N1T 0.075(4) 0.071(5) 0.126(5) -0.004(4) -0.018(4) -0.011(4)
C1T 0.066(5) 0.048(5) 0.080(5) -0.006(5) -0.013(5) 0.008(4)
C2T 0.064(5) 0.053(5) 0.065(5) -0.012(5) 0.003(5) 0.005(4)
N1T' 0.075(4) 0.071(5) 0.126(5) -0.004(4) -0.018(4) -0.011(4)
C1T' 0.083(6) 0.071(6) 0.108(6) 0.001(5) -0.005(5) -0.014(5)
C2T' 0.098(8) 0.063(7) 0.083(7) 0.010(6) -0.006(6)
N1T" 0.078(8) 0.170(16) 0.094(11) -0.043(12) -0.005(8) -0.006(10)
C1T" 0.052(7) 0.055(7) 0.065(7) -0.014(6) 0.002(6) -0.007(6)
C2T" 0.059(6) 0.050(6) 0.067(6) -0.011(5) 0.004(5) -0.004(5)
N1T* 0.055(6) 0.143(13) 0.066(7) -0.063(9) -0.011(5) -0.002(6)
C1T* 0.071(8) 0.078(9) 0.025(5) -0.016(6) -0.008(5) 0.047(7)
C2T* 0.102(7) 0.063(6) 0.083(7) -0.009(6) 0.019(6) -0.010(6)
N1U 0.061(4) 0.058(4) 0.107(5) 0.014(3) -0.014(4) -0.017(3)
C1U 0.040(3) 0.067(4) 0.077(4) 0.030(3) -0.010(3) -0.023(3)
C2U 0.069(5) 0.101(6) 0.075(5) 0.020(3) 0.005(4) -0.022(4)
N1V 0.087(5) 0.185(9) 0.039(3) 0.006(5) 0.006(4) -0.062(5)
C1V 0.084(6) 0.167(10) 0.030(4) 0.000(5) -0.012(4) -0.065(6)
C2V 0.124(8) 0.124(8) 0.060(5) 0.006(5) -0.029(5) -0.052(7)
N1W 0.118(8) 0.078(7) 0.061(6) 0.035(5) -0.030(6) -0.031(6)
C1W 0.050(4) 0.063(4) 0.134(5) 0.009(4) -0.036(4) -0.020(4)
C2W 0.045(5) 0.060(6) 0.019(4) 0.005(4) 0.007(3) -0.008(4)
N1W' 0.061(7) 0.072(7) 0.130(8) 0.003(7) -0.043(7) -0.012(6)
C1W' 0.050(4) 0.063(4) 0.134(5) 0.009(4) -0.036(4) -0.020(4)
C2W' 0.057(7) 0.069(8) 0.130(9) -0.005(7) -0.025(7) -0.014(7)

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
Zn1A O2A 1.970(3) . ?
Zn1A O1A 1.981(3) . ?
Zn1A N2A 2.094(4) . ?
Zn1A N1A 2.102(4) . ?
Zn1A N6A 2.1560(14) . ?
Zn2A O4A 1.945(3) . ?
Zn2A O3A 1.981(3) . ?
Zn2A N3A 2.077(4) . ?
Zn2A N4A 2.099(4) . ?
Zn2A N5A 2.1574(13) . ?
Zn1B O2B 1.967(3) . ?
Zn1B O1B 1.976(3) . ?
Zn1B N1B 2.091(4) . ?
Zn1B N2B 2.099(4) . ?
Zn1B N5B 2.103(6) . ?
Zn1B N6" 2.279(7) . ?
Zn2B O3B 1.958(3) . ?
Zn2B O4B 1.986(3) . ?
Zn2B N4B 2.080(4) . ?
Zn2B N5" 2.102(7) . ?
Zn2B N3B 2.108(4) . ?
Zn2B N6B 2.172(7) . ?
N1A C7A 1.299(6) . ?
N1A C8A 1.418(6) . ?
N2A C14A 1.287(6) . ?
N2A C13A 1.434(6) . ?
N3A C43A 1.293(6) . ?
N3A C44A 1.419(6) . ?
N4A C50A 1.293(6) . ?
N4A C49A 1.412(6) . ?
N1B C7B 1.290(6) . ?
N1B C8B 1.414(6) . ?
N2B C14B 1.294(6) . ?
N2B C13B 1.415(6) . ?
N3B C43B 1.295(6) . ?
N3B C44B 1.409(6) . ?
N4B C50B 1.290(6) . ?
N4B C49B 1.409(5) . ?
O1A C1A 1.295(5) . ?
O2A C20A 1.304(6) . ?
O3A C37A 1.297(5) . ?
O4A C56A 1.293(5) . ?
O1B C1B 1.296(6) . ?
O2B C20B 1.291(6) . ?
O3B C37B 1.309(5) . ?
O4B C56B 1.296(5) . ?
C1A C6A 1.428(7) . ?
C1A C2A 1.442(7) . ?
C2A C3A 1.386(7) . ?
C2A C21A 1.508(7) . ?
C3A C4A 1.397(8) . ?
C4A C5A 1.363(7) . ?
C4A C25A 1.529(7) . ?
C5A C6A 1.423(6) . ?
C6A C7A 1.423(7) . ?
C8A C9A 1.376(7) . ?
C8A C13A 1.401(6) . ?
C9A C10A 1.380(7) . ?
C10A C11A 1.383(7) . ?
C11A C12A 1.379(7) . ?
C12A C13A 1.384(7) . ?
C14A C15A 1.427(7) . ?
C15A C20A 1.419(6) . ?
C15A C16A 1.419(6) . ?
C16A C17A 1.361(7) . ?
C17A C18A 1.404(7) . ?
C17A C33A 1.540(6) . ?
C18A - C19A	1.379(7)	?
C19A - C20A	1.439(7)	?
C19A - C29A	1.534(7)	?
C21A - C23A	1.479(9)	?
C21A - C24A	1.534(7)	?
C21A - C22A	1.570(10)	?
C25A - C26A	1.421(16)	?
C25A - C26’	1.461(13)	?
C25A - C28A	1.526(19)	?
C25A - C27A	1.533(13)	?
C25A - C27’	1.597(13)	?
C25A - C28’	1.652(19)	?
C29A - C31A	1.533(7)	?
C29A - C32A	1.534(8)	?
C29A - C30A	1.538(7)	?
C33A - C34A	1.45(2)	?
C33A - C35A	1.508(10)	?
C33A - C35’	1.508(19)	?
C33A - C36A	1.509(19)	?
C33A - C36’	1.547(11)	?
C33A - C34A	1.559(12)	?
C33A - C34’	1.508(19)	?
C33A - C36A	1.547(11)	?
C33A - C36’	1.508(19)	?
C37A - C38A	1.424(6)	?
C37A - C38’	1.438(6)	?
C38A - C39A	1.379(6)	?
C38A - C50A	1.529(7)	?
C39A - C40A	1.409(7)	?
C40A - C41A	1.371(6)	?
C40A - C61A	1.531(6)	?
C41A - C42A	1.424(6)	?
C42A - C43A	1.436(6)	?
C44A - C45A	1.396(7)	?
C44A - C49A	1.402(6)	?
C45A - C46A	1.384(7)	?
C46A - C47A	1.383(7)	?
C47A - C48A	1.376(7)	?
C48A - C49A	1.395(7)	?
C50A - C51A	1.424(7)	?
C51A - C52A	1.413(6)	?
C51A - C56A	1.427(7)	?
C52A - C53A	1.367(7)	?
C53A - C54A	1.401(7)	?
C53A - C65A	1.531(6)	?
C54A - C55A	1.374(6)	?
C55A - C56A	1.438(7)	?
C55A - C59A	1.544(7)	?
C57A - C58A	1.531(7)	?
C57A - C59A	1.535(7)	?
C57A - C60A	1.536(8)	?
C61A - C63A	1.531(7)	?
C61A - C64A	1.540(7)	?
C61A - C62A	1.542(7)	?
C65A - C67A	1.522(7)	?
C65A - C66A	1.524(7)	?
C65A - C68A	1.548(7)	?
C69A C70A 1.529(7)
C69A C72A 1.542(5)
C69A C71A 1.553(7)
P1A C77A 1.8592
P1A C76A 1.9159
P1A C78A 1.9622
N5A C76A 1.4518
N5A C75A 1.4845
N5A C73A 1.4881
N6A C73A 1.4653
N6A C77A 1.4765
N6A C74A 1.4802
N7A C78A 1.1859
N7A C75A 1.5337
N7A C74A 1.5802
C1B C6B 1.417(7)
C1B C2B 1.448(7)
C2B C3B 1.375(8)
C2B C21B 1.517(8)
C3B C4B 1.392(9)
C4B C5B 1.366(8)
C4B C25B 1.531(7)
C4B C25" 1.602(9)
C5B C6B 1.415(7)
C6B C7B 1.441(7)
C8B C9B 1.384(7)
C8B C13B 1.406(7)
C9B C10B 1.374(7)
C10B C11B 1.388(7)
C11B C12B 1.390(7)
C12B C13B 1.379(6)
C14B C15B 1.438(6)
C15B C16B 1.418(7)
C15B C20B 1.431(6)
C16B C17B 1.369(7)
C17B C18B 1.408(7)
C17B C29B 1.536(7)
C18B C19B 1.369(7)
C19B C20B 1.449(6)
C19B C33B 1.538(6)
C21B C24" 1.33(4)
C21B C22" 1.49(3)
C21B C24B 1.528(16)
C21B C22B 1.557(12)
C21B C23B 1.559(11)
C21B C23" 1.60(4)
C25B C26B 1.500(10)
C25B C28B 1.522(11)
C25B C27B 1.528(13)
C25" C26" 1.506(11)
C25" C28" 1.526(12)
C25" C27" 1.529(13)
C29B C32B 1.516(8)
C29B C31B 1.528(8)

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom1</th>
<th>Atom2</th>
<th>Distance (Å)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>1.532 (7)</td>
<td></td>
</tr>
<tr>
<td>C33B</td>
<td>C35B</td>
<td>1.531 (7)</td>
<td></td>
</tr>
<tr>
<td>C33B</td>
<td>C36B</td>
<td>1.534 (7)</td>
<td></td>
</tr>
<tr>
<td>C33B</td>
<td>C34B</td>
<td>1.541 (7)</td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>C42B</td>
<td>1.428 (6)</td>
<td></td>
</tr>
<tr>
<td>C38B</td>
<td>C39B</td>
<td>1.387 (7)</td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>C41B</td>
<td>1.373 (7)</td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>C61B</td>
<td>1.539 (7)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C42B</td>
<td>1.412 (6)</td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>C43B</td>
<td>1.433 (7)</td>
<td></td>
</tr>
<tr>
<td>C44B</td>
<td>C45B</td>
<td>1.396 (6)</td>
<td></td>
</tr>
<tr>
<td>C44B</td>
<td>C49B</td>
<td>1.413 (6)</td>
<td></td>
</tr>
<tr>
<td>C45B</td>
<td>C46B</td>
<td>1.384 (7)</td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>C47B</td>
<td>1.374 (7)</td>
<td></td>
</tr>
<tr>
<td>C49B</td>
<td>C48B</td>
<td>1.389 (6)</td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>C51B</td>
<td>1.388 (6)</td>
<td></td>
</tr>
<tr>
<td>C50B</td>
<td>C51B</td>
<td>1.428 (6)</td>
<td></td>
</tr>
<tr>
<td>C51B</td>
<td>C56B</td>
<td>1.413 (7)</td>
<td></td>
</tr>
<tr>
<td>C51B</td>
<td>C52B</td>
<td>1.422 (6)</td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>C53B</td>
<td>1.368 (6)</td>
<td></td>
</tr>
<tr>
<td>C53B</td>
<td>C54B</td>
<td>1.412 (7)</td>
<td></td>
</tr>
<tr>
<td>C53B</td>
<td>C65B</td>
<td>1.524 (6)</td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>C55B</td>
<td>1.371 (7)</td>
<td></td>
</tr>
<tr>
<td>C55B</td>
<td>C56B</td>
<td>1.449 (6)</td>
<td></td>
</tr>
<tr>
<td>C55B</td>
<td>C69B</td>
<td>1.524 (7)</td>
<td></td>
</tr>
<tr>
<td>C57B</td>
<td>C58B</td>
<td>1.526 (7)</td>
<td></td>
</tr>
<tr>
<td>C57B</td>
<td>C59B</td>
<td>1.536 (7)</td>
<td></td>
</tr>
<tr>
<td>C57B</td>
<td>C60B</td>
<td>1.544 (7)</td>
<td></td>
</tr>
<tr>
<td>C61B</td>
<td>C63B</td>
<td>1.522 (8)</td>
<td></td>
</tr>
<tr>
<td>C61B</td>
<td>C64B</td>
<td>1.531 (8)</td>
<td></td>
</tr>
<tr>
<td>C61B</td>
<td>C62B</td>
<td>1.531 (8)</td>
<td></td>
</tr>
<tr>
<td>C65B</td>
<td>C68B</td>
<td>1.528 (7)</td>
<td></td>
</tr>
<tr>
<td>C65B</td>
<td>C67B</td>
<td>1.531 (7)</td>
<td></td>
</tr>
<tr>
<td>C65B</td>
<td>C66B</td>
<td>1.540 (8)</td>
<td></td>
</tr>
<tr>
<td>C69B</td>
<td>C71B</td>
<td>1.532 (7)</td>
<td></td>
</tr>
<tr>
<td>C69B</td>
<td>C72B</td>
<td>1.538 (8)</td>
<td></td>
</tr>
<tr>
<td>C69B</td>
<td>C70B</td>
<td>1.543 (8)</td>
<td></td>
</tr>
<tr>
<td>P1B</td>
<td>C77B</td>
<td>1.857 (5)</td>
<td></td>
</tr>
<tr>
<td>P1B</td>
<td>C76B</td>
<td>1.883 (4)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>C76B</td>
<td>1.454 (5)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>C73B</td>
<td>1.485 (5)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>C75B</td>
<td>1.491 (5)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>C73B</td>
<td>1.463 (5)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>C77B</td>
<td>1.477 (5)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>C74B</td>
<td>1.489 (5)</td>
<td></td>
</tr>
<tr>
<td>N7B</td>
<td>C78B</td>
<td>1.201 (5)</td>
<td></td>
</tr>
<tr>
<td>N7B</td>
<td>C75B</td>
<td>1.515 (5)</td>
<td></td>
</tr>
<tr>
<td>N7B</td>
<td>C74B</td>
<td>1.548 (5)</td>
<td></td>
</tr>
</tbody>
</table>
P1 C78 1.970(3)
N5 C76 1.455(5)
N5 C73 1.486(5)
N5 C75 1.492(5)
N6 C73 1.464(5)
N6 C77 1.478(5)
N6 C74 1.488(5)
N7 C78 1.208(5)
N7 C75 1.516(5)
N7 C74 1.554(5)
N1R C1R 1.1254
C1R C2R 1.4366
N1T C1T 1.2389
C1T C2T 1.6478
N1T' C1T' 1.1605
C1T' C2T' 1.5590
N1T" C1T" 1.071(4)
C1T" N1T" 1.072(4)
C1T" C2T" 1.5258
N1T* C1T* 1.3029
C1T* N1T* 1.3030
C1T* C2T* 1.605(5)
N1U C1U 1.1186
C1U C2U 1.5129
N1V C1V 1.153(13)
C1V C2V 1.422(13)
C2V C1V 1.422(13)
N1W C1W 1.28(3)
C1W N1W 1.28(3)
C1W C2W 1.41(3)
C2W C1W 1.41(3)
N1W' C1W' 1.176(5)
C1W' C2W' 1.564(4)

loop
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_publ_flag
O2A Zn1A O1A 100.93(14)
O2A Zn1A N2A 88.73(14)
O1A Zn1A N2A 161.66(14)
O2A Zn1A N1A 153.32(15)
O1A Zn1A N1A 86.96(14)
N2A Zn1A N1A 86.96(14)
O2A Zn1A N6A 98.12(11)
O1A Zn1A N6A 93.00(11)
N2A Zn1A N6A 101.10(11)
O1A Zn1A N6A 106.96(12)
O4A Zn2A O3A 97.45(13)
O4A Zn2A N3A 150.86(14)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Torsion (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3A Zn2A N3A</td>
<td>88.55(14)</td>
<td></td>
</tr>
<tr>
<td>O4A Zn2A N4A</td>
<td>88.39(14)</td>
<td></td>
</tr>
<tr>
<td>O3A Zn2A N4A</td>
<td>161.52(14)</td>
<td></td>
</tr>
<tr>
<td>N3A Zn2A N4A</td>
<td>78.19(15)</td>
<td></td>
</tr>
<tr>
<td>O4A Zn2A N5A</td>
<td>106.84(11)</td>
<td></td>
</tr>
<tr>
<td>O3A Zn2A N5A</td>
<td>94.95(10)</td>
<td></td>
</tr>
<tr>
<td>N3A Zn2A N5A</td>
<td>100.97(11)</td>
<td></td>
</tr>
<tr>
<td>N4A Zn2A N5A</td>
<td>100.13(11)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B O1B</td>
<td>102.58(13)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N1B</td>
<td>156.30(14)</td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N1B</td>
<td>87.69(14)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N2B</td>
<td>88.55(14)</td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N2B</td>
<td>162.78(14)</td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N2B</td>
<td>77.31(15)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N5B</td>
<td>94.7(2)</td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N5B</td>
<td>95.9(2)</td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N5B</td>
<td>105.6(2)</td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N5B</td>
<td>96.3(2)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N6"</td>
<td>97.7(2)</td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N6"</td>
<td>94.4(2)</td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N6"</td>
<td>102.8(2)</td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N6"</td>
<td>97.1(2)</td>
<td></td>
</tr>
<tr>
<td>N5B Zn1B N6"</td>
<td>3.1(4)</td>
<td></td>
</tr>
<tr>
<td>O3B Zn2B O4B</td>
<td>100.83(13)</td>
<td></td>
</tr>
<tr>
<td>O3B Zn2B N4B</td>
<td>153.33(14)</td>
<td></td>
</tr>
<tr>
<td>O4B Zn2B N4B</td>
<td>87.62(13)</td>
<td></td>
</tr>
<tr>
<td>O3B Zn2B N5"</td>
<td>99.1(2)</td>
<td></td>
</tr>
<tr>
<td>O4B Zn2B N5"</td>
<td>92.7(3)</td>
<td></td>
</tr>
<tr>
<td>N4B Zn2B N5"</td>
<td>105.7(2)</td>
<td></td>
</tr>
<tr>
<td>O3B Zn2B N3B</td>
<td>88.19(13)</td>
<td></td>
</tr>
<tr>
<td>O4B Zn2B N3B</td>
<td>161.13(14)</td>
<td></td>
</tr>
<tr>
<td>N4B Zn2B N3B</td>
<td>77.38(14)</td>
<td></td>
</tr>
<tr>
<td>N5" Zn2B N3B</td>
<td>102.5(3)</td>
<td></td>
</tr>
<tr>
<td>O3B Zn2B N6B</td>
<td>100.0(2)</td>
<td></td>
</tr>
<tr>
<td>O4B Zn2B N6B</td>
<td>94.3(2)</td>
<td></td>
</tr>
<tr>
<td>N4B Zn2B N6B</td>
<td>104.5(2)</td>
<td></td>
</tr>
<tr>
<td>N5" Zn2B N6B</td>
<td>2.0(4)</td>
<td></td>
</tr>
<tr>
<td>N3B Zn2B N6B</td>
<td>100.5(2)</td>
<td></td>
</tr>
<tr>
<td>C7A N1A C8A</td>
<td>120.7(4)</td>
<td></td>
</tr>
<tr>
<td>C7A N1A Zn1A</td>
<td>124.3(3)</td>
<td></td>
</tr>
<tr>
<td>C8A N1A Zn1A</td>
<td>113.8(3)</td>
<td></td>
</tr>
<tr>
<td>C14A N2A C13A</td>
<td>120.4(4)</td>
<td></td>
</tr>
<tr>
<td>C14A N2A Zn1A</td>
<td>125.2(3)</td>
<td></td>
</tr>
<tr>
<td>C13A N2A Zn1A</td>
<td>113.6(3)</td>
<td></td>
</tr>
<tr>
<td>C43A N3A C44A</td>
<td>121.5(4)</td>
<td></td>
</tr>
<tr>
<td>C43A N3A Zn2A</td>
<td>125.4(3)</td>
<td></td>
</tr>
<tr>
<td>C44A N3A Zn2A</td>
<td>112.9(3)</td>
<td></td>
</tr>
<tr>
<td>C50A N4A C49A</td>
<td>121.8(4)</td>
<td></td>
</tr>
<tr>
<td>C50A N4A Zn2A</td>
<td>125.1(3)</td>
<td></td>
</tr>
<tr>
<td>C49A N4A Zn2A</td>
<td>113.0(3)</td>
<td></td>
</tr>
<tr>
<td>C7B N1B C8B</td>
<td>121.0(4)</td>
<td></td>
</tr>
<tr>
<td>C7B N1B Zn1B</td>
<td>123.9(3)</td>
<td></td>
</tr>
<tr>
<td>C8B N1B Zn1B</td>
<td>113.6(3)</td>
<td></td>
</tr>
<tr>
<td>C14B N2B C13B</td>
<td>121.1(4)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Error (Å)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C14B N2B Zn1B</td>
<td>125.1(3)</td>
<td>0</td>
</tr>
<tr>
<td>C13B N2B Zn1B</td>
<td>113.2(3)</td>
<td>0</td>
</tr>
<tr>
<td>C43B N3B C44B</td>
<td>120.8(4)</td>
<td>0</td>
</tr>
<tr>
<td>C43B N3B Zn2B</td>
<td>125.7(3)</td>
<td>0</td>
</tr>
<tr>
<td>C44B N3B Zn2B</td>
<td>113.2(3)</td>
<td>0</td>
</tr>
<tr>
<td>C50B N4B C49B</td>
<td>120.8(4)</td>
<td>0</td>
</tr>
<tr>
<td>C50B N4B Zn2B</td>
<td>124.9(3)</td>
<td>0</td>
</tr>
<tr>
<td>C49B N4B Zn2B</td>
<td>113.9(3)</td>
<td>0</td>
</tr>
<tr>
<td>C1A O1A Zn1A</td>
<td>132.2(3)</td>
<td>0</td>
</tr>
<tr>
<td>C20A O2A Zn1A</td>
<td>131.3(3)</td>
<td>0</td>
</tr>
<tr>
<td>C37A O3A Zn2A</td>
<td>131.7(3)</td>
<td>0</td>
</tr>
<tr>
<td>C56A O4A Zn2A</td>
<td>132.4(3)</td>
<td>0</td>
</tr>
<tr>
<td>C1B O1B Zn1B</td>
<td>129.7(3)</td>
<td>0</td>
</tr>
<tr>
<td>C20B O2B Zn1B</td>
<td>131.6(3)</td>
<td>0</td>
</tr>
<tr>
<td>C37B O3B Zn2B</td>
<td>132.5(3)</td>
<td>0</td>
</tr>
<tr>
<td>C56B O4B Zn2B</td>
<td>131.0(3)</td>
<td>0</td>
</tr>
<tr>
<td>O1A C1A C6A</td>
<td>122.4(4)</td>
<td>0</td>
</tr>
<tr>
<td>O1A C1A C2A</td>
<td>120.4(4)</td>
<td>0</td>
</tr>
<tr>
<td>C6A C1A C2A</td>
<td>117.2(4)</td>
<td>0</td>
</tr>
<tr>
<td>C3A C2A C1A</td>
<td>118.4(5)</td>
<td>0</td>
</tr>
<tr>
<td>C3A C2A C21A</td>
<td>121.0(5)</td>
<td>0</td>
</tr>
<tr>
<td>C1A C2A C21A</td>
<td>120.6(4)</td>
<td>0</td>
</tr>
<tr>
<td>C2A C3A C4A</td>
<td>124.7(5)</td>
<td>0</td>
</tr>
<tr>
<td>C5A C4A C3A</td>
<td>117.3(5)</td>
<td>0</td>
</tr>
<tr>
<td>C5A C4A C25A</td>
<td>122.4(5)</td>
<td>0</td>
</tr>
<tr>
<td>C3A C4A C25A</td>
<td>120.3(5)</td>
<td>0</td>
</tr>
<tr>
<td>C4A C5A C6A</td>
<td>121.8(5)</td>
<td>0</td>
</tr>
<tr>
<td>C7A C6A C5A</td>
<td>115.9(4)</td>
<td>0</td>
</tr>
<tr>
<td>C7A C6A C1A</td>
<td>123.5(4)</td>
<td>0</td>
</tr>
<tr>
<td>C5A C6A C1A</td>
<td>120.6(4)</td>
<td>0</td>
</tr>
<tr>
<td>N1A C7A C6A</td>
<td>127.4(5)</td>
<td>0</td>
</tr>
<tr>
<td>C9A C8A C13A</td>
<td>118.9(4)</td>
<td>0</td>
</tr>
<tr>
<td>C9A C8A N1A</td>
<td>125.0(4)</td>
<td>0</td>
</tr>
<tr>
<td>C13A C8A N1A</td>
<td>116.1(4)</td>
<td>0</td>
</tr>
<tr>
<td>C8A C9A C10A</td>
<td>120.7(4)</td>
<td>0</td>
</tr>
<tr>
<td>C9A C10A C11A</td>
<td>120.3(5)</td>
<td>0</td>
</tr>
<tr>
<td>C12A C11A C10A</td>
<td>119.9(5)</td>
<td>0</td>
</tr>
<tr>
<td>C11A C12A C13A</td>
<td>119.7(5)</td>
<td>0</td>
</tr>
<tr>
<td>C12A C13A C8A</td>
<td>120.4(5)</td>
<td>0</td>
</tr>
<tr>
<td>C12A C13A N2A</td>
<td>124.5(4)</td>
<td>0</td>
</tr>
<tr>
<td>C8A C13A N2A</td>
<td>115.1(4)</td>
<td>0</td>
</tr>
<tr>
<td>N2A C14A C15A</td>
<td>126.8(4)</td>
<td>0</td>
</tr>
<tr>
<td>C20A C15A C16A</td>
<td>120.6(4)</td>
<td>0</td>
</tr>
<tr>
<td>C20A C15A C14A</td>
<td>124.2(4)</td>
<td>0</td>
</tr>
<tr>
<td>C16A C15A C14A</td>
<td>115.0(4)</td>
<td>0</td>
</tr>
<tr>
<td>C17A C16A C15A</td>
<td>122.3(4)</td>
<td>0</td>
</tr>
<tr>
<td>C16A C17A C18A</td>
<td>116.3(4)</td>
<td>0</td>
</tr>
<tr>
<td>C16A C17A C33A</td>
<td>120.8(4)</td>
<td>0</td>
</tr>
<tr>
<td>C18A C17A C33A</td>
<td>122.9(4)</td>
<td>0</td>
</tr>
<tr>
<td>C19A C18A C17A</td>
<td>125.0(5)</td>
<td>0</td>
</tr>
<tr>
<td>C18A C19A C20A</td>
<td>118.4(4)</td>
<td>0</td>
</tr>
<tr>
<td>C18A C19A C29A</td>
<td>121.2(5)</td>
<td>0</td>
</tr>
<tr>
<td>C20A C19A C29A</td>
<td>120.4(4)</td>
<td>0</td>
</tr>
<tr>
<td>O2A C20A C15A</td>
<td>123.2(5)</td>
<td>0</td>
</tr>
</tbody>
</table>
O2A C20A C19A 119.7(4) . . ?
C15A C20A C19A 117.1(4) . . ?
C23A C21A C2A 112.0(5) . . ?
C23A C21A C24A 107.5(6) . . ?
C2A C21A C24A 113.9(4) . . ?
C23A C21A C22A 112.4(6) . . ?
C2A C21A C22A 106.1(6) . . ?
C24A C21A C22A 104.7(5) . . ?
C26' C25A C26A 129.5(9) . . ?
C26' C25A C28' 114.3(12) . . ?
C26A C25A C28' 45.9(9) . . ?
C26' C25A C4A 116.4(8) . . ?
C26A C25A C4A 114.1(6) . . ?
C28' C25A C4A 109.2(8) . . ?
C26' C25A C27A 53.1(9) . . ?
C26A C25A C27A 109.7(9) . . ?
C28' C25A C27A 141.8(10) . . ?
C4A C25A C27A 108.0(7) . . ?
C26' C25A C28A 54.7(10) . . ?
C26A C25A C28A 108.3(9) . . ?
C28' C25A C28A 67.5(11) . . ?
C4A C25A C28A 109.3(6) . . ?
C27A C25A C28A 107.3(8) . . ?
C26' C25A C27' 105.2(11) . . ?
C26A C25A C27' 59.2(9) . . ?
C28' C25A C27' 104.7(10) . . ?
C4A C25A C27' 105.8(8) . . ?
C27A C25A C27' 56.5(10) . . ?
C28A C25A C27' 144.6(8) . . ?
C31A C29A C32A 106.8(5) . . ?
C31A C29A C19A 109.6(4) . . ?
C32A C29A C19A 111.8(4) . . ?
C31A C29A C30A 109.9(4) . . ?
C32A C29A C30A 108.0(5) . . ?
C19A C29A C30A 110.7(4) . . ?
C34' C33A C35A 134.7(11) . . ?
C34' C33A C35' 114.9(14) . . ?
C35A C33A C35' 33.3(8) . . ?
C34' C33A C36' 111.5(13) . . ?
C35A C33A C36' 73.6(10) . . ?
C35' C33A C36' 106.3(12) . . ?
C34' C33A C17A 107.4(9) . . ?
C35A C33A C17A 111.7(6) . . ?
C35' C33A C17A 104.5(8) . . ?
C36' C33A C17A 112.0(7) . . ?
C34' C33A C36A 78.0(12) . . ?
C35A C33A C36A 108.3(7) . . ?
C35' C33A C36A 137.6(9) . . ?
C36' C33A C36A 37.0(8) . . ?
C17A C33A C36A 109.6(5) . . ?
C34' C33A C34A 33.4(10) . . ?
C35A C33A C34A 107.2(6) . . ?
C35' C33A C34A 81.8(10) . . ?
C36' C33A C34A 129.3(9) . . ?
<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angle (°)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C28</td>
<td>C25</td>
<td>C27</td>
<td>106.8(9)</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C25</td>
<td>C4B</td>
<td>115.9(13)</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>C25</td>
<td>C4B</td>
<td>121.0(11)</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>C25</td>
<td>C4B</td>
<td>95.7(12)</td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>C29B</td>
<td>C31B</td>
<td>108.3(5)</td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>C29B</td>
<td>C30B</td>
<td>109.1(5)</td>
<td></td>
</tr>
<tr>
<td>C31B</td>
<td>C29B</td>
<td>C30B</td>
<td>108.7(5)</td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>C29B</td>
<td>C17B</td>
<td>111.4(4)</td>
<td></td>
</tr>
<tr>
<td>C31B</td>
<td>C29B</td>
<td>C17B</td>
<td>110.3(4)</td>
<td></td>
</tr>
<tr>
<td>C30B</td>
<td>C29B</td>
<td>C17B</td>
<td>109.1(4)</td>
<td></td>
</tr>
<tr>
<td>C35B</td>
<td>C33B</td>
<td>C36B</td>
<td>107.9(4)</td>
<td></td>
</tr>
<tr>
<td>C35B</td>
<td>C33B</td>
<td>C19B</td>
<td>109.4(4)</td>
<td></td>
</tr>
<tr>
<td>C36B</td>
<td>C33B</td>
<td>C19B</td>
<td>112.7(4)</td>
<td></td>
</tr>
<tr>
<td>C35B</td>
<td>C33B</td>
<td>C34B</td>
<td>109.6(5)</td>
<td></td>
</tr>
<tr>
<td>C36B</td>
<td>C33B</td>
<td>C34B</td>
<td>106.4(4)</td>
<td></td>
</tr>
<tr>
<td>C19B</td>
<td>C33B</td>
<td>C34B</td>
<td>110.8(4)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>C37B</td>
<td>C42B</td>
<td>123.1(4)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>C37B</td>
<td>C38B</td>
<td>119.3(4)</td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>C37B</td>
<td>C38B</td>
<td>117.6(4)</td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>C38B</td>
<td>C37B</td>
<td>118.0(4)</td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>C38B</td>
<td>C57B</td>
<td>121.6(4)</td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>C38B</td>
<td>C57B</td>
<td>120.4(4)</td>
<td></td>
</tr>
<tr>
<td>C38B</td>
<td>C39B</td>
<td>C40B</td>
<td>125.4(5)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C40B</td>
<td>C39B</td>
<td>115.9(4)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C40B</td>
<td>C61B</td>
<td>124.7(4)</td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>C40B</td>
<td>C61B</td>
<td>119.4(4)</td>
<td></td>
</tr>
<tr>
<td>C40B</td>
<td>C41B</td>
<td>C42B</td>
<td>122.8(4)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C42B</td>
<td>C37B</td>
<td>120.2(4)</td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C42B</td>
<td>C43B</td>
<td>115.8(4)</td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>C42B</td>
<td>C43B</td>
<td>123.9(4)</td>
<td></td>
</tr>
<tr>
<td>N3B</td>
<td>C43B</td>
<td>C42B</td>
<td>126.3(4)</td>
<td></td>
</tr>
<tr>
<td>C45B</td>
<td>C44B</td>
<td>N3B</td>
<td>125.0(4)</td>
<td></td>
</tr>
<tr>
<td>C45B</td>
<td>C44B</td>
<td>C49B</td>
<td>119.8(4)</td>
<td></td>
</tr>
<tr>
<td>N3B</td>
<td>C44B</td>
<td>C49B</td>
<td>115.2(4)</td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>C45B</td>
<td>C44B</td>
<td>119.7(4)</td>
<td></td>
</tr>
<tr>
<td>C47B</td>
<td>C46B</td>
<td>C45B</td>
<td>120.6(4)</td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>C47B</td>
<td>C48B</td>
<td>120.4(4)</td>
<td></td>
</tr>
<tr>
<td>C49B</td>
<td>C48B</td>
<td>C47B</td>
<td>120.2(4)</td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>C49B</td>
<td>N4B</td>
<td>125.3(4)</td>
<td></td>
</tr>
<tr>
<td>C48B</td>
<td>C49B</td>
<td>C44B</td>
<td>119.2(4)</td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>C49B</td>
<td>C44B</td>
<td>115.5(4)</td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>C50B</td>
<td>C51B</td>
<td>127.0(4)</td>
<td></td>
</tr>
<tr>
<td>C56B</td>
<td>C51B</td>
<td>C52B</td>
<td>121.3(4)</td>
<td></td>
</tr>
<tr>
<td>C56B</td>
<td>C51B</td>
<td>C50B</td>
<td>124.0(4)</td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>C51B</td>
<td>C50B</td>
<td>114.7(4)</td>
<td></td>
</tr>
<tr>
<td>C53B</td>
<td>C52B</td>
<td>C51B</td>
<td>121.9(4)</td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>C53B</td>
<td>C54B</td>
<td>116.0(4)</td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>C53B</td>
<td>C65B</td>
<td>123.3(4)</td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>C53B</td>
<td>C65B</td>
<td>120.8(4)</td>
<td></td>
</tr>
<tr>
<td>C55B</td>
<td>C54B</td>
<td>C53B</td>
<td>125.7(4)</td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>C55B</td>
<td>C56B</td>
<td>118.0(4)</td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>C55B</td>
<td>C69B</td>
<td>121.4(4)</td>
<td></td>
</tr>
<tr>
<td>C56B</td>
<td>C55B</td>
<td>C69B</td>
<td>120.6(4)</td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>C56B</td>
<td>C51B</td>
<td>122.7(4)</td>
<td></td>
</tr>
</tbody>
</table>
C76" N5" C75" 109.4(5) . . ?
C73" N5" C75" 108.1(5) . . ?
C76" N5" Zn2B 109.2(5) . . ?
C73" N5" Zn2B 114.9(5) . . ?
C75" N5" Zn2B 103.7(4) . . ?
C73" N6" C77" 110.8(5) . . ?
C73" N6" C74" 109.4(5) . . ?
C77" N6" C74" 111.7(5) . . ?
C73" N6" Zn1B 106.4(5) . . ?
C77" N6" Zn1B 110.5(4) . . ?
C74" N6" Zn1B 108.0(4) . . ?
C78" N7" C75" 112.7(5) . . ?
C78" N7" C74" 113.0(5) . . ?
C75" N7" C74" 105.5(5) . . ?
N6" C73" N5" 114.3(4) . . ?
N6" C74" N7" 112.1(5) . . ?
N5" C75" N7" 114.5(5) . . ?
N5" C76" P1" 115.4(4) . . ?
N6" C77" P1" 114.5(4) . . ?
N7" C78" P1" 119.2(3) . . ?
N1R C1R C2R 179.2 . . ?
N1T C1T C2T 170.1 . . ?
N1T' C1T' C2T' 170.0 . . ?
N1T" C1T" C2T" 171.7(3) 2_666 . ?
N1T* C1T* C2T* 164.88(15) 1_565 2_676 ?
N1U C1U C2U 177.7 . . ?
N1V C1V C2V 177.1(12) . 1_545 ?
N1W C1W C2W 167.7(15) 2_567 2_567 ?
N1W' C1W' C2W' 162(3) . . ?

loop_
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
 _geom_torsion_site_symmetry_1
 _geom_torsion_site_symmetry_2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
O2A Zn1A N1A C7A -91.1(5) . . ?
O1A Zn1A N1A C7A 17.4(4) . . ?
N2A Zn1A N1A C7A -152.4(4) . . ?
N6A Zn1A N1A C7A 109.6(4) . . ?
O2A Zn1A N1A C8A 76.4(5) . . ?
O1A Zn1A N1A C8A -175.1(3) . . ?
N2A Zn1A N1A C8A 15.2(3) . . ?
N6A Zn1A N1A C8A -82.9(3) . . ?
O2A Zn1A N2A C14A -3.8(4) . . ?
O1A Zn1A N2A C14A 118.6(5) . . ?
N1A Zn1A N2A C14A 153.0(4) . . ?
N6A Zn1A N2A C14A -101.8(4) . . ?
O2A Zn1A N2A C13A -173.5(3) . . ?
O1A Zn1A N2A C13A -51.1(7) . . ?
<table>
<thead>
<tr>
<th>Atom1</th>
<th>Atom2</th>
<th>Atom3</th>
<th>Atom4</th>
<th>Angle (°)</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1A</td>
<td>Zn1A</td>
<td>N2A</td>
<td>C13A</td>
<td>-16.6(3)</td>
<td></td>
</tr>
<tr>
<td>N6A</td>
<td>Zn1A</td>
<td>N2A</td>
<td>C13A</td>
<td>88.5(3)</td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N3A</td>
<td>C43A</td>
<td>93.3(4)</td>
<td></td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N3A</td>
<td>C43A</td>
<td>-9.4(4)</td>
<td></td>
</tr>
<tr>
<td>N4A</td>
<td>Zn2A</td>
<td>N3A</td>
<td>C44A</td>
<td>157.6(4)</td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>Zn2A</td>
<td>N3A</td>
<td>C44A</td>
<td>-104.2(4)</td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C50A</td>
<td>-6.9(4)</td>
<td></td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C50A</td>
<td>88.5(3)</td>
<td></td>
</tr>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C50A</td>
<td>115.9(5)</td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C50A</td>
<td>99.9(4)</td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C49A</td>
<td>62.6(6)</td>
<td></td>
</tr>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C49A</td>
<td>17.6(3)</td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>Zn2A</td>
<td>N4A</td>
<td>C49A</td>
<td>-81.6(3)</td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C7B</td>
<td>92.7(5)</td>
<td></td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C7B</td>
<td>-24.0(4)</td>
<td></td>
</tr>
<tr>
<td>N2B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C7B</td>
<td>147.4(4)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C7B</td>
<td>-119.5(4)</td>
<td></td>
</tr>
<tr>
<td>O6'</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C7B</td>
<td>-118.0(4)</td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C8B</td>
<td>-73.4(5)</td>
<td></td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C8B</td>
<td>169.9(3)</td>
<td></td>
</tr>
<tr>
<td>N2B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C8B</td>
<td>-18.7(3)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C8B</td>
<td>74.4(4)</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>Zn1B</td>
<td>N1B</td>
<td>C8B</td>
<td>75.9(4)</td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>9.3(4)</td>
<td></td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C14B</td>
<td>-121.6(5)</td>
<td></td>
</tr>
<tr>
<td>N1B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C14B</td>
<td>-151.6(4)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C14B</td>
<td>103.8(4)</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C14B</td>
<td>106.9(4)</td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>-179.4(3)</td>
<td></td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>49.8(6)</td>
<td></td>
</tr>
<tr>
<td>N1B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>19.8(3)</td>
<td></td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>-84.8(3)</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>Zn1B</td>
<td>N2B</td>
<td>C13B</td>
<td>-81.8(3)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C43B</td>
<td>3.3(4)</td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C43B</td>
<td>-116.0(5)</td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C43B</td>
<td>-154.1(4)</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C43B</td>
<td>102.3(4)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C43B</td>
<td>103.2(4)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C44B</td>
<td>176.1(3)</td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C44B</td>
<td>56.9(6)</td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C44B</td>
<td>18.7(3)</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C44B</td>
<td>-84.9(4)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C44B</td>
<td>-107.4(4)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N4B</td>
<td>C50B</td>
<td>94.4(4)</td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N4B</td>
<td>C50B</td>
<td>-15.3(4)</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>Zn2B</td>
<td>N4B</td>
<td>C50B</td>
<td>153.2(4)</td>
<td></td>
</tr>
<tr>
<td>N6B</td>
<td>Zn2B</td>
<td>N4B</td>
<td>C50B</td>
<td>-109.1(4)</td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N4B</td>
<td>C49B</td>
<td>-77.7(4)</td>
<td></td>
</tr>
</tbody>
</table>
O4B Zn2B N4B C49B 172.7(3) ?
N5" Zn2B N4B C49B 80.5(4) ?
N3B Zn2B N4B C49B -18.9(3) ?
N6B Zn2B N4B C49B 78.9(3) ?
O2A Zn1A O1A C1A 135.5(5) ?
N2A Zn1A O1A C1A 14.8(8) ?
N1A Zn1A O1A C1A -18.8(5) ?
N6A Zn1A O1A C1A -125.6(5) ?
O1A Zn1A O2A C20A -158.3(4) ?
N2A Zn1A O2A C20A 5.9(4) ?
N1A Zn1A O2A C20A -53.0(6) ?
N6A Zn1A O2A C20A 107.0(4) ?
O4A Zn2A O3A C37A -139.8(4) ?
N3A Zn2A O3A C37A 11.6(4) ?
N4A Zn2A O3A C37A -32.2(7) ?
N5A Zn2A O3A C37A 112.5(4) ?
O3A Zn2A O4A C56A 167.7(4) ?
N3A Zn2A O4A C56A 62.7(5) ?
N4A Zn2A O4A C56A 5.3(4) ?
N5A Zn2A O4A C56A -94.8(4) ?
O2B Zn1B O1B C1B -134.6(4) ?
N1B Zn1B O1B C1B 23.8(4) ?
N2B Zn1B O1B C1B -5.4(7) ?
N5B Zn1B O1B C1B 129.2(4) ?
N6" Zn1B O1B C1B 126.5(4) ?
O1B Zn1B O2B C20B 153.4(4) ?
N1B Zn1B O2B C20B 39.4(6) ?
N2B Zn1B O2B C20B -13.4(4) ?
N5B Zn1B O2B C20B -109.5(4) ?
N6" Zn1B O2B C20B -110.3(4) ?
O4B Zn2B O3B C37B 163.2(4) ?
N4B Zn2B O3B C37B 56.6(5) ?
N5" Zn2B O3B C37B -102.2(5) ?
N3B Zn2B O3B C37B -0.1(4) ?
N6B Zn2B O3B C37B -100.4(4) ?
O3B Zn2B O4B C56B -136.1(4) ?
N4B Zn2B O4B C56B 18.4(4) ?
N5" Zn2B O4B C56B 124.0(4) ?
N3B Zn2B O4B C56B -18.7(7) ?
N6B Zn2B O4B C56B 122.8(4) ?
Zn1A O1A C1A C6A 13.8(7) ?
Zn1A O1A C1A C2A -166.6(3) ?
O1A C1A C2A C3A 179.5(5) ?
C6A C1A C2A C3A -0.9(7) ?
O1A C1A C2A C21A -2.1(8) ?
C6A C1A C2A C21A 177.5(5) ?
C1A C2A C3A C4A 0.3(8) ?
C21A C2A C3A C4A -178.1(6) ?
C2A C3A C4A C5A 0.2(9) ?
C2A C3A C4A C25A 179.5(6) ?
C3A C4A C5A C6A 0.0(9) ?
C25A C4A C5A C6A -179.3(6) ?
C4A C5A C6A C7A -179.7(5) ?
C4A C5A C6A C1A -0.7(8) ?
<table>
<thead>
<tr>
<th>C1A C2A C21A C22A</th>
<th>-67.5(7) ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5A C4A C25A C26A</td>
<td>-179.3(12) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C26A</td>
<td>1.4(14) ?</td>
</tr>
<tr>
<td>C5A C4A C25A C26A</td>
<td>1.4(12) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C26A</td>
<td>-178.0(10) ?</td>
</tr>
<tr>
<td>C5A C4A C25A C28A</td>
<td>-48.0(14) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C28A</td>
<td>132.7(12) ?</td>
</tr>
<tr>
<td>C5A C4A C25A C27A</td>
<td>123.6(9) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C27A</td>
<td>-55.7(10) ?</td>
</tr>
<tr>
<td>C5A C4A C25A C28A</td>
<td>-120.0(7) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C28A</td>
<td>60.7(14) ?</td>
</tr>
<tr>
<td>C5A C4A C25A C27A</td>
<td>123.6(9) ?</td>
</tr>
<tr>
<td>C3A C4A C25A C27A</td>
<td>-55.7(10) ?</td>
</tr>
<tr>
<td>C18A C19A C29A C31A</td>
<td>120.6(5) ?</td>
</tr>
<tr>
<td>C20A C19A C29A C31A</td>
<td>57.6(6) ?</td>
</tr>
<tr>
<td>C18A C19A C29A C32A</td>
<td>2.3(7) ?</td>
</tr>
<tr>
<td>C20A C19A C29A C32A</td>
<td>-175.9(5) ?</td>
</tr>
<tr>
<td>C18A C19A C29A C30A</td>
<td>-118.1(5) ?</td>
</tr>
<tr>
<td>C20A C19A C29A C30A</td>
<td>63.8(6) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C34A</td>
<td>-141.8(12) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C34A</td>
<td>41.4(13) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C35A</td>
<td>61.4(7) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C35A</td>
<td>-115.4(7) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C35A</td>
<td>50.7(10) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C35A</td>
<td>81.1(10) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C36A</td>
<td>-19.0(11) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C36A</td>
<td>164.2(10) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C36A</td>
<td>-58.6(7) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C36A</td>
<td>124.6(6) ?</td>
</tr>
<tr>
<td>C16A C17A C33A C34A</td>
<td>-176.9(6) ?</td>
</tr>
<tr>
<td>C18A C17A C33A C34A</td>
<td>6.3(8) ?</td>
</tr>
<tr>
<td>Zn2A O3A C37A C42A</td>
<td>-10.2(6) ?</td>
</tr>
<tr>
<td>Zn2A O3A C37A C38A</td>
<td>168.9(3) ?</td>
</tr>
<tr>
<td>O3A C37A C38A C39A</td>
<td>-179.8(4) ?</td>
</tr>
<tr>
<td>C42A C37A C38A C39A</td>
<td>-0.6(6) ?</td>
</tr>
<tr>
<td>O3A C37A C38A C57A</td>
<td>-0.8(7) ?</td>
</tr>
<tr>
<td>C42A C37A C38A C57A</td>
<td>178.4(4) ?</td>
</tr>
<tr>
<td>C37A C38A C39A C40A</td>
<td>-0.5(7) ?</td>
</tr>
<tr>
<td>C57A C38A C39A C40A</td>
<td>-179.5(4) ?</td>
</tr>
<tr>
<td>C38A C39A C40A C41A</td>
<td>1.2(7) ?</td>
</tr>
<tr>
<td>C38A C39A C40A C61A</td>
<td>179.5(4) ?</td>
</tr>
<tr>
<td>C39A C40A C41A C42A</td>
<td>-0.7(6) ?</td>
</tr>
<tr>
<td>C61A C40A C41A C42A</td>
<td>-179.0(4) ?</td>
</tr>
<tr>
<td>O3A C37A C42A C41A</td>
<td>-179.8(4) ?</td>
</tr>
<tr>
<td>C38A C37A C42A C41A</td>
<td>1.0(6) ?</td>
</tr>
<tr>
<td>O3A C37A C42A C43A</td>
<td>2.6(7) ?</td>
</tr>
<tr>
<td>C38A C37A C42A C43A</td>
<td>-176.6(4) ?</td>
</tr>
<tr>
<td>C40A C41A C42A C37A</td>
<td>-0.3(7) ?</td>
</tr>
<tr>
<td>C40A C41A C42A C43A</td>
<td>177.5(4) ?</td>
</tr>
<tr>
<td>C44A N3A C43A C42A</td>
<td>-178.2(4) ?</td>
</tr>
<tr>
<td>Zn2A N3A C43A C42A</td>
<td>6.9(6) ?</td>
</tr>
<tr>
<td>C37A C42A C43A N3A</td>
<td>-1.5(7) ?</td>
</tr>
<tr>
<td>C41A C42A C43A N3A</td>
<td>-179.2(4) ?</td>
</tr>
<tr>
<td>C43A N3A C44A C45A</td>
<td>21.9(6) ?</td>
</tr>
</tbody>
</table>
Zn2A N3A C44A C45A -162.6(4) ?
C43A N3A C44A C49A -159.9(4) ?
Zn2A N3A C44A C49A 15.7(5) ?
C49A C44A C45A C46A 1.7(7) ?
N3A C44A C45A C46A 179.9(4) ?
C44A C45A C46A C47A -2.0(7) ?
C45A C46A C47A C48A 0.6(7) ?
C46A C47A C48A C49A 1.1(7) ?
C47A C48A C49A C44A -1.3(7) ?
C47A C48A C49A N4A -178.9(4) ?
C45A C44A C49A C48A -0.1(7) ?
N3A C44A C49A C48A -178.4(4) ?
C45A C44A C49A N4A 177.7(4) ?
N3A C44A C49A N4A -0.6(6) ?
C50A N4A C49A C48A -18.5(7) ?
Zn2A N4A C49A C48A 163.0(4) ?
C50A N4A C49A C44A 163.8(4) ?
Zn2A N4A C49A C44A -14.6(5) ?
C49A N4A C50A C51A -176.7(5) ?
Zn2A N4A C50A C51A 1.6(7) ?
N4A C50A C51A C52A -177.9(5) ?
N4A C50A C51A C56A 8.5(8) ?
C50A C51A C52A C53A -172.9(5) ?
C56A C51A C52A C53A 0.9(8) ?
C51A C52A C53A C54A 2.8(7) ?
C51A C52A C53A C65A 179.8(5) ?
C52A C53A C54A C55A -1.7(7) ?
C65A C53A C54A C55A -178.8(4) ?
C53A C54A C55A C56A -3.0(7) ?
C53A C54A C55A C69A 175.0(4) ?
Zn2A O4A C56A C51A 1.9(7) ?
Zn2A O4A C56A C55A -176.4(3) ?
C52A C51A C56A O4A 176.1(4) ?
C50A C51A C56A O4A -10.6(8) ?
C52A C51A C56A C55A -5.5(7) ?
C50A C51A C56A C55A 167.7(4) ?
C54A C55A C56A O4A -175.2(4) ?
C69A C55A C56A O4A 6.8(7) ?
C54A C55A C56A C51A 6.5(6) ?
C69A C55A C56A C51A -171.6(4) ?
C39A C38A C57A C58A 0.1(7) ?
C37A C38A C57A C58A -178.9(4) ?
C39A C38A C57A C59A 119.8(5) ?
C37A C38A C57A C59A -59.1(6) ?
C39A C38A C57A C60A -118.8(5) ?
C37A C38A C57A C60A 62.2(6) ?
C41A C40A C61A C63A -3.4(6) ?
C39A C40A C61A C63A 178.5(4) ?
C41A C40A C61A C64A -124.6(5) ?
C39A C40A C61A C64A 57.2(6) ?
C41A C40A C61A C62A 116.5(5) ?
C39A C40A C61A C62A -61.7(6) ?
C52A C53A C65A C67A -116.3(6) ?
C54A C53A C65A C67A 60.6(6) ?
<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Atom 4</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C52A</td>
<td>C53A</td>
<td>C65A</td>
<td>C66A</td>
<td>4.7(7)</td>
</tr>
<tr>
<td>C54A</td>
<td>C53A</td>
<td>C65A</td>
<td>C66A</td>
<td>-178.4(4)</td>
</tr>
<tr>
<td>C52A</td>
<td>C53A</td>
<td>C68A</td>
<td>C66A</td>
<td>124.3(5)</td>
</tr>
<tr>
<td>C54A</td>
<td>C53A</td>
<td>C68A</td>
<td>C66A</td>
<td>-58.8(6)</td>
</tr>
<tr>
<td>C54A</td>
<td>C55A</td>
<td>C69A</td>
<td>C70A</td>
<td>0.4(7)</td>
</tr>
<tr>
<td>C56A</td>
<td>C55A</td>
<td>C69A</td>
<td>C70A</td>
<td>178.4(4)</td>
</tr>
<tr>
<td>C54A</td>
<td>C55A</td>
<td>C71A</td>
<td>C69A</td>
<td>-117.9(5)</td>
</tr>
<tr>
<td>C56A</td>
<td>C55A</td>
<td>C71A</td>
<td>C69A</td>
<td>60.1(6)</td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C76A</td>
<td>-33.32(10)</td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C76A</td>
<td>66.02(9)</td>
</tr>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C76A</td>
<td>155.49(10)</td>
</tr>
<tr>
<td>N4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C76A</td>
<td>-124.71(11)</td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C75A</td>
<td>85.99(11)</td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C75A</td>
<td>-174.67(10)</td>
</tr>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C75A</td>
<td>-85.20(11)</td>
</tr>
<tr>
<td>N4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C75A</td>
<td>-5.40(12)</td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C73A</td>
<td>152.99(10)</td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C73A</td>
<td>-53.66(10)</td>
</tr>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C73A</td>
<td>35.82(11)</td>
</tr>
<tr>
<td>N4A</td>
<td>Zn2A</td>
<td>N5A</td>
<td>C73A</td>
<td>115.62(11)</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C73A</td>
<td>-65.66(9)</td>
</tr>
<tr>
<td>O1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C73A</td>
<td>-167.15(11)</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C73A</td>
<td>24.64(11)</td>
</tr>
<tr>
<td>N1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C73A</td>
<td>105.11(10)</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C77A</td>
<td>170.26(9)</td>
</tr>
<tr>
<td>O1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C77A</td>
<td>68.77(11)</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C77A</td>
<td>-99.44(11)</td>
</tr>
<tr>
<td>N1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C77A</td>
<td>-18.97(11)</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C74A</td>
<td>50.33(9)</td>
</tr>
<tr>
<td>O1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C74A</td>
<td>-51.17(11)</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C74A</td>
<td>140.62(11)</td>
</tr>
<tr>
<td>N1A</td>
<td>Zn1A</td>
<td>N6A</td>
<td>C74A</td>
<td>-138.90(10)</td>
</tr>
<tr>
<td>C77A</td>
<td>N6A</td>
<td>C73A</td>
<td>N5A</td>
<td>-66.7</td>
</tr>
<tr>
<td>C74A</td>
<td>N6A</td>
<td>C73A</td>
<td>N5A</td>
<td>58.3</td>
</tr>
<tr>
<td>Zn1A</td>
<td>N6A</td>
<td>C73A</td>
<td>N5A</td>
<td>170.68(7)</td>
</tr>
<tr>
<td>C76A</td>
<td>N5A</td>
<td>C73A</td>
<td>N6A</td>
<td>63.8</td>
</tr>
<tr>
<td>C75A</td>
<td>N5A</td>
<td>C73A</td>
<td>N6A</td>
<td>-56.2</td>
</tr>
<tr>
<td>Zn2A</td>
<td>N5A</td>
<td>C73A</td>
<td>N6A</td>
<td>-177.00(6)</td>
</tr>
<tr>
<td>C73A</td>
<td>N6A</td>
<td>C74A</td>
<td>N7A</td>
<td>-59.2</td>
</tr>
<tr>
<td>C77A</td>
<td>N6A</td>
<td>C74A</td>
<td>N7A</td>
<td>65.1</td>
</tr>
<tr>
<td>Zn1A</td>
<td>N6A</td>
<td>C74A</td>
<td>N7A</td>
<td>-177.6</td>
</tr>
<tr>
<td>C78A</td>
<td>N7A</td>
<td>C74A</td>
<td>N6A</td>
<td>-63.6</td>
</tr>
<tr>
<td>C75A</td>
<td>N7A</td>
<td>C74A</td>
<td>N6A</td>
<td>54.4</td>
</tr>
<tr>
<td>C76A</td>
<td>N5A</td>
<td>C75A</td>
<td>N7A</td>
<td>-66.5</td>
</tr>
<tr>
<td>C73A</td>
<td>N5A</td>
<td>C75A</td>
<td>N7A</td>
<td>54.3</td>
</tr>
<tr>
<td>Zn2A</td>
<td>N5A</td>
<td>C75A</td>
<td>N7A</td>
<td>173.8</td>
</tr>
<tr>
<td>C78A</td>
<td>N7A</td>
<td>C75A</td>
<td>N5A</td>
<td>67.1</td>
</tr>
<tr>
<td>C74A</td>
<td>N7A</td>
<td>C75A</td>
<td>N5A</td>
<td>-51.4</td>
</tr>
<tr>
<td>C75A</td>
<td>N5A</td>
<td>C76A</td>
<td>P1A</td>
<td>59.2</td>
</tr>
<tr>
<td>C73A</td>
<td>N5A</td>
<td>C76A</td>
<td>P1A</td>
<td>-62.1</td>
</tr>
<tr>
<td>Zn2A</td>
<td>N5A</td>
<td>C76A</td>
<td>P1A</td>
<td>179.5</td>
</tr>
<tr>
<td>C77A</td>
<td>P1A</td>
<td>C76A</td>
<td>N5A</td>
<td>53.3</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td>Torsion (°)</td>
<td>Value</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>C78A P1A C76A N5A</td>
<td>-42.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C73A N6A C77A P1A</td>
<td>66.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A N6A C77A P1A</td>
<td>-56.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1A N6A C77A P1A</td>
<td>-169.55(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A P1A C77A N6A</td>
<td>-53.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A P1A C77A N6A</td>
<td>38.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A N7A C78A P1A</td>
<td>-59.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A N7A C78A P1A</td>
<td>55.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C77A P1A C78A N7A</td>
<td>-44.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A P1A C78A N7A</td>
<td>47.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B O1B C1B C6B</td>
<td>-15.2(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B O1B C1B C2B</td>
<td>165.8(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B C1B C2B C3B</td>
<td>-178.4(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6B C1B C2B C3B</td>
<td>2.6(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B C1B C2B C21B</td>
<td>0.3(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6B C1B C2B C21B</td>
<td>-178.5(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1B C2B C3B C4B</td>
<td>-0.8(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21B C2B C3B C4B</td>
<td>-179.5(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B C3B C4B C5B</td>
<td>-0.2(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B C3B C4B C25B</td>
<td>169.9(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B C3B C4B C25"</td>
<td>-153.1(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3B C4B C5B C6B</td>
<td>-0.6(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25B C4B C5B C6B</td>
<td>-169.4(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25" C4B C5B C6B</td>
<td>156.2(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4B C5B C6B C1B</td>
<td>2.4(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4B C5B C6B C7B</td>
<td>-177.1(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B C1B C6B C5B</td>
<td>177.7(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B C1B C6B C5B</td>
<td>-3.3(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B C1B C6B C7B</td>
<td>-2.9(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B C1B C6B C7B</td>
<td>176.1(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B N1B C7B C6B</td>
<td>-177.5(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B N1B C7B C6B</td>
<td>17.4(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5B C6B C7B N1B</td>
<td>-179.9(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1B C6B C7B N1B</td>
<td>0.6(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7B N1B C8B C9B</td>
<td>31.6(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B N1B C8B C9B</td>
<td>-161.8(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7B N1B C8B C13B</td>
<td>-151.6(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B N1B C8B C13B</td>
<td>14.9(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13B C8B C9B C10B</td>
<td>0.6(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B C8B C9B C10B</td>
<td>177.2(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B C9B C10B C11B</td>
<td>-1.2(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9B C10B C11B C12B</td>
<td>0.1(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10B C11B C12B C13B</td>
<td>1.5(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11B C12B C13B C8B</td>
<td>-2.0(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11B C12B C13B C8B</td>
<td>-179.9(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9B C8B C13B C12B</td>
<td>1.0(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B C8B C13B C12B</td>
<td>-175.9(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9B C8B C13B C12B</td>
<td>179.1(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B C8B C13B C12B</td>
<td>2.2(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14B N2B C13B C12B</td>
<td>-28.5(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B N2B C13B C12B</td>
<td>159.8(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14B N2B C13B C8B</td>
<td>153.6(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1B N2B C13B C8B</td>
<td>-18.1(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13B N2B C14B C15B</td>
<td>-176.9(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle Difference (°)</th>
<th>Standard Deviation (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1B N2B C14B C15B</td>
<td>-6.2(6)</td>
<td></td>
</tr>
<tr>
<td>N2B C14B C15B C16B</td>
<td>177.2(4)</td>
<td></td>
</tr>
<tr>
<td>N2B C14B C15B C20B</td>
<td>1.9(7)</td>
<td></td>
</tr>
<tr>
<td>C20B C15B C16B C17B</td>
<td>-0.8(7)</td>
<td></td>
</tr>
<tr>
<td>C14B C15B C16B C17B</td>
<td>-176.3(4)</td>
<td></td>
</tr>
<tr>
<td>C15B C16B C17B C18B</td>
<td>1.1(7)</td>
<td></td>
</tr>
<tr>
<td>C15B C16B C17B C29B</td>
<td>180.0(4)</td>
<td></td>
</tr>
<tr>
<td>C16B C17B C18B C19B</td>
<td>-0.9(7)</td>
<td></td>
</tr>
<tr>
<td>C29B C17B C18B C19B</td>
<td>-179.8(4)</td>
<td></td>
</tr>
<tr>
<td>C17B C18B C19B C20B</td>
<td>0.3(7)</td>
<td></td>
</tr>
<tr>
<td>C17B C18B C19B C33B</td>
<td>177.9(4)</td>
<td></td>
</tr>
<tr>
<td>Zn1B O2B C20B C15B</td>
<td>13.4(6)</td>
<td></td>
</tr>
<tr>
<td>Zn1B O2B C20B C19B</td>
<td>-166.7(3)</td>
<td></td>
</tr>
<tr>
<td>C16B C15B C20B O2B</td>
<td>-179.9(4)</td>
<td></td>
</tr>
<tr>
<td>C14B C15B C20B O2B</td>
<td>-4.9(7)</td>
<td></td>
</tr>
<tr>
<td>C16B C15B C20B C19B</td>
<td>0.1(6)</td>
<td></td>
</tr>
<tr>
<td>C14B C15B C20B C19B</td>
<td>175.1(4)</td>
<td></td>
</tr>
<tr>
<td>C18B C19B C20B O2B</td>
<td>-179.8(4)</td>
<td></td>
</tr>
<tr>
<td>C33B C19B C20B O2B</td>
<td>2.5(6)</td>
<td></td>
</tr>
<tr>
<td>C18B C19B C20B C15B</td>
<td>0.1(6)</td>
<td></td>
</tr>
<tr>
<td>C33B C19B C20B C15B</td>
<td>-177.5(4)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C24 B</td>
<td>-131(2)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C24 B</td>
<td>-18(2)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C22 B</td>
<td>-102.1(13)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C22 B</td>
<td>-76.6(12)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C24 B</td>
<td>3.9(12)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C24 B</td>
<td>-174.7(10)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C22 B</td>
<td>-115.0(8)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C22 B</td>
<td>66.4(8)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C23 B</td>
<td>125.8(6)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C23 B</td>
<td>-52.9(7)</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C21B C23 B</td>
<td>-83(2)</td>
<td></td>
</tr>
<tr>
<td>C1B C2B C21B C23 B</td>
<td>173(2)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25B C26 B</td>
<td>-12.0(12)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25B C26 B</td>
<td>179.0(7)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25B C26 B</td>
<td>60.9(11)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25B C28 B</td>
<td>-132.9(8)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25B C28 B</td>
<td>58.1(10)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25B C28 B</td>
<td>-60.0(12)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25B C27 B</td>
<td>108.0(9)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25B C27 B</td>
<td>-60.9(9)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25B C27 B</td>
<td>-179.1(12)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25 B C26 B</td>
<td>31.6(14)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25 B C26 B</td>
<td>-174.4(10)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25 B C26 B</td>
<td>-92.8(13)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25 B C28 B</td>
<td>-104.0(13)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25 B C28 B</td>
<td>50.0(17)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25 B C28 B</td>
<td>131.6(18)</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C25 B C27 B</td>
<td>142.6(8)</td>
<td></td>
</tr>
<tr>
<td>C3B C4B C25 B C27 B</td>
<td>-63.4(12)</td>
<td></td>
</tr>
<tr>
<td>C25 B C4B C25 B C27 B</td>
<td>18.2(10)</td>
<td></td>
</tr>
<tr>
<td>C16B C17B C29B C32B</td>
<td>6.8(7)</td>
<td></td>
</tr>
<tr>
<td>C18B C17B C29B C32B</td>
<td>-174.4(5)</td>
<td></td>
</tr>
<tr>
<td>C16B C17B C29B C31B</td>
<td>127.1(5)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Error</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C18B C17B C29B C31B</td>
<td>-54.1(6)</td>
<td>?</td>
</tr>
<tr>
<td>C18B C19B C33B C35B</td>
<td>-115.7(5)</td>
<td>?</td>
</tr>
<tr>
<td>C18B C19B C33B C34B</td>
<td>123.4(5)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2B O3B C37B C42B</td>
<td>-0.6(7)</td>
<td>?</td>
</tr>
<tr>
<td>O3B C37B C38B C39B</td>
<td>-179.9(4)</td>
<td>?</td>
</tr>
<tr>
<td>O3B C37B C38B C57B</td>
<td>1.4(7)</td>
<td>?</td>
</tr>
<tr>
<td>C37B C38B C39B C40B</td>
<td>-0.2(7)</td>
<td>?</td>
</tr>
<tr>
<td>C38B C39B C40B C41B</td>
<td>1.6(7)</td>
<td>?</td>
</tr>
<tr>
<td>C39B C40B C41B C42B</td>
<td>1.6(7)</td>
<td>?</td>
</tr>
<tr>
<td>C42B C37B C38B C41B</td>
<td>-0.6(7)</td>
<td>?</td>
</tr>
<tr>
<td>O3B C37B C42B C43B</td>
<td>178.9(4)</td>
<td>?</td>
</tr>
<tr>
<td>C37B C42B C43B C39B</td>
<td>5.2(7)</td>
<td>?</td>
</tr>
<tr>
<td>C43B N3B C44B C45B</td>
<td>161.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>C43B N3B C44B C49B</td>
<td>157.3(4)</td>
<td>?</td>
</tr>
<tr>
<td>C43B N3B C44B C49B</td>
<td>-15.9(5)</td>
<td>?</td>
</tr>
<tr>
<td>C41B C42B C43B N3B</td>
<td>5.2(7)</td>
<td>?</td>
</tr>
<tr>
<td>C37B C42B C43B N3B</td>
<td>5.2(7)</td>
<td>?</td>
</tr>
<tr>
<td>C43B N3B C44B C45B</td>
<td>-15.9(5)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2B N3B C44B C45B</td>
<td>161.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>N3B C44B C45B C46B</td>
<td>-180.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>C49B C44B C45B C46B</td>
<td>-3.2(7)</td>
<td>?</td>
</tr>
<tr>
<td>C44B C45B C46B C47B</td>
<td>0.5(7)</td>
<td>?</td>
</tr>
<tr>
<td>C45B C46B C47B C48B</td>
<td>-2.8(7)</td>
<td>?</td>
</tr>
<tr>
<td>C47B C48B C49B N4B</td>
<td>1.6(7)</td>
<td>?</td>
</tr>
<tr>
<td>C50B N4B C49B C48B</td>
<td>178.5(4)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2B N4B C49B C48B</td>
<td>-162.1(4)</td>
<td>?</td>
</tr>
<tr>
<td>C50B N4B C49B C48B</td>
<td>156.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>N4B C50B C51B C56B</td>
<td>0.5(7)</td>
<td>?</td>
</tr>
<tr>
<td>formula</td>
<td>description</td>
<td>angle</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Zn2B O4B C56B C51B</td>
<td>-14.7(6)</td>
<td></td>
</tr>
<tr>
<td>Zn2B O4B C56B C55B</td>
<td>165.9(3)</td>
<td></td>
</tr>
<tr>
<td>C52B C51B C56B C55B</td>
<td>-0.7(6)</td>
<td></td>
</tr>
<tr>
<td>C69B C55B C56B O4B</td>
<td>1.2(7)</td>
<td></td>
</tr>
<tr>
<td>C69B C55B C56B O4B</td>
<td>1.1(7)</td>
<td></td>
</tr>
<tr>
<td>C52B C53B C54B C55B</td>
<td>179.4(4)</td>
<td></td>
</tr>
<tr>
<td>C54B C55B C56B O4B</td>
<td>1.2(7)</td>
<td></td>
</tr>
<tr>
<td>C54B C55B C69B C70B</td>
<td>67.2(6)</td>
<td></td>
</tr>
<tr>
<td>C56B C55B C69B C71B</td>
<td>7.1(7)</td>
<td></td>
</tr>
<tr>
<td>C56B C55B C69B C72B</td>
<td>127.6(5)</td>
<td></td>
</tr>
<tr>
<td>C54B C55B C69B C72B</td>
<td>-56.6(6)</td>
<td></td>
</tr>
<tr>
<td>C52B C53B C54B C55B</td>
<td>63.8(6)</td>
<td></td>
</tr>
<tr>
<td>C52B C53B C65B C68B</td>
<td>124.2(5)</td>
<td></td>
</tr>
<tr>
<td>C54B C53B C65B C68B</td>
<td>-56.6(6)</td>
<td></td>
</tr>
<tr>
<td>C52B C53B C65B C68B</td>
<td>3.3(7)</td>
<td></td>
</tr>
<tr>
<td>C54B C53B C65B C68B</td>
<td>3.3(7)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N5B C76B</td>
<td>-67.0(4)</td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N5B C76B</td>
<td>22.3(5)</td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N5B C76B</td>
<td>-130(6)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N5B C73B</td>
<td>-124.2(5)</td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N5B C73B</td>
<td>100.8(4)</td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N5B C73B</td>
<td>-24.2(5)</td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N5B C75B</td>
<td>-53.2(4)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>N3B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>N6B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>N3B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>N6B</td>
<td>Zn2B</td>
<td>N5″</td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N1B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N2B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>O2B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>O1B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N1B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N2B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>N5B</td>
<td>Zn1B</td>
<td>N6″</td>
</tr>
<tr>
<td>C77″</td>
<td>N6″</td>
<td>C73″</td>
</tr>
<tr>
<td>C74″</td>
<td>N6″</td>
<td>C73″</td>
</tr>
<tr>
<td>Zn1B</td>
<td>N6″</td>
<td>C73″</td>
</tr>
<tr>
<td>C76″</td>
<td>N5″</td>
<td>C73″</td>
</tr>
<tr>
<td>C75″</td>
<td>N5″</td>
<td>C73″</td>
</tr>
<tr>
<td>Zn2B</td>
<td>N5″</td>
<td>C73″</td>
</tr>
<tr>
<td>C73″</td>
<td>N6″</td>
<td>C74″</td>
</tr>
<tr>
<td>C77″</td>
<td>N6″</td>
<td>C74″</td>
</tr>
<tr>
<td>C78″</td>
<td>N6″</td>
<td>C74″</td>
</tr>
<tr>
<td>Zn1B</td>
<td>N6″</td>
<td>C74″</td>
</tr>
<tr>
<td>C78″</td>
<td>N7″</td>
<td>C74″</td>
</tr>
<tr>
<td>C75″</td>
<td>N7″</td>
<td>C74″</td>
</tr>
<tr>
<td>C76″</td>
<td>N5″</td>
<td>C75″</td>
</tr>
<tr>
<td>C73″</td>
<td>N5″</td>
<td>C75″</td>
</tr>
<tr>
<td>Zn2B</td>
<td>N5″</td>
<td>C75″</td>
</tr>
<tr>
<td>C78″</td>
<td>N7″</td>
<td>C75″</td>
</tr>
<tr>
<td>C74″</td>
<td>N7″</td>
<td>C75″</td>
</tr>
<tr>
<td>C73″</td>
<td>N5″</td>
<td>C76″</td>
</tr>
<tr>
<td>C75″</td>
<td>N5″</td>
<td>C76″</td>
</tr>
<tr>
<td>Zn2B</td>
<td>N5″</td>
<td>C76″</td>
</tr>
<tr>
<td>C77″</td>
<td>P1″</td>
<td>C76″</td>
</tr>
<tr>
<td>C78″</td>
<td>P1″</td>
<td>C76″</td>
</tr>
<tr>
<td>C73″</td>
<td>N6″</td>
<td>C77″</td>
</tr>
<tr>
<td>C74″</td>
<td>N6″</td>
<td>C77″</td>
</tr>
<tr>
<td>C73″</td>
<td>N7″</td>
<td>C78″</td>
</tr>
<tr>
<td>C75″</td>
<td>N7″</td>
<td>C78″</td>
</tr>
<tr>
<td>Zn1B</td>
<td>N6″</td>
<td>C77″</td>
</tr>
<tr>
<td>C78″</td>
<td>P1″</td>
<td>C78″</td>
</tr>
<tr>
<td>C75″</td>
<td>N7″</td>
<td>C78″</td>
</tr>
</tbody>
</table>
data_cu_ak993_05
_database_code_depnum_ccdc_archive 'CCDC 893437'
_trackingRef 'cu_AK993_05X.cif'
_audit_creation_method SHELXL-97
_chemical_name_systematic

;?

_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C78 H72.50 F6 N9 O6.25 P Zn3'
_chemical_formula_weight 1577.03

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
F F 0.0727 0.0534 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
P P 0.2955 0.4335 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Zn Zn -1.5491 0.6778 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic
_symmetry_space_group_name_H-M C2/c

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, y, -z+1/2'
'x+1/2, y+1/2, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
_cell_length_a 18.1552(4)
_cell_length_b 31.5457(8)
_cell_length_c 25.2433(7)
_cell_angle_alpha 90.00
_cell_angle_beta 105.4820(10)
_cell_angle_gamma 90.00
_cell_volume 13932.7(6)
_cell_formula_units_Z 8
It should be noted that the esd's of the cell dimensions are probably too low; they should be multiplied by a factor of 2 to 10.
_diffrn_reflns_theta_max 66.71
_reflns_number_total 16047
_reflns_number_gt 15195
_reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Bruker APEX2 v2011.4-0'
_computing_cell_refinement 'Bruker APEX2 v2011.4-0'
_computing_data_reduction 'Bruker SAINT V7.60A'
_computing_structure_solution 'Sir2011'
_computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'

_refine_special_details

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details 'calc w=1/[s^2(Fo^2)+(0.0638P)^2+88.7886P] where P=(Fo^2+2Fc^2)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment noref
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 16047
_refine_ls_number_parameters 938
_refine_ls_number_restraints 6
_refine_ls_R_factor_all 0.0531
_refine_ls_R_factor_gt 0.0497
_refine_ls_wR_factor_ref 0.1487
_refine_ls_wR_factor_gt 0.1436
_refine_ls_goodness_of_fit_ref 1.147
_refine_ls_restrained_S_all 1.146
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
<table>
<thead>
<tr>
<th>Atomic Position</th>
<th>Atom</th>
<th>Fractional Coordinates</th>
<th>U(eq)</th>
<th>Site Symmetry</th>
<th>Calculated Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1</td>
<td>Zn</td>
<td>-0.02543(3) 0.937251(18) 0.07319(3) 0.01769(15)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>Zn2</td>
<td>Zn</td>
<td>0.21234(3) 0.802438(18) 0.07981(2) 0.01760(15)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>Zn3</td>
<td>Zn</td>
<td>-0.10863(3) 0.754664(18) 0.07312(2) 0.01728(15)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P</td>
<td>0.07186(7) 0.83312(4) 0.20975(5) 0.0183(2)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>N</td>
<td>0.0521(2) 0.95552(11) 0.02845(16) 0.0187(8)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>N</td>
<td>-0.0838(2) 0.91859(11) -0.00548(16) 0.0197(9)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>N</td>
<td>0.1777(2) 0.74600(12) 0.03516(16) 0.0191(8)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>N</td>
<td>-0.10863(3) 0.754664(18) 0.07312(2) 0.01728(15)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>N</td>
<td>0.0521(2) 0.95552(11) 0.02845(16) 0.0187(8)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>N</td>
<td>-0.0838(2) 0.91859(11) -0.00548(16) 0.0197(9)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>N</td>
<td>0.1777(2) 0.74600(12) 0.03516(16) 0.0191(8)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>N</td>
<td>-0.10863(3) 0.754664(18) 0.07312(2) 0.01728(15)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>O</td>
<td>0.02692(17) 0.97449(10) 0.13349(13) 0.0212(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>O</td>
<td>-0.12284(17) 0.93490(10) 0.09402(13) 0.0222(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>O</td>
<td>0.27049(18) 0.76878(9) 0.14267(13) 0.0220(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>F</td>
<td>0.07535(17) 1.02097(10) 0.22315(12) 0.0336(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>F</td>
<td>0.30088(16) 1.05845(10) 0.17673(12) 0.0335(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>F</td>
<td>0.36665(17) 0.73759(9) 0.23431(12) 0.0340(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>C</td>
<td>0.0923(3) 0.99398(14) 0.1403(2) 0.0216(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>C</td>
<td>0.1211(3) 1.01801(15) 0.1886(2) 0.0229(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>H</td>
<td>0.1513 0.9774 0.1513 0.0274 0.024 Uiso 1 1 calc R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>C</td>
<td>0.2326(3) 1.03700(15) 0.1639(2) 0.0253(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>C</td>
<td>0.2106(3) 1.01510(15) 0.1166(2) 0.0229(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>C</td>
<td>0.1989(2) 0.79340(11) 0.02731(16) 0.0158(8)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>C</td>
<td>0.0923(3) 0.94019(14) 0.1403(2) 0.0216(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>C</td>
<td>0.0752(3) 0.94655(14) 0.1645(2) 0.0221(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>C</td>
<td>0.02692(17) 0.97449(10) 0.13349(13) 0.0212(7)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>C</td>
<td>0.0517(3) 0.92862(15) -0.1165(2) 0.0251(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>C</td>
<td>0.0807 0.9331 -0.1422 0.030 Uiso 1 1 calc R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>C</td>
<td>0.0145(3) 0.90395(15) -0.1310(2) 0.0246(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>C</td>
<td>0.0290 0.8905 -0.1660 0.030 Uiso 1 1 calc R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>C</td>
<td>0.0589(3) 0.89898(15) -0.0947(2) 0.0225(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>C</td>
<td>0.1042 0.8824 -0.1049 0.027 Uiso 1 1 calc R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H16</td>
<td>H</td>
<td>0.3214(2) 0.92148(13) 0.00702(19) 0.0173(10)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>H</td>
<td>0.2901(3) 0.91882(14) -0.0241(2) 0.0217(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H18</td>
<td>H</td>
<td>0.3019 0.9127 -0.0623 0.026 Uiso 1 1 calc R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H19</td>
<td>H</td>
<td>0.3478 0.92496(14) 0.0004(2) 0.0235(11)</td>
<td>Uani 1 1 d</td>
<td>. . .</td>
<td></td>
</tr>
</tbody>
</table>
C47 C 0.4176(3) 0.87963(19) 0.1761(3) 0.0466(17) Uani 1 1 d . . .
H47A H 0.4406 0.8785 0.2158 0.070 Uiso 1 1 calc R . .
H47B H 0.4580 0.8810 0.1571 0.070 Uiso 1 1 calc R . .
H47C H 0.3866 0.8542 0.1643 0.070 Uiso 1 1 calc R . .
C48 C 0.4164(4) 0.95895(18) 0.1833(3) 0.0432(15) Uani 1 1 d . . .
H48A H 0.3838 0.9841 0.1794 0.065 Uiso 1 1 calc R . .
H48B H 0.4538 0.9628 0.1620 0.065 Uiso 1 1 calc R . .
H48C H 0.4432 0.9549 0.2222 0.065 Uiso 1 1 calc R . .
C49 C -0.2093(2) 0.77933(13) 0.14208(19) 0.0168(10) Uani 1 1 d . . .
C50 C -0.2290(3) 0.77718(14) 0.19274(19) 0.0208(10) Uani 1 1 d . . .
C51 C -0.2844(2) 0.80075(15) 0.2064(2) 0.0208(10) Uani 1 1 d . . .
H51 H -0.2945 0.7979 0.2413 0.025 Uiso 1 1 calc R . .
C52 C -0.3254(3) 0.82912(15) 0.1672(2) 0.0218(11) Uani 1 1 d . . .
C53 C -0.3105(3) 0.83400(14) 0.1174(2) 0.0207(10) Uani 1 1 d . . .
C54 C -0.2526(2) 0.80910(14) 0.1036(2) 0.0195(10) Uani 1 1 d . . .
C55 C -0.2460(2) 0.81422(13) 0.04883(19) 0.0179(10) Uani 1 1 d . . .
C56 C -0.2093(2) 0.77933(13) -0.02789(19) 0.0184(10) Uani 1 1 d . . .
C57 C -0.2290(3) 0.77718(14) -0.0669(2) 0.0233(11) Uani 1 1 d . . .
C58 C -0.2526(2) 0.80910(14) -0.11965(19) 0.0214(11) Uani 1 1 d . . .
C59 C -0.1836(3) 0.80826(15) -0.1350(2) 0.0238(11) Uani 1 1 d . . .
C60 C -0.1778 0.8122 -0.1709 0.029 Uiso 1 1 calc R . .
C61 C -0.1410(3) 0.77654(14) -0.04500(19) 0.0196(10) Uani 1 1 d . . .
C62 C -0.0653(2) 0.71557(14) -0.0230(2) 0.0191(10) Uani 1 1 d . . .
C63 C -0.0526(2) 0.68099(15) 0.0091(2) 0.0200(10) Uani 1 1 d . . .
C64 C 0.0020(3) 0.64944(14) -0.0204(2) 0.0202(10) Uani 1 1 d . . .
C65 C 0.0405(3) 0.61502(15) 0.0056(2) 0.0244(11) Uani 1 1 d . . .
C66 C 0.0506(3) 0.61062(14) 0.0623(2) 0.0206(10) Uani 1 1 d . . .
C67 C 0.0780 0.5866 0.0801 0.025 Uiso 1 1 calc R . .
C68 C 0.0228(3) 0.63925(14) 0.0939(2) 0.0204(10) Uani 1 1 d . . .
C69 C 0.0168(3) 0.67612(14) 0.0667(2) 0.0210(11) Uani 1 1 d . . .
C70 C 0.0311(3) 0.63173(15) 0.1555(2) 0.0250(11) Uani 1 1 d . . .
C71 C 0.0741(3) 0.66896(16) 0.1898(2) 0.0288(12) Uani 1 1 d . . .
C72 C 0.0716(3) 0.67612(14) 0.1758(2) 0.0233(12) Uani 1 1 d . . .
C73 C 0.0814 0.6630 0.1552 0.045 Uiso 1 1 calc R . .
C74 C 0.0765 0.6046 0.1398 0.045 Uiso 1 1 calc R . .
C75 C 0.0764 0.6538 0.1552 0.045 Uiso 1 1 calc R . .
C76 C 0.0764(3) 0.59101(16) 0.1758(2) 0.0323(12) Uani 1 1 d . . .
C77 C 0.0832 0.5879 0.2154 0.048 Uiso 1 1 calc R . .
C78 C 0.1266 0.5927 0.1682 0.048 Uiso 1 1 calc R . .
C79 C 0.0484 0.5665 0.1566 0.048 Uiso 1 1 calc R . .
C80 C 0.0871(3) 0.86250(14) 0.09144(19) 0.0174(10) Uani 1 1 d . . .
C81 C 0.0745 0.8627 0.0508 0.021 Uiso 1 1 calc R . .
H73B H 0.1287 0.8832 0.1053 0.021 Uiso 1 1 calc R . .
C74 C 0.0509(2) 0.78934(14) 0.09221(19) 0.0161(9) Uani 1 1 d . .
H74A H 0.0376 0.7879 0.0516 0.019 Uiso 1 1 calc R . .
H74B H 0.0681 0.7608 0.1066 0.019 Uiso 1 1 calc R . .
C75 C -0.0425(2) 0.84384(13) 0.08263(19) 0.0161(9) Uani 1 1 d . .
H75A H -0.0878 0.8520 0.1017 0.018 Uiso 1 1 calc R . .
H75B H -0.0577 0.8437 0.0485 0.018 Uiso 1 1 calc R . .
C76 C 0.0365(3) 0.88142(14) 0.16983(19) 0.0188(10) Uani 1 1 d . .
H76A H -0.0103 0.8911 0.1816 0.022 Uiso 1 1 calc RD . .
H76B H 0.0755 0.9040 0.1811 0.023 Uiso 1 1 calc RD . .
C77 C 0.1433(3) 0.81902(14) 0.17267(19) 0.0189(10) Uani 1 1 d . .
H77A H 0.1868 0.8390 0.1838 0.023 Uiso 1 1 calc R . .
H77B H 0.1630 0.7903 0.1743 0.023 Uiso 1 1 calc R . .
C78 C -0.0041(3) 0.79727(14) 0.1792(19) 0.0182(10) Uani 1 1 d . .
H78A H 0.0102 0.7677 0.1792 0.022 Uiso 1 1 calc RD . .
H78B H 0.0522 0.8037 0.1801 0.022 Uiso 1 1 calc R . .
O1W O 0.0084 0.9464 0.2542 0.031 Uani 0.25 1 d PU A -1
H1W1 H -0.0053 0.9631 0.2265 0.047 Uiso 0.25 1 d PD B -1
H1W2 H 0.0251 0.9632 0.2816 0.047 Uiso 0.25 1 d PC -1

Zn1 0.0173(3) 0.0195(3) 0.0159(3) 0.0003(2) 0.0037(2) -0.0003(2)
Zn2 0.0189(3) 0.0196(3) 0.0154(3) 0.0004(2) 0.0064(2) 0.0005(2)
Zn3 0.0192(3) 0.0187(3) 0.0139(3) -0.0009(2) 0.0044(2) -0.0002(2)
P1 0.0199(6) 0.0219(6) 0.0128(6) -0.0006(5) 0.0040(5) 0.0000(4)
N1 0.020(2) 0.0189(19) 0.015(2) -0.0012(16) 0.0014(16) 0.0001(14)
N2 0.024(2) 0.0191(19) 0.017(2) -0.0019(16) 0.0070(17) 0.0003(15)
N3 0.0166(19) 0.0219(19) 0.020(2) -0.0049(16) 0.0063(15) 0.0008(15)
N4 0.021(2) 0.023(2) 0.017(2) -0.0018(16) 0.0086(16) -0.0004(15)
N5 0.0193(19) 0.0179(18) 0.014(2) -0.0001(15) 0.0005(15) -0.0006(15)
N6 0.0184(19) 0.0208(19) 0.014(2) 0.0001(16) 0.0052(15) 0.0006(14)
N7 0.0164(19) 0.0186(18) 0.010(2) 0.0003(15) 0.0044(15) -0.0026(14)
N8 0.0201(19) 0.0191(18) 0.009(2) 0.0016(15) 0.0044(15) 0.0007(14)
N9 0.0162(18) 0.0194(18) 0.009(2) -0.0036(15) 0.0035(14) 0.0003(14)
O1 0.0214(17) 0.0213(16) 0.0214(19) 0.0011(13) 0.0065(13) -0.0024(12)
O2 0.0196(16) 0.0313(17) 0.0165(18) 0.0012(14) 0.0061(13) -0.0010(13)
O3 0.0252(17) 0.0207(16) 0.0199(19) 0.0027(13) 0.0054(14) 0.0006(13)
O4 0.0223(16) 0.0173(15) 0.0232(19) 0.0007(14) 0.0048(14) -0.0026(12)
O5 0.0206(16) 0.0221(16) 0.0181(18) 0.0009(13) 0.0078(13) 0.0006(13)
O6 0.0277(17) 0.0202(16) 0.0169(18) -0.0039(13) 0.0103(14) 0.0029(13)
F1 0.0374(17) 0.0477(18) 0.0169(16) -0.0028(13) 0.0096(13) -0.0100(13)
F2 0.0286(15) 0.0412(17) 0.0303(18) -0.0074(14) 0.0072(13) -0.0164(13)
F3 0.0417(17) 0.0338(16) 0.0221(16) -0.0014(13) 0.0008(13) 0.0134(13)
F4 0.063(2) 0.0240(15) 0.037(2) 0.0122(13) 0.0193(16) 0.0111(14)
F5 0.0328(15) 0.0292(14) 0.0181(16) 0.0039(12) 0.0066(12) 0.0048(11)
F6 0.0288(15) 0.0384(16) 0.0305(18) 0.0012(13) 0.0143(13) 0.0088(12)
C1 0.025(2) 0.019(2) 0.020(3) 0.0056(19) 0.0042(3) 0.0003(18)
C2 0.031(3) 0.024(2) 0.013(3) 0.0012(19) 0.0072(2) -0.0002(19)

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
C3 0.028(3) 0.028(3) 0.015(3) -0.002(2) 0.002(2) -0.001(2)
C4 0.020(2) 0.026(2) 0.026(3) 0.003(2) 0.000(2) -0.0048(19)
C5 0.024(2) 0.024(2) 0.020(3) -0.001(2) 0.006(2) -0.0002(19)
C6 0.021(2) 0.019(2) 0.020(3) 0.0028(19) 0.006(2) -0.0011(17)
C7 0.023(2) 0.016(2) 0.023(3) 0.0001(19) 0.010(2) 0.0007(17)
C8 0.020(2) 0.018(2) 0.017(3) 0.0021(19) 0.0091(19) 0.0032(17)
C9 0.025(2) 0.021(2) 0.018(3) 0.0021(19) 0.0032(18)
C10 0.027(3) 0.025(2) 0.026(3) 0.003(2) 0.011(2) 0.0039(19)
C11 0.030(3) 0.023(2) 0.018(3) -0.003(2) 0.003(2) 0.0010(19)
C12 0.025(2) 0.025(2) 0.018(3) 0.000(2) 0.005(2) -0.0011(18)
C13 0.021(2) 0.019(2) 0.024(3) 0.007(2) 0.010(2) 0.0002(18)
C14 0.026(3) 0.016(2) 0.014(3) -0.0003(18) 0.004(2) -0.0004(17)
C15 0.016(2) 0.017(2) 0.017(3) 0.0035(18) 0.0017(19) -0.0017(16)
C57 0.027(3) 0.019(2) 0.018(3) -0.0027(19) -0.003(2) -0.0008(18)
C58 0.025(3) 0.021(2) 0.016(3) 0.0052(19) -0.003(2) -0.0008(18)
C59 0.030(3) 0.024(2) 0.017(3) -0.004(2) 0.005(2) -0.0086(19)
C60 0.023(2) 0.025(2) 0.018(3) -0.002(2) 0.008(2) -0.0030(18)
C61 0.023(2) 0.019(2) 0.015(3) -0.0013(18) 0.0032(19) -0.0055(17)
C62 0.019(2) 0.022(2) 0.016(3) -0.0038(19) 0.0041(18) -0.0061(18)
C63 0.017(2) 0.023(2) 0.019(3) -0.0032(19) 0.0033(19) -0.0011(17)
C64 0.024(2) 0.022(2) 0.016(3) -0.0034(19) 0.0074(19) -0.0042(18)
C65 0.020(2) 0.025(2) 0.028(3) -0.007(2) 0.006(2) -0.0028(18)
C66 0.023(2) 0.019(2) 0.021(3) -0.0004(19) 0.008(2) 0.0013(17)
C67 0.017(2) 0.023(2) 0.022(3) 0.001(2) 0.0059(19) 0.0009(17)
C68 0.018(2) 0.023(2) 0.021(3) -0.002(2) 0.0051(19) -0.0048(18)
C69 0.030(3) 0.026(2) 0.019(3) 0.002(2) 0.007(2) 0.006(2)
C70 0.032(3) 0.035(3) 0.019(3) 0.000(2) 0.006(2) 0.007(2)
C71 0.033(3) 0.033(3) 0.026(3) 0.000(2) 0.012(2) 0.001(2)
C72 0.044(3) 0.031(3) 0.021(3) 0.003(2) 0.008(2) 0.006(2)
C73 0.019(2) 0.020(2) 0.013(2) 0.0016(18) 0.0044(18) 0.0011(17)
C74 0.021(2) 0.019(2) 0.010(2) -0.0016(18) 0.0086(18) 0.0009(17)
C75 0.014(2) 0.016(2) 0.017(3) 0.0004(18) 0.0061(18) -0.0028(16)
C76 0.023(2) 0.022(2) 0.011(2) -0.0030(18) 0.0042(18) 0.0000(18)
C77 0.024(2) 0.022(2) 0.010(2) 0.0020(18) 0.0019(18) -0.0001(18)
C78 0.024(2) 0.019(2) 0.013(3) 0.0022(18) 0.0068(19) -0.0010(17)
O1W 0.036 0.033 0.026 0.006 0.012 0.001

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag

Zn1 O1 1.957(3) . ?
Zn1 O2 1.976(3) . ?
Zn1 N2 2.071(4) . ?
Zn1 N1 2.107(4) . ?
Zn1 N7 2.194(4) . ?
Zn1 O4 1.960(3) . ?
Zn2 O3 1.966(3) . ?
Zn2 N4 2.082(4) . ?
Zn2 N3 2.111(4) . ?
Zn2 N8 2.201(4) . ?
Zn2 O5 1.959(3) . ?
Zn3 O6 1.969(3) . ?
Zn3 N6 2.071(4) . ?
Zn3 N5 2.123(4) . ?
Zn3 N9 2.200(3) . ?
P1 C76 1.845(5) . ?
P1 C77 1.845(5) . ?
P1 C78 1.853(4) . ?
N1 C7 1.304(6) . ?
N1 C8 1.425(6) . ?
N2 C14 1.293(6) . ?
N2 C13 1.428(7) . ?
N3 C31 1.296(6) . ?
N3 C32 1.423(6) . ?
N4 C38 1.288(6) . ?
N4 C37 1.420(6) . ?
N5 C55 1.306(6) . ?
N5 C56 1.411(6) . ?
N6 C62 1.300(6) . ?
N6 C61 1.417(6) . ?
N7 C73 1.485(6) . ?
N7 C75 1.487(5) . ?
N7 C76 1.495(6) . ?
N8 C74 1.481(6) . ?
N8 C73 1.484(5) . ?
N8 C77 1.490(6) . ?
N9 C74 1.473(6) . ?
N9 C75 1.479(5) . ?
N9 C78 1.499(6) . ?
O1 C1 1.306(6) . ?
O2 C20 1.309(5) . ?
O3 C25 1.296(6) . ?
O4 C44 1.296(6) . ?
O5 C49 1.295(6) . ?
O6 C68 1.311(6) . ?
F1 C2 1.359(6) . ?
F2 C4 1.372(5) . ?
F3 C26 1.353(6) . ?
F4 C28 1.366(6) . ?
F5 C50 1.363(5) . ?
F6 C52 1.357(6) . ?
C1 C2 1.413(7) . ?
C1 C6 1.425(7) . ?
C2 C3 1.361(7) . ?
C3 C4 1.405(8) . ?
C4 C5 1.344(7) . ?
C5 C6 1.427(6) . ?
C6 C7 1.425(7) . ?
C8 C9 1.399(7) . ?
C8 C13 1.413(6) . ?
C9 C10 1.387(7) . ?
C10 C11 1.396(7) . ?
C11 C12 1.383(7) . ?
C12 C13 1.388(7) . ?
C14 C15 1.429(7) . ?
C15 C16 1.421(6) . ?
C15 C20 1.424(7) . ?
C16 C17 1.366(8) . ?
C17 C18 1.412(7) . ?
C18 C19 1.363(7) . ?
O1 Zn1 O2 95.68(14) . . ?
O1 Zn1 N2 159.16(14) . . ?
O2 Zn1 N2 88.81(14) . . ?
O1 Zn1 N1 89.85(14) . . ?
O2 Zn1 N1 157.88(14) . . ?
N2 Zn1 N1 78.93(15) . . ?
O1 Zn1 N7 99.31(13) . . ?
O2 Zn1 N7 96.47(14) . . ?
N2 Zn1 N7 100.39(14) . . ?
N1 Zn1 N7 103.76(14) . . ?
O4 Zn2 O3 97.03(13) . . ?
O4 Zn2 N4 88.79(14) . . ?
O3 Zn2 N4 159.89(15) . . ?
O4 Zn2 N3 158.17(15) . . ?
O3 Zn2 N3 89.70(14) . . ?
N4 Zn2 N3 78.41(15) . . ?
O4 Zn2 N8 95.14(14) . . ?
O3 Zn2 N8 98.64(14) . . ?
N4 Zn2 N8 99.99(14) . . ?
N3 Zn2 N8 104.39(14) . . ?
O5 Zn3 O6 97.43(13) . . ?
O5 Zn3 N6 159.71(13) . . ?
O6 Zn3 N6 88.95(14) . . ?
O5 Zn3 N5 89.48(14) . . ?
O6 Zn3 N5 158.60(13) . . ?
N6 Zn3 N5 78.24(15) . . ?
O5 Zn3 N9 96.12(13) . . ?
O6 Zn3 N9 96.16(13) . . ?
N6 Zn3 N9 102.34(14) . . ?
N5 Zn3 N9 103.24(13) . . ?
C76 P1 C77 96.4(2) . . ?
C76 P1 C78 96.4(2) . . ?
C77 P1 C78 96.0(2) . . ?
C7 N1 C8 121.5(4) . . ?
C7 N1 Zn1 124.5(3) . . ?
C8 N1 Zn1 113.6(3) . . ?
C14 N2 C13 119.8(4) . . ?
C14 N2 Zn1 125.1(3) . . ?
C13 N2 Zn1 113.8(3) . . ?
C31 N3 C32 121.0(4) . . ?
C31 N3 Zn2 124.4(3) . . ?
C32 N3 Zn2 114.2(3) . . ?
C38 N4 C37 120.8(4) . . ?
C38 N4 Zn2 124.8(3) . . ?
C37 N4 Zn2 113.6(3) . . ?
C55 N5 C56 122.1(4) . . ?
C55 N5 Zn3 124.0(3) . . ?
C56 N5 Zn3 113.4(3) . . ?
C62 N6 C61 119.1(4) . . ?
C62 N6 Zn3 124.7(3) . . ?
C61 N6 Zn3 115.0(3) . . ?
C73 N7 C75 108.5(3) . . ?
C73 N7 C76 111.7(3) . . ?
C75 N7 C76 111.1(3) . . ?
C73 N7 Zn1 111.9(3) . . ?
C75 N7 Zn1 107.7(2) . . ?
C76 N7 Zn1 105.9(3) . . ?
C74 N8 C73 108.2(3) . . ?
C74 N8 C77 111.1(3) . . ?
C73 N8 C77 111.1(3) . . ?
C74 N8 Zn2 110.8(3) . . ?
C73 N8 Zn2 109.3(3) . . ?
C77 N8 Zn2 106.3(3) . . ?
C74 N9 C75 108.8(3) . . ?
C74 N9 C78 111.1(3) . . ?
C75 N9 C78 111.9(3) . . ?
C74 N9 Zn3 108.5(3) . . ?
C75 N9 Zn3 110.0(2) . . ?
C78 N9 Zn3 106.4(3) . . ?
C1 O1 Zn1 128.3(3) . . ?
C20 O2 Zn1 130.9(3) . . ?
C25 O3 Zn2 129.0(3) . . ?
C44 O4 Zn2 132.2(3) . . ?
C49 O5 Zn3 128.6(3) . . ?
C68 O6 Zn3 132.5(3) . . ?
O1 C1 C2 118.7(5) . . ?
O1 C1 C6 125.9(4) . . ?
C2 C1 C6 115.4(4) . . ?
F1 C2 C3 118.1(4) . . ?
F1 C2 C1 116.2(4) . . ?
C3 C2 C1 125.6(5) . . ?
C2 C3 C4 116.3(5) . . ?
C5 C4 F2 120.0(5) . . ?
C5 C4 C3 123.0(4) . . ?
F2 C4 C3 117.0(4) . . ?
C4 C5 C6 119.8(5) . . ?
C1 C6 C7 124.1(4) . . ?
C1 C6 C5 119.9(4) . . ?
C7 C6 C5 115.7(4) . . ?
N1 C7 C6 125.2(5) . . ?
C9 C8 C13 119.2(4) . . ?
C9 C8 N1 125.3(4) . . ?
C13 C8 N1 115.5(4) . . ?
C10 C9 C8 120.1(4) . . ?
C9 C10 C11 120.1(5) . . ?
C12 C11 C10 120.2(5) . . ?
C11 C12 C13 120.4(4) . . ?
C12 C13 C8 119.7(5) . . ?
C12 C13 N2 124.3(4) . . ?
C8 C13 N2 115.9(4) . . ?
N2 C14 C15 127.3(4) . . ?
C16 C15 C20 120.5(4) . . ?
C16 C15 C14 115.4(4) . . ?
C20 C15 C14 124.0(4) . . ?
C17 C16 C15 120.7(5) . . ?
C16 C17 C18 118.3(4) . . ?
C19 C18 C17 124.0(5) . . ?
C18 C19 C20 118.4(5) . . ?
C18 C19 C21 121.4(4) . . ?
C20 C19 C21 120.0(4) . . ?
O2 C20 C15 122.5(4) . . ?
O2 C20 C19 119.5(4) . . ?
C15 C20 C19 118.0(4) . . ?
C19 C21 C24 112.0(4) . . ?
C19 C21 C22 111.9(4) . . ?
C24 C21 C22 107.9(4) . . ?
C19 C21 C23 108.6(4) . . ?
C24 C21 C23 107.3(4) . . ?
C22 C21 C23 109.0(4) . . ?
O3 C25 C26 119.2(4) . . ?
O3 C25 C30 126.0(4) . . ?
C26 C25 C30 114.7(4) . . ?
F3 C26 C27 118.6(4) . . ?
F3 C26 C25 117.0(4) . . ?
C27 C26 C25 124.5(5) . . ?
C26 C27 C28 117.6(5) . . ?
C29 C28 F4 119.3(5) . . ?
C29 C28 C27 122.9(5) . . ?
F4 C28 C27 117.8(5) . . ?
C28 C29 C30 119.3(5) . . ?
C29 C30 C25 120.9(4) . . ?
C29 C30 C31 115.5(4) . . ?
C25 C30 C31 123.4(4) . . ?
N3 C31 C30 125.6(4) . . ?
C33 C32 C37 118.6(4) . . ?
C33 C32 N3 126.5(4) . . ?
C37 C32 N3 114.8(4) . . ?
C34 C33 C32 121.5(5) . . ?
C33 C34 C35 119.8(5) . . ?
C36 C35 C34 120.3(5) . . ?
C35 C36 C37 119.8(5) . . ?
C36 C37 C32 119.6(4) . . ?
C36 C37 N4 123.8(4) . . ?
C32 C37 N4 116.5(4) . . ?
N4 C38 C39 126.6(4) . . ?
C44 C39 C40 120.3(4) . . ?
C44 C39 C38 124.7(4) . . ?
C40 C39 C38 115.0(4) . . ?
C41 C40 C39 120.6(5) . . ?
C40 C41 C42 119.0(5) . . ?
C43 C42 C41 123.7(4) . . ?
C42 C43 C44 117.4(5) . . ?
C42 C43 C45 122.0(4) . . ?
C44 C43 C45 120.6(4) . . ?
O4 C44 C39 122.5(4) . . ?
O4 C44 C43 118.5(4) . . ?
C39 C44 C43 119.0(4) . . ?
C43 C45 C47 110.7(5) . . ?
C43 C45 C46 109.9(4) . . ?
C47 C45 C46 108.8(5) . . ?
C43 C45 C48 112.1(5) . . ?
C47 C45 C48 108.0(4) . . ?
C46 C45 C48 107.2(5) . . ?
O5 C49 C50 119.1(4) . . ?
O5 C49 C54 126.1(4) . . ?
C50 C49 C54 114.9(4) . . ?
F5 C50 C51 118.1(4) . . ?
F5 C50 C49 116.4(4) . . ?
C51 C50 C49 125.5(4) . . ?
C50 C51 C52 117.3(5) . . ?
F6 C52 C53 119.7(4) . . ?
F6 C52 C51 118.5(4) . . ?
C53 C52 C51 121.8(4) . . ?
C52 C53 C54 120.3(4) . . ?
C49 C54 C55 124.1(4) . . ?
C49 C54 C53 120.1(4) . . ?
C55 C54 C53 115.6(4) . . ?
N5 C55 C54 125.4(4) . . ?
C57 C56 C61 118.5(4) . . ?
C57 C56 N5 125.1(4) . . ?
C61 C56 N5 116.3(4) . . ?
C58 C57 C56 120.8(5) . . ?
C57 C58 C59 120.3(4) . . ?
C60 C59 C58 119.9(5) . . ?
C59 C60 C61 120.7(5) . . ?
C60 C61 C56 119.5(4) . . ?
C60 C61 N6 125.1(4) . . ?
C56 C61 N6 115.4(4) . . ?
N6 C62 C63 127.6(5) . . ?
C64 C63 C68 120.1(4) . . ?
C64 C63 C62 115.7(4) . . ?
C68 C63 C62 124.1(4) . . ?
C65 C64 C63 121.1(5) . . ?
C64 C65 C66 118.8(5) . . ?
C67 C66 C65 123.7(4) . . ?
C66 C67 C68 117.7(5) . . ?
C66 C67 C69 121.9(4) . . ?
C68 C67 C69 120.4(4) . . ?
O6 C68 C63 121.7(4) . . ?
O6 C68 C67 119.8(4) . . ?
C63 C68 C67 118.5(4) . . ?
C71 C69 C72 108.3(4) . . ?
C71 C69 C67 108.5(4) . . ?
C72 C69 C67 111.3(4) . . ?
C71 C69 C70 110.7(4) . . ?
C72 C69 C70 107.6(4) . . ?
C67 C69 C70 110.4(4) . . ?
N8 C73 N7 112.9(4) . . ?
N9 C74 N8 113.4(3) . . ?
N4 Zn2 O3 C25 -60.2(6) . . . ?
N3 Zn2 O3 C25 -7.0(4) . . . ?
N8 Zn2 O3 C25 97.5(4) . . . ?
O3 Zn2 O4 C44 153.6(4) . . . ?
N4 Zn2 O4 C44 -7.1(4) . . . ?
N3 Zn2 O4 C44 46.5(6) . . . ?
N8 Zn2 O4 C44 -107.0(4) . . . ?
O6 Zn3 O5 C49 -174.1(3) . . . ?
N6 Zn3 O5 C49 -66.7(6) . . . ?
N5 Zn3 O5 C49 -14.5(3) . . . ?
N9 Zn3 O5 C49 88.8(3) . . . ?
O5 Zn3 O6 C68 154.6(4) . . . ?
N6 Zn3 O6 C68 -6.1(4) . . . ?
N5 Zn3 O6 C68 46.7(6) . . . ?
N9 Zn3 O6 C68 -108.4(4) . . . ?
Zn1 O1 C1 C2 -177.2(3) . . . ?
Zn1 O1 C1 C6 2.1(6) . . . ?
O1 C1 C2 F1 -3.9(6) . . . ?
C6 C1 C2 F1 176.8(4) . . . ?
O1 C1 C2 C3 178.8(4) . . . ?
C6 C1 C2 C3 -0.5(7) . . . ?
F1 C2 C3 C4 -177.3(4) . . . ?
C1 C2 C3 C4 -0.1(7) . . . ?
C2 C3 C4 C5 0.2(7) . . . ?
C2 C3 C4 F2 180.0(4) . . . ?
F2 C4 C5 C6 -179.4(4) . . . ?
C3 C4 C5 C6 0.3(7) . . . ?
O1 C1 C6 C7 8.4(7) . . . ?
C2 C1 C6 C7 -172.3(4) . . . ?
O1 C1 C6 C5 -178.3(4) . . . ?
C2 C1 C6 C5 1.0(6) . . . ?
C4 C5 C6 C1 -1.0(7) . . . ?
C4 C5 C6 C7 172.9(4) . . . ?
C8 N1 C7 C6 176.8(4) . . . ?
Zn1 N1 C7 C6 -10.7(6) . . . ?
C1 C6 C7 N1 -3.1(7) . . . ?
C5 C6 C7 N1 -176.7(4) . . . ?
C7 N1 C8 C9 -4.7(7) . . . ?
Zn1 N1 C8 C9 -177.9(3) . . . ?
C7 N1 C8 C13 177.4(4) . . . ?
Zn1 N1 C8 C13 4.2(5) . . . ?
C13 C8 C9 C10 -4.7(6) . . . ?
N1 C8 C9 C10 177.4(4) . . . ?
C8 C9 C10 C11 -0.4(7) . . . ?
C9 C10 C11 C12 3.1(7) . . . ?
C10 C11 C12 C13 -0.6(7) . . . ?
C11 C12 C13 C8 -4.5(7) . . . ?
C11 C12 C13 N2 173.0(4) . . . ?
C9 C8 C13 C12 7.2(6) . . . ?
N1 C8 C13 C12 -174.8(4) . . . ?
C9 C8 C13 N2 -170.5(4) . . . ?
N1 C8 C13 N2 7.5(6) . . . ?
C14 N2 C13 C12 -25.9(7) . . . ?
Zn1 N2 C13 C12 166.6(4) . . . ?
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Zn Zn 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting Monoclinic
_symmetry_space_group_name_H-M C2/c
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, y, -z+1/2'
'x+1/2, y+1/2, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
_cell_length_a 30.798(2)
_cell_length_b 13.5677(9)
_cell_length_c 29.886(2)
_cell_angle_alpha 90.00
_cell_angle_beta 101.815(2)
_cell_angle_gamma 90.00
_cell_volume 12223.7(14)
_cell_formula_units_Z 8
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used 9798
_cell_measurement_theta_min 2.24
_cell_measurement_theta_max 28.06
_exptl_crystal_description block
_exptl_crystal_colour orange
_exptl_crystal_size_max 0.20
_exptl_crystal_size_mid 0.15
_exptl_crystal_size_min 0.15
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffm 1.434
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 5488
_exptl_absorpt_coefficient_mu 1.041
_exptl_absorpt_correction_type empirical
_exptl_absorpt_correction_T_min 0.8188
_exptl_absorpt_correction_T_max 0.8595
_exptl_absorpt_process_details
;
SADABS Version 2008/1 Bruker-Nonius
It should be noted that the esd's of the cell dimensions are probably too low; they should be multiplied by a factor of 2 to 10.

- diffrn_ambient_temperature 100(2)
- diffrn_measurement_specimen_suppport 'magnetic support with MicroMount'
- diffrn_radiation_wavelength 0.71073
- diffrn_radiation_type MoKα
- diffrn_source 'Micorfocus source E025 IuS'
- diffrn_source_type 'Bruker APEX DUO'
- diffrn_source_power 50
- diffrn_source_current 0.6
- diffrn_source_size '0.2 mm x 0.2 mm fine focus'
- diffrn_radiation_monochromator 'Quazar MX Multilayer Optics'
- diffrn_detector_type '4K CCD area detector APEX II'
- diffrn_measurement_device_type 'APEX DUO Kappa 4-axis goniometer'
- diffrn_measurement_method Fullsphere data collection, phi and omega scans

- diffrn_detector_area_resol_mean 512
- diffrn_reflns_number 211665
- diffrn_reflns_av_R_equivalents 0.0466
- diffrn_reflns_av_sigmaI/netI 0.0229
- diffrn_reflns_limit_h_min -40
- diffrn_reflns_limit_h_max 40
- diffrn_reflns_limit_k_min -18
- diffrn_reflns_limit_k_max 18
- diffrn_reflns_limit_l_min -39
- diffrn_reflns_limit_l_max 39
- diffrn_reflns_theta_min 1.35
- diffrn_reflns_theta_max 28.20
- reflns_number_total 15010
- reflns_number_gt 12760
- reflns_threshold_expression >2sigma(I)
- computing_data_collection 'Bruker APEX2 v2011.4-0'
- computing_cell_refinement 'Bruker APEX2 v2011.4-0'
- computing_data_reduction 'Bruker SAINT V7.60A'
- computing_structure_solution Sir2011
- computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
- computing_molecular_graphics 'Bruker SHELXTL'
- computing_publication_material 'Bruker SHELXTL'
- refine_special_details

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
refine_ls_structure_factor_coef Fsqd
refine_ls_matrix_type full
refine_ls_weighting_scheme calc
refine_ls_weighting_details
\[w = 1/\left(s^2 (F_o^2) + (0.0266P)^2 + 22.9438P \right) \]
where \(P = (F_o^2 + 2F_c^2)/3 \)
atom_sites_solution_primary direct
atom_sites_solution_secondary difmap
atom_sites_solution_hydrogens geom
refine_ls_hydrogen_treatment noref
refine_ls_extinction_method none
refine_ls_extinction_coef ?
refine_ls_number_reflns 15010
refine_ls_number_parameters 855
refine_ls_number_restraints 237
refine_ls_R_factor_all 0.0408
refine_ls_R_factor_gt 0.0310
refine_ls_wR_factor_ref 0.0753
refine_ls_wR_factor_gt 0.0714
refine_ls_goodness_of_fit_ref 1.060
refine_ls_restrained_S_all 1.059
refine_ls_shift/su_max 0.005
refine_ls_shift/su_mean 0.000

Zn1 Zn 0.891776(6) 0.947604(15) 0.505822(6) 0.01495(5) Uani 1 1 d . . .
Zn2 Zn 0.914352(6) 0.815517(14) 0.693561(6) 0.01366(5) Uani 1 1 d . . .
Cl1 Cl 0.83001(2) 1.42749(4) 0.54321(2) 0.04877(16) Uani 1 1 d . . .
Cl2 Cl 0.92621(2) 1.40912(4) 0.605325(19) 0.03540(12) Uani 1 1 d . . .
Cl3 Cl 1.103982(14) 0.60653(3) 0.643225(15) 0.02239(9) Uani 1 1 d . . .
Cl4 Cl 1.053918(16) 1.042355(3) 0.67354(2) 0.03329(12) Uani 1 1 d . . .
N1 N 0.85012(5) 1.06944(11) 0.49062(5) 0.0197(3) Uani 1 1 d . . .
N2 N 0.92984(5) 1.05421(10) 0.54406(5) 0.0160(3) Uani 1 1 d . A .
N3 N 0.97814(5) 0.82281(10) 0.68157(5) 0.0153(3) Uani 1 1 d . . .
N4 N 0.93554(5) 0.66940(10) 0.70539(5) 0.0154(3) Uani 1 1 d . A .
O1 O 0.86466(4) 0.89007(10) 0.44697(4) 0.0216(3) Uani 1 1 d . . .
O2 O 0.94188(4) 0.85428(9) 0.51992(4) 0.0167(2) Uani 1 1 d . . .
O3 O 0.91095(4) 0.96109(9) 0.69078(4) 0.0172(2) Uani 1 1 d . . .
O4 O 0.87727(4) 0.79577(9) 0.73871(4) 0.0171(2) Uani 1 1 d . . .
C1 C 0.82769(6) 0.9170(5) 0.41908(6) 0.0231(4) Uani 1 1 d . . .
C2 C 0.81334(7) 0.84815(17) 0.37975(6) 0.0287(5) Uani 1 1 d . . .
C3 C 0.77340(7) 0.86917(19) 0.35100(7) 0.0376(6) Uani 1 1 d . . .
H3 H 0.7638 0.8283 0.3250 0.045 Uiso 1 1 calc R A .
C 4 C 0.74643(7) 0.94748(19) 0.35821(8) 0.0426(6) Uani 1 1 d . . .
H 4 H 0.7185 0.9574 0.3382 0.051 Uiso 1 1 calc R . .
C 5 C 0.80110(6) 0.99444(15) 0.42523(6) 0.0254(4) Uani 1 1 d . . .
H 5 H 0.7678 0.9574 0.3482 0.046 Uiso 1 1 calc R A .
C 6 C 0.81463(6) 1.07060(15) 0.45839(7) 0.0245(4) Uani 1 1 d . . .
H 6 H 0.7960 1.1269 0.4567 0.029 Uiso 1 1 calc R A .
C 7 C 0.86460(6) 1.15213(14) 0.51847(6) 0.0254(4) Uani 1 1 d . . .
C 8 C 0.84086(7) 1.23948(15) 0.51906(7) 0.0285(4) Uani 1 1 d . . .
H 8 H 0.8117 1.2448 0.5012 0.034 Uiso 1 1 calc R . .
C 9 C 0.85935(7) 1.31824(15) 0.54641(6) 0.0185(3) Uani 1 1 d . A .
C 10 C 0.90744(6) 1.14421(13) 0.54641(6) 0.0185(3) Uani 1 1 d . . .
H 10 H 0.9875 1.1060 0.5703 0.020 Uiso 1 1 calc R A .
C 11 C 0.97261(6) 1.04779(13) 0.57529(6) 0.0186(3) Uani 1 1 d . . .
H 11 H 1.0558 1.0380 0.5879 0.022 Uiso 1 1 calc R . .
C 12 C 1.01508(6) 0.79081(12) 0.53794(6) 0.0155(3) Uani 1 1 d . . .
C 13 C 0.98350(5) 0.86943(12) 0.53744(5) 0.0141(3) Uani 1 1 d . . .
H 13 H 0.9498 0.7407 0.4661 0.034 Uiso 1 1 calc R . .
C 14 C 0.96859(6) 0.64375(13) 0.54841(6) 0.0220(4) Uani 1 1 d . . .
H 14 H 0.9432 0.6875 0.5478 0.033 Uiso 1 1 calc R . .
C 15 C 0.90149(7) 1.31013(14) 0.57300(7) 0.0266(4) Uani 1 1 d . . .
C 16 C 0.82221(9) 0.7060(2) 0.32655(8) 0.0546(8) Uani 1 1 d . . .
C 17 C 1.03867(6) 0.61770(19) 0.36574(7) 0.0389(6) Uani 1 1 d . . .
H 17 H 1.0598 0.6463 0.5042 0.037 Uiso 1 1 calc R . .
C 18 C 1.0278 0.5546 0.5071 0.037 Uiso 1 1 calc R .
H 18 H 0.9581 0.5792 0.5361 0.033 Uiso 1 1 calc R .
C 19 C 0.8945(6) 0.68851(13) 0.51914(6) 0.0187(3) Uani 1 1 d . . .
C 20 C 0.96859(6) 0.64375(13) 0.54841(6) 0.0220(4) Uani 1 1 d . . .
H 20 H 0.9432 0.6875 0.5478 0.033 Uiso 1 1 calc R .
C 21 C 0.97476(6) 0.69474(14) 0.46894(6) 0.0226(4) Uani 1 1 d . . .
H 21 H 0.9498 0.7407 0.4664 0.034 Uiso 1 1 calc R .
C 22 C 0.99945(6) 0.68851(13) 0.51914(6) 0.0187(3) Uani 1 1 d . . .
C 23 C 0.96859(6) 0.64375(13) 0.54841(6) 0.0220(4) Uani 1 1 d . . .
H 23 H 0.9432 0.6875 0.5478 0.033 Uiso 1 1 calc R .
C 24 C 0.97476(6) 0.69474(14) 0.46894(6) 0.0226(4) Uani 1 1 d . . .
H 24 H 0.9498 0.7407 0.4664 0.034 Uiso 1 1 calc R .
C 25 C 0.99945(6) 0.68851(13) 0.51914(6) 0.0187(3) Uani 1 1 d . . .
C 26 C 0.96859(6) 0.64375(13) 0.54841(6) 0.0220(4) Uani 1 1 d . . .
C31 C 0.96313(6) 1.19923(13) 0.69027(6) 0.0219(4) Uani 1 1 d . . .
H31 H 0.9564 1.2671 0.6928 0.026 Uiso 1 1 calc R A .
C32 C 1.00599(6) 1.17385(14) 0.68497(7) 0.0242(4) Uani 1 1 d . . .
H32 H 1.0274 1.2235 0.6836 0.029 Uiso 1 1 calc R .
C33 C 1.01638(6) 1.07692(14) 0.68185(6) 0.0213(4) Uani 1 1 d . . .
H33 H 1.0454 1.0592 0.6784 0.026 Uiso 1 1 calc R A .
C34 C 0.98478(6) 1.00230(12) 0.68362(6) 0.0165(3) Uani 1 1 d . . .
C35 C 1.00043(6) 0.90391(13) 0.68109(6) 0.0177(3) Uani 1 1 d . . .
H35 H 1.0306 0.8969 0.6788 0.021 Uiso 1 1 calc R A .
C36 C 0.99845(5) 0.73012(12) 0.67892(6) 0.0155(3) Uani 1 1 d . . .
C37 C 1.03801(6) 0.71592(13) 0.66394(6) 0.0171(3) Uani 1 1 d . . .
H37 H 1.0533 0.7709 0.6549 0.021 Uiso 1 1 calc R A .
C38 C 1.05510(6) 0.62218(13) 0.66220(6) 0.0182(3) Uani 1 1 d . . .
C39 C 1.03288(6) 0.54111(13) 0.67512(6) 0.0202(4) Uani 1 1 d . . .
C40 C 0.99322(6) 0.55382(13) 0.68940(6) 0.0192(3) Uani 1 1 d . . .
C41 C 0.97547(5) 0.64762(13) 0.69125(6) 0.0158(3) Uani 1 1 d . . .
C42 C 0.91151(6) 0.60220(12) 0.71933(6) 0.0161(3) Uani 1 1 d . . .
C43 C 0.87165(6) 0.61922(13) 0.73571(6) 0.0161(3) Uani 1 1 d . . .
C44 C 0.85661(5) 0.53427(13) 0.74430(6) 0.0184(3) Uani 1 1 d . . .
C45 C 0.81038(6) 0.54163(14) 0.76113(6) 0.0208(4) Uani 1 1 d . . .
C46 C 0.79572(6) 0.63531(14) 0.77132(6) 0.0198(4) Uani 1 1 d . . .
C47 C 0.7692 0.6395 0.7829 0.024 Uiso 1 1 calc R A .
C48 C 0.81766(6) 0.72184(13) 0.76550(6) 0.0163(3) Uani 1 1 d . . .
C49 C 0.84813(6) 0.53427(13) 0.74430(6) 0.0184(3) Uani 1 1 d . . .
C50 C 0.88056(7) 1.27528(14) 0.70301(8) 0.0311(5) Uani 1 1 d . . .
C51 C 0.80278(6) 0.82152(13) 0.78152(6) 0.0178(3) Uani 1 1 d . . .
C52 C 0.84931(6) 1.13435(15) 0.65454(6) 0.0243(4) Uani 1 1 d . . .
C53 C 0.8196 1.1523 0.6589 0.036 Uiso 1 1 calc R .
C54 C 0.8506 1.0631 0.6496 0.036 Uiso 1 1 calc R .
C55 C 0.8556 1.1693 0.6279 0.036 Uiso 1 1 calc R .
C56 C 0.80278(6) 0.82152(13) 0.78152(6) 0.0178(3) Uani 1 1 d . . .
C57 C 0.75959(6) 0.81194(15) 0.79930(7) 0.0247(4) Uani 1 1 d . . .
C58 C 0.7506 0.8770 0.8084 0.037 Uiso 1 1 calc R .
C59 C 0.7644 0.7676 0.8257 0.037 Uiso 1 1 calc R .
C60 C 0.7362 0.7852 0.7751 0.037 Uiso 1 1 calc R .
C61 C 0.83891(6) 0.86015(15) 0.82116(6) 0.0236(4) Uani 1 1 d . . .
C62 C 0.8664 0.8712 0.8102 0.035 Uiso 1 1 calc R .
C63 C 0.8442 0.8115 0.8459 0.035 Uiso 1 1 calc R .
C64 C 0.8291 0.9223 0.8325 0.035 Uiso 1 1 calc R .
C65 C 0.79462(6) 0.89845(14) 0.74305(6) 0.0219(4) Uani 1 1 d . . .
C66 C 0.8219 0.9082 0.7316 0.033 Uiso 1 1 calc R .
C67 C 0.7857 0.9610 0.7549 0.033 Uiso 1 1 calc R .
C68 C 0.7710 0.8753 0.7181 0.033 Uiso 1 1 calc R .

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>Species</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso</th>
<th>Drawn</th>
<th>Source</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P</td>
<td>0.81476(2)</td>
<td>0.68346(5)</td>
<td>0.55711(2)</td>
<td>0.01689(14)</td>
<td>Uani 0.75</td>
<td>1 d PDU A 1</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>N</td>
<td>0.85566(4)</td>
<td>0.86774(10)</td>
<td>0.55014(5)</td>
<td>0.0145(3)</td>
<td>Uani 0.75</td>
<td>1 d PDU A 1</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>N</td>
<td>0.86994(4)</td>
<td>0.79749(10)</td>
<td>0.62837(5)</td>
<td>0.0145(3)</td>
<td>Uani 0.75</td>
<td>1 d PDU A 1</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>N</td>
<td>0.79406(9)</td>
<td>0.8669(2)</td>
<td>0.59078(11)</td>
<td>0.0160(6)</td>
<td>Uani 0.75</td>
<td>1 d PDU A 1</td>
<td></td>
</tr>
<tr>
<td>C57</td>
<td>C</td>
<td>0.84266(11)</td>
<td>0.7723(2)</td>
<td>0.52579(10)</td>
<td>0.0168(6)</td>
<td>Uani 0.75</td>
<td>1 d PDU A 1</td>
<td></td>
</tr>
<tr>
<td>H57A</td>
<td>H</td>
<td>0.8697</td>
<td>0.7409</td>
<td>0.5192</td>
<td>0.020</td>
<td>Uiso 0.75</td>
<td>1 calc PR A 1</td>
<td></td>
</tr>
<tr>
<td>H57B</td>
<td>H</td>
<td>0.8227</td>
<td>0.7870</td>
<td>0.4961</td>
<td>0.020</td>
<td>Uiso 0.75</td>
<td>1 calc PR A 1</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>N</td>
<td>0.83234(19)</td>
<td>0.6960(4)</td>
<td>0.5628(2)</td>
<td>0.0230(13)</td>
<td>Uani 0.25</td>
<td>1 d PDU A 2</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>N</td>
<td>0.86694(4)</td>
<td>0.79749(10)</td>
<td>0.57079(8)</td>
<td>0.0167(4)</td>
<td>Uani 0.25</td>
<td>1 d PDU A 2</td>
<td></td>
</tr>
<tr>
<td>C57'</td>
<td>C</td>
<td>0.78606(19)</td>
<td>0.7239(4)</td>
<td>0.5655(2)</td>
<td>0.0274(13)</td>
<td>Uani 0.25</td>
<td>1 d PDU A 2</td>
<td></td>
</tr>
<tr>
<td>H57C</td>
<td>H</td>
<td>0.7748</td>
<td>0.6754</td>
<td>0.5850</td>
<td>0.033</td>
<td>Uiso 0.25</td>
<td>1 calc PR A 2</td>
<td></td>
</tr>
<tr>
<td>H57D</td>
<td>H</td>
<td>0.7672</td>
<td>0.7193</td>
<td>0.5344</td>
<td>0.033</td>
<td>Uiso 0.25</td>
<td>1 calc PR A 2</td>
<td></td>
</tr>
<tr>
<td>C58</td>
<td>C</td>
<td>0.8250(2)</td>
<td>0.8361(8)</td>
<td>0.6396(2)</td>
<td>0.0172(17)</td>
<td>Uani 0.25</td>
<td>1 d PDU A 2</td>
<td></td>
</tr>
<tr>
<td>H2S1</td>
<td>H</td>
<td>0.7358</td>
<td>0.0025</td>
<td>0.6403</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H2S2</td>
<td>H</td>
<td>0.6868</td>
<td>0.0328</td>
<td>0.5810</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H2S3</td>
<td>H</td>
<td>0.7083</td>
<td>0.0660</td>
<td>0.6321</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>N1S</td>
<td>N</td>
<td>0.7469(2)</td>
<td>0.2088(4)</td>
<td>0.5618(5)</td>
<td>0.078(4)</td>
<td>Uani 0.35</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>C1S</td>
<td>C</td>
<td>0.7362(3)</td>
<td>0.1381(4)</td>
<td>0.5844(3)</td>
<td>0.0398(14)</td>
<td>Uani 0.65</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>C2S</td>
<td>C</td>
<td>0.71445(19)</td>
<td>0.0517(4)</td>
<td>0.6018(3)</td>
<td>0.0518(15)</td>
<td>Uani 0.65</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>H2S1</td>
<td>H</td>
<td>0.7358</td>
<td>-0.0025</td>
<td>0.6403</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H2S2</td>
<td>H</td>
<td>0.6868</td>
<td>0.0328</td>
<td>0.5810</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H2S3</td>
<td>H</td>
<td>0.7083</td>
<td>0.0660</td>
<td>0.6321</td>
<td>0.078</td>
<td>Uiso 0.65</td>
<td>1 calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>N1S'</td>
<td>N</td>
<td>0.7522(5)</td>
<td>0.1816(10)</td>
<td>0.5618(5)</td>
<td>0.078(4)</td>
<td>Uani 0.35</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>C1S'</td>
<td>C</td>
<td>0.7302(7)</td>
<td>0.1348(15)</td>
<td>0.5788(8)</td>
<td>0.073(4)</td>
<td>Uani 0.35</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>C2S'</td>
<td>C</td>
<td>0.6999(4)</td>
<td>0.0657(12)</td>
<td>0.5927(6)</td>
<td>0.085(5)</td>
<td>Uani 0.35</td>
<td>1 d PDU C 2</td>
<td></td>
</tr>
<tr>
<td>H2S4</td>
<td>H</td>
<td>0.6867</td>
<td>0.0243</td>
<td>0.5666</td>
<td>0.128</td>
<td>Uiso 0.35</td>
<td>1 calc PR C 2</td>
<td></td>
</tr>
</tbody>
</table>
Zn1
- Atomic Position: 0.01285(9), 0.02076(10), 0.01111(9)
- Atomic Temperature Factor: -0.00060(7), 0.00220(7)

Zn2
- Atomic Position: 0.01293(9), 0.01453(9), 0.01399(9)
- Atomic Temperature Factor: 0.00068(7), 0.00384(7)

Cl1
- Atomic Position: 0.0599(4), 0.0348(3), 0.0537(4)
- Atomic Temperature Factor: 0.0029(3), 0.0166(3)

Cl2
- Atomic Position: 0.0547(3), 0.0190(2), 0.0367(3)
- Atomic Temperature Factor: -0.0053(2), 0.0191(3)

Cl3
- Atomic Position: 0.01549(19), 0.0291(2), 0.0236(2)
- Atomic Temperature Factor: -0.00094(17), 0.00647(17)

Cl4
- Atomic Position: 0.0247(2), 0.0186(2), 0.0588(3)
- Atomic Temperature Factor: -0.0015(2), 0.0138(2)

N1
- Atomic Position: 0.0180(7), 0.0271(8), 0.0149(7)
- Atomic Temperature Factor: 0.0061(6), 0.0052(6)

N2
- Atomic Position: 0.0182(7), 0.0174(7), 0.0127(7)
- Atomic Temperature Factor: 0.0016(5), 0.0039(6)

N3
- Atomic Position: 0.0149(7), 0.0168(7), 0.0144(7)
- Atomic Temperature Factor: 0.0001(5), 0.0035(6)

N4
- Atomic Position: 0.0139(7), 0.0172(7), 0.0152(7)
- Atomic Temperature Factor: 0.0007(5), 0.0031(6)

O1
- Atomic Position: 0.0159(6), 0.0350(7), 0.0130(6)
- Atomic Temperature Factor: -0.0038(5), 0.0007(5)

O2
- Atomic Position: 0.0129(6), 0.0189(6), 0.0180(6)
- Atomic Temperature Factor: -0.0029(5), 0.0027(5)

O3
- Atomic Position: 0.0157(6), 0.0291(2), 0.0236(2)
- Atomic Temperature Factor: -0.0011(5), 0.0046(5)

O4
- Atomic Position: 0.0177(6), 0.0166(6), 0.0184(6)
- Atomic Temperature Factor: -0.0003(5), 0.0071(5)
<table>
<thead>
<tr>
<th>Atom</th>
<th>Uxx</th>
<th>Uyy</th>
<th>Uzz</th>
<th>Uxy</th>
<th>Uxz</th>
<th>Uyz</th>
</tr>
</thead>
<tbody>
<tr>
<td>C31</td>
<td>0.0264(9)</td>
<td>0.0159(8)</td>
<td>0.0229(9)</td>
<td>-0.0019(7)</td>
<td>0.0038(8)</td>
<td>-0.0007(7)</td>
</tr>
<tr>
<td>C32</td>
<td>0.0240(9)</td>
<td>0.0200(9)</td>
<td>0.0291(10)</td>
<td>-0.0010(7)</td>
<td>0.0063(8)</td>
<td>-0.0076(7)</td>
</tr>
<tr>
<td>C33</td>
<td>0.0175(8)</td>
<td>0.0235(9)</td>
<td>0.0232(9)</td>
<td>0.0000(7)</td>
<td>0.0048(7)</td>
<td>-0.0031(7)</td>
</tr>
<tr>
<td>C34</td>
<td>0.0170(8)</td>
<td>0.0177(8)</td>
<td>0.0149(8)</td>
<td>0.0000(6)</td>
<td>0.0038(7)</td>
<td>-0.0020(6)</td>
</tr>
<tr>
<td>C35</td>
<td>0.0150(8)</td>
<td>0.0162(8)</td>
<td>0.0005(7)</td>
<td>0.0044(7)</td>
<td>-0.0005(7)</td>
<td>0.0005(7)</td>
</tr>
<tr>
<td>C36</td>
<td>0.0144(8)</td>
<td>0.0188(8)</td>
<td>0.0127(8)</td>
<td>-0.0005(6)</td>
<td>0.0014(6)</td>
<td>0.0012(6)</td>
</tr>
<tr>
<td>C37</td>
<td>0.0145(8)</td>
<td>0.0202(8)</td>
<td>0.0164(8)</td>
<td>-0.0007(6)</td>
<td>0.0026(7)</td>
<td>-0.0009(6)</td>
</tr>
<tr>
<td>C38</td>
<td>0.0128(8)</td>
<td>0.0242(9)</td>
<td>0.0188(8)</td>
<td>-0.0012(7)</td>
<td>0.0028(7)</td>
<td>0.0027(7)</td>
</tr>
<tr>
<td>C39</td>
<td>0.0175(8)</td>
<td>0.0184(8)</td>
<td>0.0234(9)</td>
<td>-0.0023(7)</td>
<td>0.0013(7)</td>
<td>0.0041(7)</td>
</tr>
<tr>
<td>C40</td>
<td>0.0168(8)</td>
<td>0.0174(8)</td>
<td>0.0230(9)</td>
<td>-0.0005(7)</td>
<td>0.0036(7)</td>
<td>-0.0002(7)</td>
</tr>
<tr>
<td>C41</td>
<td>0.0140(8)</td>
<td>0.0194(8)</td>
<td>0.0188(8)</td>
<td>-0.0009(6)</td>
<td>0.0018(6)</td>
<td>0.0005(6)</td>
</tr>
<tr>
<td>C42</td>
<td>0.0168(8)</td>
<td>0.0165(8)</td>
<td>0.0141(8)</td>
<td>-0.0004(6)</td>
<td>0.0010(7)</td>
<td>0.0002(6)</td>
</tr>
<tr>
<td>C43</td>
<td>0.0153(8)</td>
<td>0.0192(8)</td>
<td>0.0137(8)</td>
<td>-0.0009(6)</td>
<td>0.0018(6)</td>
<td>0.0005(6)</td>
</tr>
<tr>
<td>C44</td>
<td>0.0137(8)</td>
<td>0.0290(9)</td>
<td>0.0169(8)</td>
<td>-0.0017(7)</td>
<td>0.0036(7)</td>
<td>-0.0044(7)</td>
</tr>
<tr>
<td>C50</td>
<td>0.0266(10)</td>
<td>0.0283(10)</td>
<td>0.0210(9)</td>
<td>-0.0041(8)</td>
<td>0.0094(8)</td>
<td>0.0017(8)</td>
</tr>
<tr>
<td>N5</td>
<td>0.0124(6)</td>
<td>0.0188(7)</td>
<td>0.0125(6)</td>
<td>-0.0013(5)</td>
<td>0.0026(5)</td>
<td>-0.0008(5)</td>
</tr>
<tr>
<td>N6</td>
<td>0.0144(6)</td>
<td>0.0160(6)</td>
<td>0.0140(6)</td>
<td>0.0005(5)</td>
<td>0.0046(5)</td>
<td>0.0000(5)</td>
</tr>
<tr>
<td>N7</td>
<td>0.0106(13)</td>
<td>0.0211(12)</td>
<td>0.0165(11)</td>
<td>-0.0014(9)</td>
<td>0.0033(11)</td>
<td>0.0005(10)</td>
</tr>
<tr>
<td>C57</td>
<td>0.0135(14)</td>
<td>0.0231(13)</td>
<td>0.0142(13)</td>
<td>-0.0053(10)</td>
<td>0.0038(11)</td>
<td>-0.0027(10)</td>
</tr>
<tr>
<td>C58</td>
<td>0.0160(13)</td>
<td>0.0167(12)</td>
<td>0.0158(12)</td>
<td>0.0001(10)</td>
<td>0.0031(10)</td>
<td>0.0002(10)</td>
</tr>
<tr>
<td>C59</td>
<td>0.0133(10)</td>
<td>0.0195(11)</td>
<td>0.0173(11)</td>
<td>-0.0005(9)</td>
<td>0.0033(9)</td>
<td>-0.0025(9)</td>
</tr>
<tr>
<td>C60</td>
<td>0.0117(8)</td>
<td>0.0167(11)</td>
<td>0.0143(8)</td>
<td>0.0012(7)</td>
<td>0.0033(6)</td>
<td>0.0008(8)</td>
</tr>
<tr>
<td>C61</td>
<td>0.0135(12)</td>
<td>0.0206(13)</td>
<td>0.0106(13)</td>
<td>0.0022(10)</td>
<td>0.0023(10)</td>
<td>0.0024(10)</td>
</tr>
<tr>
<td>C62</td>
<td>0.0145(12)</td>
<td>0.0202(13)</td>
<td>0.0119(11)</td>
<td>0.0017(10)</td>
<td>0.0056(9)</td>
<td>0.0011(10)</td>
</tr>
<tr>
<td>N5'</td>
<td>0.0150(14)</td>
<td>0.051(2)</td>
<td>0.0201(12)</td>
<td>0.0099(12)</td>
<td>0.0029(11)</td>
<td>0.0015(13)</td>
</tr>
<tr>
<td>N6'</td>
<td>0.0144(6)</td>
<td>0.0160(6)</td>
<td>0.0140(6)</td>
<td>0.0005(5)</td>
<td>0.0046(5)</td>
<td>0.0000(5)</td>
</tr>
<tr>
<td>N7'</td>
<td>0.0124(6)</td>
<td>0.0188(7)</td>
<td>0.0125(6)</td>
<td>-0.0013(5)</td>
<td>0.0026(5)</td>
<td>-0.0008(5)</td>
</tr>
<tr>
<td>C57'</td>
<td>0.023(3)</td>
<td>0.0383(3)</td>
<td>0.0183(3)</td>
<td>0.0013(3)</td>
<td>-0.003(3)</td>
<td>0.0015(3)</td>
</tr>
<tr>
<td>C58'</td>
<td>0.013(3)</td>
<td>0.023(4)</td>
<td>0.014(3)</td>
<td>0.001(3)</td>
<td>0.002(2)</td>
<td>0.0003(3)</td>
</tr>
<tr>
<td>C59'</td>
<td>0.011(3)</td>
<td>0.025(3)</td>
<td>0.012(3)</td>
<td>-0.002(3)</td>
<td>0.003(3)</td>
<td>-0.001(3)</td>
</tr>
<tr>
<td>C60'</td>
<td>0.019(3)</td>
<td>0.020(3)</td>
<td>0.018(3)</td>
<td>0.000(2)</td>
<td>0.006(3)</td>
<td>-0.006(3)</td>
</tr>
<tr>
<td>C61'</td>
<td>0.017(3)</td>
<td>0.024(3)</td>
<td>0.017(3)</td>
<td>-0.004(2)</td>
<td>0.000(3)</td>
<td>-0.004(2)</td>
</tr>
<tr>
<td>C62'</td>
<td>0.0117(8)</td>
<td>0.0167(11)</td>
<td>0.0143(8)</td>
<td>0.0012(7)</td>
<td>0.0033(6)</td>
<td>0.0008(8)</td>
</tr>
<tr>
<td>N1S</td>
<td>0.049(3)</td>
<td>0.040(2)</td>
<td>0.055(3)</td>
<td>0.0144(19)</td>
<td>-0.011(2)</td>
<td>0.0064(18)</td>
</tr>
<tr>
<td>C1S</td>
<td>0.037(3)</td>
<td>0.029(2)</td>
<td>0.048(3)</td>
<td>0.003(2)</td>
<td>-0.005(2)</td>
<td>0.0109(19)</td>
</tr>
<tr>
<td>C2S</td>
<td>0.045(3)</td>
<td>0.035(2)</td>
<td>0.078(4)</td>
<td>0.001(2)</td>
<td>0.018(3)</td>
<td>0.005(2)</td>
</tr>
<tr>
<td>N1S'</td>
<td>0.042(5)</td>
<td>0.118(9)</td>
<td>0.072(8)</td>
<td>0.043(7)</td>
<td>0.003(5)</td>
<td>-0.017(6)</td>
</tr>
<tr>
<td>C1S'</td>
<td>0.041(6)</td>
<td>0.101(9)</td>
<td>0.074(8)</td>
<td>0.030(6)</td>
<td>0.005(6)</td>
<td>-0.018(6)</td>
</tr>
<tr>
<td>C2S'</td>
<td>0.067(8)</td>
<td>0.103(9)</td>
<td>0.085(8)</td>
<td>0.018(7)</td>
<td>0.013(7)</td>
<td>-0.035(6)</td>
</tr>
</tbody>
</table>

 Gobierno Special Details

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

<table>
<thead>
<tr>
<th>geom_bond_atom_site_label_1</th>
<th>geom_bond_atom_site_label_2</th>
<th>geom_bond_distance</th>
<th>geom_bond_site_symmetry_2</th>
<th>geom_bond_publ_flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1</td>
<td>O1</td>
<td>1.9490(12)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn1</td>
<td>O2</td>
<td>1.9738(12)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn1</td>
<td>N2</td>
<td>2.0552(15)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn1</td>
<td>N1</td>
<td>2.0847(15)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn1</td>
<td>N5</td>
<td>2.1838(13)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn2</td>
<td>O4</td>
<td>1.9566(11)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn2</td>
<td>O3</td>
<td>1.9788(12)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn2</td>
<td>N3</td>
<td>2.0703(14)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn2</td>
<td>N4</td>
<td>2.0944(14)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Zn2</td>
<td>N6</td>
<td>2.1962(14)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Cl1</td>
<td>C10</td>
<td>1.730(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Cl2</td>
<td>C11</td>
<td>1.737(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Cl3</td>
<td>C38</td>
<td>1.7271(17)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>Cl4</td>
<td>C39</td>
<td>1.7259(18)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N1</td>
<td>C7</td>
<td>1.301(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N1</td>
<td>C8</td>
<td>1.414(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N2</td>
<td>C14</td>
<td>1.300(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N2</td>
<td>C13</td>
<td>1.411(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N3</td>
<td>C35</td>
<td>1.299(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N3</td>
<td>C36</td>
<td>1.414(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N4</td>
<td>C42</td>
<td>1.296(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>N4</td>
<td>C41</td>
<td>1.411(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>O1</td>
<td>C1</td>
<td>1.296(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>O2</td>
<td>C20</td>
<td>1.298(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>O3</td>
<td>C29</td>
<td>1.297(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>O4</td>
<td>C48</td>
<td>1.299(2)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C1</td>
<td>C6</td>
<td>1.434(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>1.444(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>1.378(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C2</td>
<td>C21</td>
<td>1.531(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>1.393(4)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>1.366(4)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C5</td>
<td>C6</td>
<td>1.419(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>1.433(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>1.395(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C8</td>
<td>C13</td>
<td>1.414(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>1.379(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C10</td>
<td>C11</td>
<td>1.392(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C11</td>
<td>C12</td>
<td>1.383(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>1.392(3)</td>
<td>.</td>
<td>?</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>1.427(2)</td>
<td>.</td>
<td>?</td>
</tr>
</tbody>
</table>
C15 C16 1.417(2) . ?
C15 C20 1.434(2) . ?
C16 C17 1.366(2) . ?
C17 C18 1.402(2) . ?
C18 C19 1.383(2) . ?
C19 C20 1.442(2) . ?
C19 C25 1.537(2) . ?
C21 C24 1.529(3) . ?
C21 C22 1.538(3) . ?
C21 C23 1.542(3) . ?
C25 C28 1.535(2) . ?
C25 C27 1.539(3) . ?
C25 C26 1.542(2) . ?
C29 C34 1.438(2) . ?
C29 C30 1.446(2) . ?
C30 C31 1.379(2) . ?
C30 C49 1.537(2) . ?
C31 C32 1.404(3) . ?
C32 C33 1.361(3) . ?
C33 C34 1.413(2) . ?
C34 C35 1.427(2) . ?
C36 C37 1.395(2) . ?
C36 C41 1.413(2) . ?
C37 C38 1.381(2) . ?
C38 C39 1.391(3) . ?
C39 C40 1.385(2) . ?
C40 C41 1.391(2) . ?
C42 C43 1.430(2) . ?
C43 C44 1.412(2) . ?
C43 C48 1.440(2) . ?
C44 C45 1.362(2) . ?
C45 C46 1.403(3) . ?
C46 C47 1.383(2) . ?
C47 C48 1.443(2) . ?
C47 C53 1.536(2) . ?
C49 C50 1.534(2) . ?
C49 C52 1.535(3) . ?
C49 C51 1.537(3) . ?
C53 C56 1.535(3) . ?
C53 C54 1.536(2) . ?
C53 C55 1.542(2) . ?
P1 C57 1.844(3) . ?
P1 C59 1.860(3) . ?
P1 C58 1.866(3) . ?
N5 C60 1.481(3) . ?
N5 C61 1.495(3) . ?
N5 C57 1.499(3) . ?
N6 C60 1.480(3) . ?
N6 C62 1.503(3) . ?
N6 C58 1.503(3) . ?
N7 C62 1.443(4) . ?
N7 C61 1.450(4) . ?
N7 C59 1.479(3) . ?
P1' C57' 1.838(5) . ?
P1' C59' 1.852(5) . ?
P1' C58' 1.859(5) . ?
N5' C60' 1.482(5) . ?
N5' C57' 1.493(5) . ?
N5' C61' 1.497(5) . ?
N1S C1S 1.123(4) . ?
C1S C2S 1.440(5) . ?
N1S' C1S' 1.123(6) . ?
C1S' C2S' 1.442(6) . ?

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O1 Zn1 O2 96.18(5) . . ?
O1 Zn1 N2 150.91(6) . . ?
O2 Zn1 N2 90.04(5) . . ?
O1 Zn1 N1 89.43(6) . . ?
O2 Zn1 N1 167.04(6) . . ?
N2 Zn1 N1 79.55(6) . . ?
O1 Zn1 N5 99.86(5) . . ?
O2 Zn1 N5 91.45(5) . . ?
N2 Zn1 N5 108.38(5) . . ?
N1 Zn1 N5 99.12(5) . . ?
O4 Zn2 O3 97.60(5) . . ?
O4 Zn2 N3 146.57(5) . . ?
O3 Zn2 N3 89.37(5) . . ?
O4 Zn2 N4 87.69(5) . . ?
O3 Zn2 N4 164.55(5) . . ?
N3 Zn2 N4 78.49(5) . . ?
O4 Zn2 N6 102.74(5) . . ?
O3 Zn2 N6 93.10(5) . . ?
N3 Zn2 N6 109.51(5) . . ?
N4 Zn2 N6 99.90(5) . . ?
C7 N1 C8 122.84(16) . . ?
C7 N1 Zn1 123.87(14) . . ?
C8 N1 Zn1 113.28(11) . . ?
C14 N2 C13 121.05(15) . . ?
C14 N2 Zn1 123.73(12) . . ?
C13 N2 Zn1 114.05(11) . . ?
C35 N3 C36 120.81(14) . . ?
C35 N3 Zn2 124.39(12) . . ?
C36 N3 Zn2 114.43(10) . . ?
C42 N4 C41 122.63(15) . . ?
C42 N4 Zn2 122.79(12) . . ?
C41 N4 Zn2 114.09(11) . . ?
C1 O1 Zn1 130.65(13) . . ?
C20 O2 Zn1 130.46(11) . . ?
C29 O3 Zn2 131.65(11) . . ?
C48 O4 Zn2 127.01(10) . . ?
O1 C1 C6 122.54(17) . . ?

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
O1 C1 C2 118.61(19) . ?
C6 C1 C2 118.84(17) . ?
C3 C2 C1 118.1(2) . ?
C3 C2 C21 121.8(2) . ?
C1 C2 C21 120.05(17) . ?
C2 C3 C4 123.1(2) . ?
C5 C4 C3 119.8(2) . ?
C4 C5 C6 120.9(2) . ?
C5 C6 C7 116.0(2) . ?
C5 C6 C1 119.2(2) . ?
C7 C6 C1 124.54(17) . ?
N1 C7 C6 125.77(18) . ?
C9 C8 N1 125.38(18) . ?
C9 C8 C13 119.05(18) . ?
N1 C8 C13 115.53(15) . ?
C10 C9 C8 120.62(19) . ?
C9 C10 C11 120.19(18) . ?
C9 C10 C11 119.40(17) . ?
C11 C10 C11 120.41(17) . ?
C12 C11 C10 120.10(19) . ?
C12 C11 C12 118.69(16) . ?
C10 C11 C12 121.19(15) . ?
C11 C12 C13 120.29(18) . ?
C12 C13 N2 124.05(17) . ?
C12 C13 C8 119.65(16) . ?
N2 C13 C8 116.29(16) . ?
N2 C14 C15 127.00(16) . ?
C16 C15 C14 115.19(15) . ?
C16 C15 C20 119.97(15) . ?
C14 C15 C20 124.83(15) . ?
C17 C16 C15 121.19(16) . ?
C16 C17 C18 118.86(16) . ?
C19 C18 C17 123.42(16) . ?
C18 C19 C20 118.35(15) . ?
C18 C19 C25 121.33(15) . ?
C20 C19 C25 120.29(15) . ?
O2 C20 C15 122.10(15) . ?
O2 C20 C19 119.70(15) . ?
C15 C20 C19 118.20(15) . ?
C24 C21 C2 111.27(16) . ?
C24 C21 C22 107.0(2) . ?
C2 C21 C22 112.4(2) . ?
C24 C21 C23 109.03(19) . ?
C2 C21 C23 109.80(18) . ?
C22 C21 C23 107.28(17) . ?
C28 C25 C19 111.52(15) . ?
C28 C25 C27 107.30(14) . ?
C19 C25 C27 111.22(14) . ?
C28 C25 C26 107.74(15) . ?
C19 C25 C26 109.36(14) . ?
C27 C25 C26 109.62(15) . ?
O3 C29 C34 122.05(15) . ?
O3 C29 C30 120.23(15) . ?
C34 C29 C30 117.72(15) . ?
C31 C30 C29 118.38(16)...
C31 C30 C49 121.21(15)...
C29 C30 C49 120.41(15)...
C30 C31 C32 123.49(17)...
C33 C32 C31 118.97(17)...
C32 C33 C34 121.09(17)...
C33 C34 C35 115.21(15)...
C33 C34 C29 120.35(16)...
C35 C34 C29 124.43(15)...
N3 C35 C34 127.40(16)...
C37 C36 C41 119.44(15)...
C37 C36 N3 124.49(15)...
C41 C36 N3 116.04(14)...
C38 C37 C36 120.25(16)...
C37 C38 C39 120.31(15)...
C37 C38 C13 119.34(13)...
C39 C38 C13 120.34(13)...
C40 C39 C38 120.14(16)...
C40 C39 C14 118.90(14)...
C38 C39 C14 120.96(13)...
C39 C40 C41 120.32(16)...
C40 C41 N4 125.25(15)...
C40 C41 C36 119.52(15)...
N4 C41 C36 115.22(15)...
N4 C42 C43 125.67(16)...
C44 C43 C42 116.01(15)...
C44 C43 C48 120.27(15)...
C42 C43 C48 123.63(15)...
C45 C44 C43 121.04(17)...
C44 C45 C46 118.93(16)...
C47 C46 C45 123.67(16)...
C46 C47 C48 118.04(16)...
C46 C47 C53 121.58(15)...
C48 C47 C53 120.32(15)...
O4 C48 C43 122.46(14)...
O4 C48 C47 119.58(15)...
C43 C48 C47 117.95(15)...
C50 C49 C52 110.16(15)...
C50 C49 C30 110.43(15)...
C52 C49 C30 110.10(14)...
C50 C49 C51 106.78(15)...
C52 C49 C51 107.16(16)...
C30 C49 C51 112.11(15)...
C56 C53 C47 112.27(14)...
C56 C53 C54 107.23(15)...
C47 C53 C54 111.61(15)...
C56 C53 C55 109.03(15)...
C47 C53 C55 108.93(14)...
C54 C53 C55 107.63(14)...
C57 P1 C59 95.02(12)...
C57 P1 C58 95.96(15)...
C59 P1 C58 96.68(13)...
C60 N5 C61 108.1(2)...
C60 N5 C57 111.3(2)...

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
C61 N5 C57 110.63(19) . . ?
C60 N5 Zn1 107.46(13) . . ?
C61 N5 Zn1 114.63(14) . . ?
C57 N5 Zn1 104.63(13) . . ?
C60 N6 C62 108.3(2) . . ?
C60 N6 C58 110.5(2) . . ?
C62 N6 C58 108.7(2) . . ?
C60 N6 Zn2 105.17(13) . . ?
C62 N6 Zn2 106.81(14) . . ?
C58 N6 Zn2 117.06(14) . . ?
C62 N7 C61 109.8(3) . . ?
C62 N7 C59 111.4(3) . . ?
C61 N7 C59 112.0(3) . . ?
N5 C57 P1 115.10(17) . . ?
N6 C58 P1 114.97(19) . . ?
N7 C59 P1 113.87(17) . . ?
N6 C60 N5 113.9(2) . . ?
N7 C61 N5 112.8(2) . . ?
N7 C62 N6 114.7(2) . . ?
C57' P1' C59' 96.2(3) . . ?
C57' P1' C58' 96.3(3) . . ?
C59' P1' C58' 97.7(4) . . ?
C60' N5' C57' 110.8(5) . . ?
C60' N5' C61' 108.4(5) . . ?
C57' N5' C61' 110.2(5) . . ?
N5' C57' P1' 115.0(4) . . ?
N1S C1S C2S 174.3(8) . . ?
N1S' C1S' C2S' 169(2) . . ?

loop_
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
 _geom_torsion_site_symmetry_1
 _geom_torsion_site_symmetry_2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
O1 Zn1 N1 C7 16.09(14) . . ?
O2 Zn1 N1 C7 132.0(2) . . ?
O2 Zn1 N1 C7 169.02(15) . . ?
N5 Zn1 N1 C7 -83.81(14) . . ?
O1 Zn1 N1 C8 -162.99(11) . . ?
O2 Zn1 N1 C8 -47.1(3) . . ?
N2 Zn1 N1 C8 -10.06(11) . . ?
N5 Zn1 N1 C8 97.11(11) . . ?
O1 Zn1 N2 C14 -89.19(17) . . ?
O2 Zn1 N2 C14 13.67(13) . . ?
N1 Zn1 N2 C14 -158.56(14) . . ?
O1 Zn1 N2 C13 105.21(13) . . ?
O2 Zn1 N2 C13 78.54(16) . . ?
O2 Zn1 N2 C13 -178.60(11) . . ?
N1 Zn1 N2 C13 13.67(11) . . ?

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1</td>
<td>N1</td>
<td>C9</td>
<td>-172.84(15)</td>
</tr>
<tr>
<td>C7</td>
<td>N1</td>
<td>C8</td>
<td>-169.66(16)</td>
</tr>
<tr>
<td>Zn1</td>
<td>N1</td>
<td>C8</td>
<td>9.43(18)</td>
</tr>
<tr>
<td>C7</td>
<td>N1</td>
<td>C8</td>
<td>169.66(16)</td>
</tr>
<tr>
<td>Zn1</td>
<td>N1</td>
<td>C13</td>
<td>9.43(18)</td>
</tr>
<tr>
<td>C7</td>
<td>N1</td>
<td>C13</td>
<td>169.66(16)</td>
</tr>
<tr>
<td>N1</td>
<td>C8</td>
<td>C9</td>
<td>-175.63(17)</td>
</tr>
<tr>
<td>C13</td>
<td>C8</td>
<td>C9</td>
<td>2.0(3)</td>
</tr>
<tr>
<td>N1</td>
<td>C8</td>
<td>C10</td>
<td>-0.2(3)</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>-176.93(15)</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>172.74(13)</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>161.13(15)</td>
</tr>
<tr>
<td>N2</td>
<td>C13</td>
<td>C14</td>
<td>-19.2(2)</td>
</tr>
<tr>
<td>Zn1</td>
<td>N2</td>
<td>C13</td>
<td>172.74(13)</td>
</tr>
<tr>
<td>Zn1</td>
<td>N2</td>
<td>C13</td>
<td>-6.96(18)</td>
</tr>
<tr>
<td>C9</td>
<td>C8</td>
<td>C13</td>
<td>0.7(2)</td>
</tr>
<tr>
<td>N1</td>
<td>C8</td>
<td>C13</td>
<td>178.54(15)</td>
</tr>
<tr>
<td>C9</td>
<td>C8</td>
<td>C13</td>
<td>178.62(15)</td>
</tr>
<tr>
<td>N1</td>
<td>C8</td>
<td>C13</td>
<td>-1.7(2)</td>
</tr>
<tr>
<td>N2</td>
<td>C14</td>
<td>C15</td>
<td>-178.30(16)</td>
</tr>
<tr>
<td>Zn1</td>
<td>N2</td>
<td>C14</td>
<td>172.74(13)</td>
</tr>
<tr>
<td>N2</td>
<td>C14</td>
<td>C15</td>
<td>178.82(16)</td>
</tr>
<tr>
<td>N2</td>
<td>C14</td>
<td>C20</td>
<td>2.5(3)</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>-179.68(16)</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>-1.0(2)</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>C18</td>
<td>0.7(3)</td>
</tr>
<tr>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>0.1(3)</td>
</tr>
<tr>
<td>C17</td>
<td>C18</td>
<td>C19</td>
<td>-0.6(2)</td>
</tr>
<tr>
<td>C17</td>
<td>C18</td>
<td>C25</td>
<td>-178.66(15)</td>
</tr>
<tr>
<td>Zn1</td>
<td>O2</td>
<td>C20</td>
<td>9.4(2)</td>
</tr>
<tr>
<td>Zn1</td>
<td>O2</td>
<td>C20</td>
<td>-170.43(11)</td>
</tr>
<tr>
<td>C16</td>
<td>C20</td>
<td>O2</td>
<td>-179.32(15)</td>
</tr>
<tr>
<td>C14</td>
<td>C20</td>
<td>O2</td>
<td>-0.7(3)</td>
</tr>
<tr>
<td>C16</td>
<td>C20</td>
<td>C19</td>
<td>0.5(2)</td>
</tr>
<tr>
<td>C14</td>
<td>C20</td>
<td>C19</td>
<td>179.07(15)</td>
</tr>
<tr>
<td>C18</td>
<td>C20</td>
<td>C19</td>
<td>-179.94(15)</td>
</tr>
<tr>
<td>C25</td>
<td>C20</td>
<td>O2</td>
<td>-1.8(2)</td>
</tr>
<tr>
<td>C18</td>
<td>C20</td>
<td>C15</td>
<td>0.2(2)</td>
</tr>
<tr>
<td>C25</td>
<td>C20</td>
<td>C15</td>
<td>178.36(14)</td>
</tr>
<tr>
<td>C3</td>
<td>C21</td>
<td>C24</td>
<td>-118.3(2)</td>
</tr>
<tr>
<td>C1</td>
<td>C21</td>
<td>C24</td>
<td>62.0(2)</td>
</tr>
<tr>
<td>C3</td>
<td>C21</td>
<td>C22</td>
<td>1.6(3)</td>
</tr>
<tr>
<td>C1</td>
<td>C21</td>
<td>C22</td>
<td>-178.12(2)</td>
</tr>
<tr>
<td>C3</td>
<td>C21</td>
<td>C23</td>
<td>120.9(2)</td>
</tr>
<tr>
<td>C1</td>
<td>C21</td>
<td>C23</td>
<td>-58.8(2)</td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>C25</td>
<td>-4.6(2)</td>
</tr>
<tr>
<td>C20</td>
<td>C19</td>
<td>C25</td>
<td>177.38(15)</td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>C27</td>
<td>-124.80(17)</td>
</tr>
<tr>
<td>C20</td>
<td>C19</td>
<td>C27</td>
<td>57.6(2)</td>
</tr>
<tr>
<td>C18</td>
<td>C19</td>
<td>C26</td>
<td>114.50(18)</td>
</tr>
</tbody>
</table>
Zn2 N6 C58 P1 179.69(13) ?
C57 P1 C58 N6 48.2(3) ?
C59 P1 C58 N6 -47.6(2) ?
C62 N7 C59 P1 -60.7(3) ?
C61 N7 C59 P1 62.8(3) ?
C57 P1 C59 N7 -49.6(2) ?
C58 P1 C59 N7 47.0(2) ?
C62 N6 C60 N5 -53.1(3) ?
C58 N6 C60 N5 65.8(3) ?
Zn2 N6 C60 N5 -167.00(17) ?
C61 N5 C60 N6 55.8(3) ?
C57 N5 C60 N6 -65.9(3) ?
Zn1 N5 C60 N6 -179.92(17) ?
C62 N7 C61 N5 57.3(4) ?
C59 N7 C61 N5 -67.0(3) ?
C60 N5 C61 N7 -57.2(3) ?
C57 N5 C61 N7 65.0(3) ?
Zn1 N5 C61 N7 -177.0(2) ?
C61 N7 C62 N6 -55.3(4) ?
C59 N7 C62 N6 69.4(3) ?
C60 N6 C62 N7 52.7(3) ?
C58 N6 C62 N7 -67.4(3) ?
Zn2 N6 C62 N7 165.5(2) ?
C60' N5' C57' P1' 60.8(6) ?
C61' N5' C57' P1' -59.1(6) ?
C59' P1' C57' N5' 48.9(5) ?
C58' P1' C57' N5' -49.6(5) ?
_diffrn_measured_fraction_theta_max 0.997
_diffrn_reflns_theta_full 25.00
_diffrn_measured_fraction_theta_full 1.000
_refine_diff_density_max 0.397
_refine_diff_density_min -0.463
_refine_diff_density_rms 0.063

data_mo_da461_0m
_database_code_depnum_ccdc_archive 'CCDC 893439'
_trackingRef 'mo_DA461_0mX.cif'
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
;
_chemical_name_common
_chemical_melting_point
_chemical_formula_moiety
_chemical_formula_sum 'C181 H206 Cl2 N18 O12 P2 Zn6'
_chemical_formula_weight 3350.70
loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Zn Zn 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic
_symmetry_space_group_name_H-M Cc

loop_
_symmetry_equiv_pos_as_xyz
 'x, y, z'
 'x, -y, z+1/2'
 'x+1/2, y+1/2, z'
 'x+1/2, -y+1/2, z+1/2'

_cell_length_a 29.253(3)
_cell_length_b 16.9817(16)
_cell_length_c 33.515(3)
_cell_angle_alpha 90.00
_cell_angle_beta 100.630(3)
_cell_angle_gamma 90.00
_cell_volume 16363(3)
_cell_formula_units_Z 4
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used 9716
_cell_measurement_theta_min 2.40
_cell_measurement_theta_max 24.45
_exptl_crystal_description plate
_exptl_crystal_colour orange
_exptl_crystal_size_max 0.20
_exptl_crystal_size_mid 0.20
_exptl_crystal_size_min 0.05
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.360
_exptl_crystal_density_method 'not measured'
_exptl_F_000 7032
_exptl_absorpt_coefficient_mu 0.985
_exptl_absorpt_correction_type empirical
_exptl_absorpt_correction_T_min 0.8274
_exptl_absorpt_correction_T_max 0.9524

It should be noted that the esd's of the cell dimensions are probably too low;
they should be multiplied by a factor of 2 to 10

_diffrn_ambient_temperature 100(2)
_diffrn_measurement_specimen_support 'magnetic support whith MicroMount'
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\alpha
_diffrn_source 'Micorfocus source E025 IuS'
_diffrn_source_type 'Bruker APEX DUO'
_diffrn_source_power 50
_diffrn_source_current 0.6
_diffrn_source_size '0.2 mm x 0.2 mm fine focus'
_diffrn_radiation_monochromator 'Quazar MX Multilayer Optics'
_diffrn_detector_type '4K CCD area detector APEX II'
_diffrn_measurement_device_type 'APEX DUO Kappa 4-axis goniometer'
_diffrn_measurement_method
;
Fullsphere data collection, phi and omega scans
;
_diffrn_detector_area_resol_mean 512
_diffrn_reflns_number 128388
_diffrn_reflns_av_R_equivalents 0.0453
_diffrn_reflns_av_signal/netI 0.0554
_diffrn_reflns_limit_h_min -37
_diffrn_reflns_limit_h_max 36
_diffrn_reflns_limit_k_min -21
_diffrn_reflns_limit_k_max 21
_diffrn_reflns_limit_l_min -42
_diffrn_reflns_limit_l_max 42
_diffrn_reflns_theta_min 1.42
_diffrn_reflns_theta_max 26.82
_reflns_number_total 34428
_reflns_number_gt 29211
_reflns_threshold_expression >2sigma(I)
_computing_data_collection 'Bruker APEX2 v2011.4-0'
_computing_cell_refinement 'Bruker APEX2 v2011.4-0'
_computing_data_reduction 'Bruker SAINT V7.60A'
_computing_structure_solution Sir2011
_computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[s^2^+(Fo^2^)+(0.0470P)^2^+25.8373P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment noref
_refine_ls_extinction_method none

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
refine_ls_extinction_coef	?
chemical_absolute_configuration ad
refine_ls_abs_structure_Flack 0.022(6)
refine_ls_number_reflns 34428
refine_ls_number_parameters 2383
refine_ls_number_restraints 403
refine_ls_R_factor_all 0.0571
refine_ls_R_factor_gt 0.0435
refine_ls_wR_factor_ref 0.1064
refine_ls_wR_factor_gt 0.1002
refine_ls_goodness_of_fit_ref 1.017
refine_ls_restrained_S_all 1.022
refine_ls_shift/su_max 0.001
refine_ls_shift/su_mean 0.000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
Zn1A Zn 0.755979(16) 0.54025(2) 0.482663(13) 0.02512(10) Uani 1 1 d . . .
Zn2A Zn 0.610681(16) 0.29017(2) 0.484028(14) 0.02455(10) Uani 1 1 d . . .
Zn3A Zn 0.806296(19) 0.19421(3) 0.478220(19) 0.04169(14) Uani 1 1 d . . .
Zn1B Zn 0.471459(15) 0.38850(3) 0.317459(13) 0.02198(6) Uani 1 1 d . . .
Zn2B Zn 0.270487(15) 0.48027(2) 0.310382(13) 0.02008(9) Uani 1 1 d . . .
Zn3B Zn 0.324552(15) 0.13973(2) 0.319986(14) 0.02410(10) Uani 1 1 d . . .
P1A P 0.74895(4) 0.33849(6) 0.57974(3) 0.0289(2) Uani 1 1 d . . .
N7A N 0.74520(10) 0.42175(17) 0.50668(9) 0.0198(6) Uani 1 1 d . . .
N8A N 0.76395(10) 0.28028(17) 0.50534(9) 0.0215(7) Uani 1 1 d . . .
N9A N 0.68356(10) 0.32265(16) 0.50694(8) 0.0169(6) Uani 1 1 d . . .
O1A O 0.69994(9) 0.58422(15) 0.49968(7) 0.0282(6) Uani 1 1 d D . . .
C1A C 0.66265(12) 0.6150(2) 0.47913(10) 0.0264(8) Uani 1 1 d D . . .
C2A C 0.63161(13) 0.6590(2) 0.49919(11) 0.0298(9) Uani 1 1 d D . . .
C3A C 0.59293(14) 0.6933(2) 0.47659(12) 0.0378(10) Uani 1 1 d D . . .
H3A H 0.5732 0.7241 0.4900 0.045 Uiso 1 1 calc R . . .
C4A C 0.58135(16) 0.6846(3) 0.43423(13) 0.0447(12) Uani 1 1 d D . . .
H4A H 0.5540 0.7086 0.4195 0.054 Uiso 1 1 calc R . . .
C5A C 0.60908(15) 0.6424(3) 0.41466(12) 0.0414(12) Uani 1 1 d D . . .
H5A H 0.6012 0.6372 0.3860 0.050 Uiso 1 1 calc R . . .
C6A C 0.64992(14) 0.6054(2) 0.43580(10) 0.0335(10) Uani 1 1 d D . . .
C7A C 0.64394(13) 0.6695(2) 0.54583(11) 0.0340(10) Uani 1 1 d D . . .
C8A C 0.64682(18) 0.5900(3) 0.56733(13) 0.0435(12) Uani 1 1 d D . . .
H8A1 H 0.6687 0.5559 0.5566 0.065 Uiso 1 1 calc R . . .
H8A2 H 0.6160 0.5655 0.5627 0.065 Uiso 1 1 calc R . . .
H8A3 H 0.6577 0.5977 0.5965 0.065 Uiso 1 1 calc R . . .
<table>
<thead>
<tr>
<th>C</th>
<th>0.69044(15)</th>
<th>0.7132(3)</th>
<th>0.55663(17)</th>
<th>0.0618(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9A1</td>
<td>0.7012</td>
<td>0.7120</td>
<td>0.5861</td>
<td>0.093</td>
</tr>
<tr>
<td>H9A2</td>
<td>0.6863</td>
<td>0.7680</td>
<td>0.5475</td>
<td>0.093</td>
</tr>
<tr>
<td>H9A3</td>
<td>0.7135</td>
<td>0.6876</td>
<td>0.5432</td>
<td>0.093</td>
</tr>
<tr>
<td>C10A</td>
<td>0.60694(16)</td>
<td>0.7184(3)</td>
<td>0.56205(15)</td>
<td>0.0470(12)</td>
</tr>
<tr>
<td>H10A</td>
<td>0.5767</td>
<td>0.6920</td>
<td>0.5552</td>
<td>0.071</td>
</tr>
<tr>
<td>H10B</td>
<td>0.6048</td>
<td>0.7709</td>
<td>0.5496</td>
<td>0.071</td>
</tr>
<tr>
<td>H10C</td>
<td>0.6157</td>
<td>0.7235</td>
<td>0.5916</td>
<td>0.071</td>
</tr>
<tr>
<td>C11A</td>
<td>0.67786(14)</td>
<td>0.5638(2)</td>
<td>0.41177(11)</td>
<td>0.0352(10)</td>
</tr>
<tr>
<td>H11A</td>
<td>0.6662</td>
<td>0.5612</td>
<td>0.3834</td>
<td>0.042</td>
</tr>
<tr>
<td>H11B</td>
<td>0.6762</td>
<td>0.5720</td>
<td>0.3742</td>
<td>0.042</td>
</tr>
<tr>
<td>N1A</td>
<td>0.71720(11)</td>
<td>0.52963(18)</td>
<td>0.42481(9)</td>
<td>0.0289(7)</td>
</tr>
<tr>
<td>C12A</td>
<td>0.74264(15)</td>
<td>0.4965(2)</td>
<td>0.39637(11)</td>
<td>0.0378(11)</td>
</tr>
<tr>
<td>H12A</td>
<td>0.7364</td>
<td>0.4706</td>
<td>0.3822</td>
<td>0.042</td>
</tr>
<tr>
<td>H12B</td>
<td>0.7406</td>
<td>0.4804</td>
<td>0.3730</td>
<td>0.042</td>
</tr>
<tr>
<td>N2A</td>
<td>0.80728(12)</td>
<td>0.5179(2)</td>
<td>0.44947(10)</td>
<td>0.0333(8)</td>
</tr>
<tr>
<td>C13A</td>
<td>0.85143(15)</td>
<td>0.5199(2)</td>
<td>0.46505(12)</td>
<td>0.0333(10)</td>
</tr>
<tr>
<td>H13A</td>
<td>0.8519</td>
<td>0.4996</td>
<td>0.4486</td>
<td>0.040</td>
</tr>
<tr>
<td>C14A</td>
<td>0.87267(14)</td>
<td>0.5492(2)</td>
<td>0.50420(12)</td>
<td>0.0313(9)</td>
</tr>
<tr>
<td>C15A</td>
<td>0.92179(14)</td>
<td>0.5503(2)</td>
<td>0.51196(13)</td>
<td>0.0354(10)</td>
</tr>
<tr>
<td>H15A</td>
<td>0.8169</td>
<td>0.4313</td>
<td>0.3236</td>
<td>0.055</td>
</tr>
<tr>
<td>C16A</td>
<td>0.81818(17)</td>
<td>0.4701(2)</td>
<td>0.38143(13)</td>
<td>0.0432(12)</td>
</tr>
<tr>
<td>H16A</td>
<td>0.8511</td>
<td>0.4706</td>
<td>0.3892</td>
<td>0.052</td>
</tr>
<tr>
<td>C17A</td>
<td>0.79093(15)</td>
<td>0.4932(2)</td>
<td>0.40918(12)</td>
<td>0.0340(10)</td>
</tr>
<tr>
<td>N2A</td>
<td>0.80728(12)</td>
<td>0.5179(2)</td>
<td>0.44947(10)</td>
<td>0.0333(8)</td>
</tr>
<tr>
<td>C18A</td>
<td>0.85143(15)</td>
<td>0.5199(2)</td>
<td>0.46505(12)</td>
<td>0.0333(10)</td>
</tr>
<tr>
<td>H18A</td>
<td>0.8719</td>
<td>0.4996</td>
<td>0.4486</td>
<td>0.040</td>
</tr>
<tr>
<td>C19A</td>
<td>0.87267(14)</td>
<td>0.5492(2)</td>
<td>0.50420(12)</td>
<td>0.0313(9)</td>
</tr>
<tr>
<td>C20A</td>
<td>0.92179(14)</td>
<td>0.5503(2)</td>
<td>0.51196(13)</td>
<td>0.0354(10)</td>
</tr>
<tr>
<td>H20A</td>
<td>0.9383</td>
<td>0.5278</td>
<td>0.4929</td>
<td>0.043</td>
</tr>
<tr>
<td>C21A</td>
<td>0.94546(16)</td>
<td>0.5835(3)</td>
<td>0.54657(14)</td>
<td>0.0455(12)</td>
</tr>
<tr>
<td>H21A</td>
<td>0.9785</td>
<td>0.5836</td>
<td>0.5518</td>
<td>0.055</td>
</tr>
<tr>
<td>C22A</td>
<td>0.92119(15)</td>
<td>0.6176(3)</td>
<td>0.57447(13)</td>
<td>0.0390(10)</td>
</tr>
<tr>
<td>H22A</td>
<td>0.9386</td>
<td>0.6409</td>
<td>0.5983</td>
<td>0.047</td>
</tr>
<tr>
<td>C23A</td>
<td>0.87325(13)</td>
<td>0.61912(2)</td>
<td>0.56915(11)</td>
<td>0.0283(9)</td>
</tr>
<tr>
<td>C24A</td>
<td>0.84722(13)</td>
<td>0.5836(2)</td>
<td>0.53263(11)</td>
<td>0.0279(9)</td>
</tr>
<tr>
<td>O2A</td>
<td>0.80204(9)</td>
<td>0.58366(16)</td>
<td>0.52681(8)</td>
<td>0.0309(6)</td>
</tr>
<tr>
<td>C25A</td>
<td>0.84855(14)</td>
<td>0.65912(2)</td>
<td>0.59990(11)</td>
<td>0.0296(9)</td>
</tr>
<tr>
<td>C26A</td>
<td>0.81454(19)</td>
<td>0.60313(3)</td>
<td>0.61571(14)</td>
<td>0.0542(15)</td>
</tr>
<tr>
<td>H26B</td>
<td>0.8002</td>
<td>0.6305</td>
<td>0.6360</td>
<td>0.081</td>
</tr>
<tr>
<td>C27A</td>
<td>0.82108(14)</td>
<td>0.7305(2)</td>
<td>0.58035(11)</td>
<td>0.0309(9)</td>
</tr>
<tr>
<td>H27A</td>
<td>0.8426</td>
<td>0.7693</td>
<td>0.5726</td>
<td>0.046</td>
</tr>
<tr>
<td>H27B</td>
<td>0.8040</td>
<td>0.7543</td>
<td>0.5998</td>
<td>0.046</td>
</tr>
<tr>
<td>H27C</td>
<td>0.7991</td>
<td>0.7136</td>
<td>0.5562</td>
<td>0.046</td>
</tr>
<tr>
<td>C28A</td>
<td>0.88336(16)</td>
<td>0.6889(3)</td>
<td>0.63743(13)</td>
<td>0.0451(12)</td>
</tr>
<tr>
<td>H28A</td>
<td>0.9015</td>
<td>0.6444</td>
<td>0.6506</td>
<td>0.068</td>
</tr>
<tr>
<td>H28B</td>
<td>0.8662</td>
<td>0.7136</td>
<td>0.6566</td>
<td>0.068</td>
</tr>
<tr>
<td>H28C</td>
<td>0.9044</td>
<td>0.7276</td>
<td>0.6288</td>
<td>0.068</td>
</tr>
<tr>
<td>O3A</td>
<td>0.58111(9)</td>
<td>0.32760(15)</td>
<td>0.52771(8)</td>
<td>0.0274(6)</td>
</tr>
<tr>
<td>C29A</td>
<td>0.56028(14)</td>
<td>0.3933(2)</td>
<td>0.53223(12)</td>
<td>0.0272(9)</td>
</tr>
<tr>
<td>O3A</td>
<td>0.54200(15)</td>
<td>0.40593(2)</td>
<td>0.56910(12)</td>
<td>0.0319(9)</td>
</tr>
<tr>
<td>C31A</td>
<td>0.52067(17)</td>
<td>0.47573(3)</td>
<td>0.57361(14)</td>
<td>0.0423(11)</td>
</tr>
<tr>
<td>H31A</td>
<td>0.5094</td>
<td>0.4843</td>
<td>0.5981</td>
<td>0.051</td>
</tr>
<tr>
<td>C32A</td>
<td>0.51423(17)</td>
<td>0.53573(3)</td>
<td>0.54435(15)</td>
<td>0.0403(11)</td>
</tr>
<tr>
<td>H32A</td>
<td>0.4989</td>
<td>0.5832</td>
<td>0.5489</td>
<td>0.048</td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>Symbol</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Temperature Factors</th>
<th>Anisotropic/Isotropic</th>
<th>Occupancy</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>C33A</td>
<td>C</td>
<td>0.53053(15)</td>
<td>0.5241(2)</td>
<td>0.50920(13)</td>
<td>0.0319(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H33A</td>
<td>H</td>
<td>0.5610 0.4927 0.4461 0.028 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37B</td>
<td>H</td>
<td>0.51913(16)</td>
<td>0.4539(2)</td>
<td>0.50254(11)</td>
<td>0.0235(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38A</td>
<td>H</td>
<td>0.5261 0.5638 0.4889 0.038 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34A</td>
<td>C</td>
<td>0.56680(13)</td>
<td>0.4480(2)</td>
<td>0.46337(11)</td>
<td>0.0235(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35A</td>
<td>C</td>
<td>0.56680(13)</td>
<td>0.4480(2)</td>
<td>0.46337(11)</td>
<td>0.0235(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H35A</td>
<td>H</td>
<td>0.59858(17)</td>
<td>0.3197(4)</td>
<td>0.61690(15)</td>
<td>0.0532(14)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37B</td>
<td>H</td>
<td>0.54689(16)</td>
<td>0.3413(3)</td>
<td>0.60172(13)</td>
<td>0.0415(11)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36A</td>
<td>C</td>
<td>0.51900(16)</td>
<td>0.2695(3)</td>
<td>0.58451(15)</td>
<td>0.0235(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36A</td>
<td>H</td>
<td>0.51900(16)</td>
<td>0.2695(3)</td>
<td>0.58451(15)</td>
<td>0.0235(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37A</td>
<td>C</td>
<td>0.5277(2) 0.3689(4)</td>
<td>0.63909(15)</td>
<td>0.0589(15)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37B</td>
<td>H</td>
<td>0.4950 0.3841 0.6308 0.088 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38A</td>
<td>C</td>
<td>0.52113(14)</td>
<td>0.3841(3)</td>
<td>0.40876(11)</td>
<td>0.0287(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38B</td>
<td>H</td>
<td>0.52113(14)</td>
<td>0.3841(3)</td>
<td>0.40876(11)</td>
<td>0.0287(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3A</td>
<td>N</td>
<td>0.58945(11)</td>
<td>0.38747(18)</td>
<td>0.44933(9)</td>
<td>0.0218(7)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40A</td>
<td>C</td>
<td>0.59334(14)</td>
<td>0.3841(3)</td>
<td>0.40876(11)</td>
<td>0.0287(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41A</td>
<td>C</td>
<td>0.58945(11)</td>
<td>0.38747(18)</td>
<td>0.44933(9)</td>
<td>0.0218(7)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H41A</td>
<td>H</td>
<td>0.5705 0.4923 0.3872 0.042 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42A</td>
<td>C</td>
<td>0.59291(15)</td>
<td>0.3417(3)</td>
<td>0.6514(2)</td>
<td>0.0753(16)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H42A</td>
<td>H</td>
<td>0.59291(15)</td>
<td>0.3417(3)</td>
<td>0.6514(2)</td>
<td>0.0753(16)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43A</td>
<td>C</td>
<td>0.61269(16)</td>
<td>0.33153(14)</td>
<td>0.0499(14)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H43A</td>
<td>H</td>
<td>0.61269(16)</td>
<td>0.33153(14)</td>
<td>0.0499(14)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44A</td>
<td>C</td>
<td>0.6199 0.3565 0.3052 0.060 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45A</td>
<td>C</td>
<td>0.6199 0.3565 0.3052 0.060 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H44A</td>
<td>H</td>
<td>0.6356 0.2564 0.3525 0.058 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46A</td>
<td>C</td>
<td>0.61436(16)</td>
<td>0.1756(3)</td>
<td>0.41695(16)</td>
<td>0.0537(15)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H46A</td>
<td>H</td>
<td>0.61436(16)</td>
<td>0.1756(3)</td>
<td>0.41695(16)</td>
<td>0.0537(15)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50A</td>
<td>C</td>
<td>0.6118 0.1637 0.3889 0.064 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C51A</td>
<td>C</td>
<td>0.6118 0.1637 0.3889 0.064 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52A</td>
<td>C</td>
<td>0.6118 0.1637 0.3889 0.064 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>O</td>
<td>0.62173(16)</td>
<td>0.3038(3)</td>
<td>0.35947(14)</td>
<td>0.0481(13)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H50A</td>
<td>H</td>
<td>0.6101 0.0310 0.3945 0.103 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54A</td>
<td>C</td>
<td>0.6116(2) 0.0317(3)</td>
<td>0.4467(3)</td>
<td>0.080(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H51A</td>
<td>H</td>
<td>0.6075 0.0317(3)</td>
<td>0.4467(3)</td>
<td>0.080(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55A</td>
<td>C</td>
<td>0.6167(2) 0.0279(3)</td>
<td>0.4880(3)</td>
<td>0.083(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H52A</td>
<td>H</td>
<td>0.6167(2) 0.0279(3)</td>
<td>0.4880(3)</td>
<td>0.083(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H53A</td>
<td>H</td>
<td>0.62033(17)</td>
<td>0.0408(3)</td>
<td>0.50999(2)</td>
<td>0.0606(18)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H54A</td>
<td>H</td>
<td>0.62033(17)</td>
<td>0.0408(3)</td>
<td>0.50999(2)</td>
<td>0.0606(18)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C56A</td>
<td>C</td>
<td>0.6732(2) 0.0813(3)</td>
<td>0.57331(18)</td>
<td>0.0564(14)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H56B</td>
<td>H</td>
<td>0.6732(2) 0.0813(3)</td>
<td>0.57331(18)</td>
<td>0.0564(14)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H56A</td>
<td>H</td>
<td>0.6988 0.0479 0.5680 0.085 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H56B</td>
<td>H</td>
<td>0.6988 0.0479 0.5680 0.085 Uiso 1 1 calc R . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Uiso</th>
<th>Uani</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>H56A</td>
<td>0.6754</td>
<td>0.5610</td>
<td>0.085</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5A</td>
<td>0.8192</td>
<td>0.5239</td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A</td>
<td>0.7986</td>
<td>0.5289</td>
<td>0.0247</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C58A</td>
<td>0.8160</td>
<td>0.5653</td>
<td>0.0290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59A</td>
<td>0.7939</td>
<td>0.5727</td>
<td>0.0412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H59A</td>
<td>0.8048</td>
<td>0.5972</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C60A</td>
<td>0.7557</td>
<td>0.5453</td>
<td>0.0485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C61A</td>
<td>0.7989</td>
<td>0.5289</td>
<td>0.0247</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62A</td>
<td>0.8160</td>
<td>0.5653</td>
<td>0.0290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63A</td>
<td>0.7939</td>
<td>0.5727</td>
<td>0.0412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H64A</td>
<td>0.8715</td>
<td>0.6250</td>
<td>0.107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65A</td>
<td>0.9001</td>
<td>0.6493</td>
<td>0.107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C66A</td>
<td>0.8535</td>
<td>0.6089</td>
<td>0.0608</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67A</td>
<td>0.7425</td>
<td>0.4619</td>
<td>0.0333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>0.7567</td>
<td>0.4458</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C68A</td>
<td>0.7342</td>
<td>0.1324</td>
<td>0.028</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C69A</td>
<td>0.6984</td>
<td>0.3975</td>
<td>0.0208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H69A</td>
<td>0.6852</td>
<td>0.3910</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C70A</td>
<td>0.6821</td>
<td>0.3397</td>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C71A</td>
<td>0.7001</td>
<td>0.2962</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C72A</td>
<td>0.7353</td>
<td>0.3472</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H72A</td>
<td>0.7474</td>
<td>0.3359</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C73A</td>
<td>0.7529</td>
<td>0.3870</td>
<td>0.0203</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6A</td>
<td>0.7917</td>
<td>0.4125</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A</td>
<td>0.8214</td>
<td>0.3959</td>
<td>0.0285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A</td>
<td>0.8899</td>
<td>0.3915</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H76A</td>
<td>0.8777</td>
<td>0.3633</td>
<td>0.055</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C77A</td>
<td>0.9314</td>
<td>0.4076</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A</td>
<td>0.9506</td>
<td>0.4483</td>
<td>0.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H80A</td>
<td>0.9813</td>
<td>0.4581</td>
<td>0.065</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C79A</td>
<td>0.9279</td>
<td>0.4751</td>
<td>0.033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A</td>
<td>0.8830</td>
<td>0.4589</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6A</td>
<td>0.8613</td>
<td>0.4832</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C81A</td>
<td>0.9516</td>
<td>0.5188</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C82A</td>
<td>0.9990</td>
<td>0.5297</td>
<td>0.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H82A</td>
<td>1.0192</td>
<td>0.5110</td>
<td>0.082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H82B</td>
<td>1.0136</td>
<td>0.5576</td>
<td>0.082</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C88A C 0.77865(14) 0.2713(2) 0.54958(12) 0.0300(9) Uani 1 1 D . . .
H88A H 0.7061 0.2628 0.4621 0.025 Uiso 1 1 calc R A.
H88B H 0.7064 0.2112 0.5020 0.025 Uiso 1 1 calc R . . .
C90A C 0.68898(13) 0.3193(2) 0.55197(11) 0.0236(8) Uani 1 1 D . . .
H90A H 0.6792 0.2665 0.5597 0.028 Uiso 1 1 calc R A.
H90B H 0.6678 0.3584 0.5607 0.028 Uiso 1 1 calc R . . .
P1B P 0.33745(4) 0.32764(6) 0.21781(3) 0.0238(2) Uani 1 1 D . . .
N7B N 0.39914(10) 0.35411(17) 0.29178(9) 0.0188(6) Uani 1 1 D . . .
N8B N 0.33776(10) 0.25439(17) 0.29285(9) 0.0194(6) Uani 1 1 D . . .
N9B N 0.31768(10) 0.39580(16) 0.28892(8) 0.0163(6) Uani 1 1 D . . .
O1B O 0.50297(9) 0.35540(16) 0.27373(8) 0.0264(6) Uani 1 1 D . . .
C1B C 0.52276(13) 0.2900(2) 0.26768(11) 0.0242(8) Uani 1 1 D . . .
C2B C 0.54211(14) 0.2796(2) 0.23115(12) 0.0273(9) Uani 1 1 D . . .
C3B C 0.56320(16) 0.2096(3) 0.22563(13) 0.0365(10) Uani 1 1 D . . .
C4B C 0.56785(18) 0.1474(3) 0.25379(16) 0.0455(12) Uani 1 1 D . . .
C5B C 0.5835 0.1003 0.2490 0.055 Uiso 1 1 calc R . . .
C6B C 0.52793(13) 0.2261(2) 0.29647(12) 0.0269(8) Uani 1 1 D . . .
C7B C 0.54078(14) 0.3472(3) 0.20062(12) 0.0304(9) Uani 1 1 D . . .
C8B C 0.56107(18) 0.3236(3) 0.16335(14) 0.0440(11) Uani 1 1 D . . .
H2B H 0.3374 0.3276 0.2178 0.0238(2) Uani 1 1 D . . .
N1B N 0.49681(11) 0.2899(2) 0.35075(9) 0.0288(8) Uani 1 1 D . . .
C9B C 0.56993(16) 0.4162(2) 0.22091(13) 0.0340(10) Uani 1 1 D . . .
H9B1 H 0.4916 0.4176 0.1635 0.069 Uiso 1 1 calc R . . .
H9B2 H 0.5210 0.1848 0.3521 0.032 Uiso 1 1 calc R . . .
C10B C 0.49079(16) 0.3779(3) 0.18459(14) 0.0462(12) Uani 1 1 D . . .
H10F H 0.4916 0.4176 0.1635 0.069 Uiso 1 1 calc R . . .
H10G H 0.4783 0.4017 0.2070 0.069 Uiso 1 1 calc R . . .
H10H H 0.4709 0.3340 0.1732 0.069 Uiso 1 1 calc R . . .
N1B N 0.49681(11) 0.2899(2) 0.35075(9) 0.0288(8) Uani 1 1 D . . .
C11B C 0.35128(13) 0.2304(2) 0.33550(11) 0.0268(8) Uani 1 1 D . . .
H11B H 0.5210 0.1848 0.3521 0.032 Uiso 1 1 calc R . . .
C12B C 0.48973(13) 0.2902(2) 0.39151(11) 0.0301(9) Uani 1 1 D D . .
C13B C 0.50093(15) 0.2301(3) 0.41947(12) 0.0387(11) Uani 1 1 D D . .
H13B H 0.5147 0.1833 0.4116 0.046 Uiso 1 1 calc R . . .
C14B C 0.49251(16) 0.2368(3) 0.45873(12) 0.0478(13) Uani 1 1 D D . .
H14B H 0.5013 0.1957 0.4778 0.057 Uiso 1 1 calc R . . .
C15B C 0.47115(16) 0.3042(3) 0.46982(13) 0.0483(13) Uani 1 1 D D . .
H15B H 0.4641 0.3082 0.4963 0.058 Uiso 1 1 calc R . . .
C16B C 0.46010(14) 0.3654(3) 0.44286(11) 0.0376(11) Uani 1 1 D D . .
H16B H 0.4545 0.4109 0.4507 0.045 Uiso 1 1 calc R . . .
C17B C 0.47085(13) 0.3609(3) 0.40398(11) 0.0328(10) Uani 1 1 D D . .
N2B N 0.46442(11) 0.4223(2) 0.37557(9) 0.0289(7) Uani 1 1 D D . .
H18B H 0.4677 0.5031 0.4163 0.040 Uiso 1 1 calc R . . .
C19B C 0.46375(14) 0.5646(2) 0.36330(12) 0.0337(10) Uani 1 1 D D . .
C20B C 0.46661(16) 0.6367(3) 0.38442(15) 0.0478(14) Uani 1 1 D D . .
<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u11</th>
<th>u22</th>
<th>u33</th>
<th>u12</th>
<th>u13</th>
<th>u23</th>
<th>calc</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20B</td>
<td>H</td>
<td>0.4684</td>
<td>0.6363</td>
<td>0.4130</td>
<td>0.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21B</td>
<td>C</td>
<td>0.4687</td>
<td>0.7057</td>
<td>0.3650</td>
<td>0.0536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21B</td>
<td>H</td>
<td>0.4685</td>
<td>0.7536</td>
<td>0.3799</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B</td>
<td>C</td>
<td>0.4675</td>
<td>0.6377</td>
<td>0.2997</td>
<td>0.0330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24B</td>
<td>C</td>
<td>0.4652</td>
<td>0.5640</td>
<td>0.3206</td>
<td>0.0285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B</td>
<td>O</td>
<td>0.4616</td>
<td>0.4983</td>
<td>0.3001</td>
<td>0.0283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27B</td>
<td>C</td>
<td>0.5069</td>
<td>0.5993</td>
<td>0.2464</td>
<td>0.0632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27F</td>
<td>H</td>
<td>0.5096</td>
<td>0.5472</td>
<td>0.2593</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27G</td>
<td>H</td>
<td>0.5340</td>
<td>0.6313</td>
<td>0.2579</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27H</td>
<td>H</td>
<td>0.5054</td>
<td>0.5934</td>
<td>0.2172</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28B</td>
<td>C</td>
<td>0.4185</td>
<td>0.7244</td>
<td>0.2379</td>
<td>0.0534</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>O</td>
<td>0.2603</td>
<td>0.5564</td>
<td>0.2664</td>
<td>0.0231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29B</td>
<td>C</td>
<td>0.2815</td>
<td>0.6218</td>
<td>0.2613</td>
<td>0.0204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32B</td>
<td>C</td>
<td>0.3269</td>
<td>0.7638</td>
<td>0.2485</td>
<td>0.0345</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B</td>
<td>O</td>
<td>0.2603</td>
<td>0.5564</td>
<td>0.2664</td>
<td>0.0231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36B</td>
<td>C</td>
<td>0.2169</td>
<td>0.6896</td>
<td>0.1552</td>
<td>0.0437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36A</td>
<td>H</td>
<td>0.2449</td>
<td>0.6923</td>
<td>0.1431</td>
<td>0.066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36B</td>
<td>H</td>
<td>0.2088</td>
<td>0.7425</td>
<td>0.1631</td>
<td>0.066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36C</td>
<td>H</td>
<td>0.1912</td>
<td>0.6678</td>
<td>0.1354</td>
<td>0.066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37B</td>
<td>C</td>
<td>0.2349</td>
<td>0.5537</td>
<td>0.1787</td>
<td>0.0410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C</td>
<td>0.3662</td>
<td>0.5674</td>
<td>0.4143</td>
<td>0.0283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>O</td>
<td>0.3317</td>
<td>0.5530</td>
<td>0.1674</td>
<td>0.062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39B</td>
<td>C</td>
<td>0.1820</td>
<td>0.6374</td>
<td>0.2108</td>
<td>0.0344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42B</td>
<td>C</td>
<td>0.3779</td>
<td>0.5364</td>
<td>0.4531</td>
<td>0.0328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H42B</td>
<td>H</td>
<td>0.4012</td>
<td>0.5610</td>
<td>0.4726</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43B</td>
<td>C</td>
<td>0.3556</td>
<td>0.4696</td>
<td>0.4635</td>
<td>0.0353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>C</td>
<td>0.3337</td>
<td>0.6188</td>
<td>0.3064</td>
<td>0.0235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3B</td>
<td>N</td>
<td>0.3172</td>
<td>0.5631</td>
<td>0.3451</td>
<td>0.0206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4B</td>
<td>C</td>
<td>0.3317</td>
<td>0.5320</td>
<td>0.3856</td>
<td>0.0222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C</td>
<td>0.3662</td>
<td>0.5674</td>
<td>0.4143</td>
<td>0.0283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>C</td>
<td>0.3337</td>
<td>0.6188</td>
<td>0.3064</td>
<td>0.0235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4A</td>
<td>H</td>
<td>0.3581</td>
<td>0.6453</td>
<td>0.3481</td>
<td>0.028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3B</td>
<td>N</td>
<td>0.3172</td>
<td>0.5631</td>
<td>0.3451</td>
<td>0.0206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4B</td>
<td>C</td>
<td>0.3317</td>
<td>0.5320</td>
<td>0.3856</td>
<td>0.0222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B</td>
<td>C</td>
<td>0.3662</td>
<td>0.5674</td>
<td>0.4143</td>
<td>0.0283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>C</td>
<td>0.3337</td>
<td>0.6188</td>
<td>0.3064</td>
<td>0.0235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Temperature/Anisotropy</td>
<td>U(eq)</td>
<td>O</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44B</td>
<td>C</td>
<td>0.32100(16)</td>
<td>0.4352(2)</td>
<td>0.43604(12)</td>
<td>0.0338(10)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H44B</td>
<td>H</td>
<td>0.3062</td>
<td>0.3891</td>
<td>0.4435</td>
<td>0.041</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45B</td>
<td>C</td>
<td>0.30705(14)</td>
<td>0.43766(18)</td>
<td>0.36775(9)</td>
<td>0.0250(7)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>N</td>
<td>0.27029(12)</td>
<td>0.39718(11)</td>
<td>0.0265(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46B</td>
<td>C</td>
<td>0.23525(15)</td>
<td>0.37842(12)</td>
<td>0.0308(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H46B</td>
<td>H</td>
<td>0.2371</td>
<td>0.3917</td>
<td>0.4066</td>
<td>0.037</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C47B</td>
<td>C</td>
<td>0.20147(15)</td>
<td>0.35197(12)</td>
<td>0.0308(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B</td>
<td>N</td>
<td>0.19000(16)</td>
<td>0.34900(16)</td>
<td>0.0472(12)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H48B</td>
<td>H</td>
<td>0.1650</td>
<td>0.3336</td>
<td>0.3998</td>
<td>0.035</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50B</td>
<td>C</td>
<td>0.11100(16)</td>
<td>0.30707(15)</td>
<td>0.0398(11)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52B</td>
<td>C</td>
<td>0.13235(15)</td>
<td>0.3544(2)</td>
<td>0.0353(10)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B</td>
<td>O</td>
<td>0.21521(9)</td>
<td>0.41487(15)</td>
<td>0.28991(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54B</td>
<td>C</td>
<td>0.13502(17)</td>
<td>0.4413(3)</td>
<td>0.22567(16)</td>
<td>0.0447(12)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H54F</td>
<td>H</td>
<td>0.0795</td>
<td>0.3227</td>
<td>0.1910</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H54G</td>
<td>H</td>
<td>0.0503</td>
<td>0.3437</td>
<td>0.2315</td>
<td>0.067</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55B</td>
<td>C</td>
<td>0.13052(17)</td>
<td>0.4663(2)</td>
<td>0.1982(3)</td>
<td>0.0354(10)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C61B</td>
<td>C</td>
<td>0.15889(14)</td>
<td>0.0626(2)</td>
<td>0.2227(12)</td>
<td>0.0310(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62B</td>
<td>C</td>
<td>0.20784(13)</td>
<td>0.0604(2)</td>
<td>0.23094(11)</td>
<td>0.0229(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5B</td>
<td>O</td>
<td>0.28000(9)</td>
<td>0.09452(15)</td>
<td>0.27558(7)</td>
<td>0.0232(5)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63B</td>
<td>C</td>
<td>0.23481(13)</td>
<td>0.0962(2)</td>
<td>0.26801(11)</td>
<td>0.0200(7)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C64B</td>
<td>C</td>
<td>0.27408(16)</td>
<td>0.0748(2)</td>
<td>0.18847(12)</td>
<td>0.0339(9)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H64F</td>
<td>H</td>
<td>0.2878</td>
<td>0.0493</td>
<td>0.1672</td>
<td>0.051</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H64G</td>
<td>H</td>
<td>0.2986</td>
<td>0.0863</td>
<td>0.2119</td>
<td>0.051</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65B</td>
<td>C</td>
<td>0.26275(16)</td>
<td>-0.0529(2)</td>
<td>0.22267(13)</td>
<td>0.0330(10)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H65F</td>
<td>H</td>
<td>0.2396</td>
<td>-0.0908</td>
<td>0.2285</td>
<td>0.049</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H65G</td>
<td>H</td>
<td>0.2827</td>
<td>-0.0367</td>
<td>0.2482</td>
<td>0.049</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C66B</td>
<td>C</td>
<td>0.20595(18)</td>
<td>-0.0087(3)</td>
<td>0.16291(13)</td>
<td>0.0417(11)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H66F</td>
<td>H</td>
<td>0.2241</td>
<td>-0.0389</td>
<td>0.1463</td>
<td>0.063</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H66G</td>
<td>H</td>
<td>0.1918</td>
<td>0.0369</td>
<td>0.1474</td>
<td>0.063</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67B</td>
<td>C</td>
<td>0.22713(14)</td>
<td>0.1616(2)</td>
<td>0.33402(11)</td>
<td>0.0245(8)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H67B</td>
<td>H</td>
<td>0.2058</td>
<td>0.1814</td>
<td>0.3497</td>
<td>0.029</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
H76D H 0.5252 -0.0410 0.3756 0.053 Uiso 0.40 1 calc PR B 2
C78" C 0.4886(3) -0.0171(6) 0.3186(3) 0.044(4) Uani 0.40 1 d PD B 2
H78D H 0.5095 -0.0441 0.3047 0.052 Uiso 0.40 1 calc PR B 2
C79" C 0.4486(3) 0.0178(6) 0.2956(2) 0.023(3) Uani 0.40 1 d PD B 2
C80" C 0.4189(4) 0.0610(9) 0.3173(2) 0.023(3) Uani 0.40 1 d PD B 2
O6" O 0.3797(5) 0.0898(13) 0.2973(3) 0.023(3) Uani 0.40 1 d PD B 2
C81" C 0.4370(2) 0.0094(5) 0.2498(2) 0.030(3) Uani 0.40 1 d PD B 2
C83" C 0.3908(3) -0.0334(7) 0.2365(4) 0.055(4) Uani 0.40 1 d PD B 2
H83J H 0.3929 -0.0684 0.2483 0.083 Uiso 0.40 1 calc PR B 2
H83K H 0.3839 -0.0372 0.2068 0.083 Uiso 0.40 1 calc PR B 2
H83L H 0.3659 -0.0041 0.2459 0.083 Uiso 0.40 1 calc PR B 2
C82" C 0.4330(5) 0.0934(6) 0.2305(4) 0.044(4) Uani 0.40 1 d PD B 2
H82J H 0.4093 0.1237 0.2410 0.066 Uiso 0.40 1 calc PR B 2
H82K H 0.4243 0.0889 0.2099 0.066 Uiso 0.40 1 calc PR B 2
H82L H 0.4630 0.1204 0.2375 0.066 Uiso 0.40 1 calc PR B 2
C84" C 0.4746(3) -0.0368(7) 0.2333(4) 0.052(4) Uani 0.40 1 d PD B 2
C85B C 0.39637(13) 0.3519(2) 0.24707(11) 0.0214(8) Uani 1 1 d . . .
H85C H 0.4188 0.3123 0.2407 0.026 Uiso 1 1 calc R . .
H85D H 0.4059 0.4038 0.2380 0.026 Uiso 1 1 calc R . .
C86B C 0.38703(12) 0.2760(2) 0.30700(11) 0.0194(7) Uani 1 1 d . . .
H86C H 0.4071 0.2353 0.2979 0.023 Uiso 1 1 calc R B .
H86D H 0.3936 0.2767 0.3371 0.023 Uiso 1 1 calc R . .
C87B C 0.36766(12) 0.4140(2) 0.30363(11) 0.0181(7) Uani 1 1 d . . .
H87C H 0.3748 0.4657 0.2925 0.022 Uiso 1 1 calc R B .
H87D H 0.3736 0.4185 0.3336 0.022 Uiso 1 1 calc R . .
C88B C 0.32744(14) 0.2409(2) 0.24826(11) 0.0235(8) Uani 1 1 d . . .
H88C H 0.2945 0.2245 0.2403 0.028 Uiso 1 1 calc R B .
H88D H 0.3470 0.1970 0.2417 0.028 Uiso 1 1 calc R . .
C89B C 0.30750(13) 0.3169(2) 0.30435(11) 0.0195(7) Uani 1 1 d . . .
H89C H 0.3114 0.3188 0.3343 0.023 Uiso 1 1 calc R B .
H89D H 0.2746 0.3034 0.2934 0.023 Uiso 1 1 calc R . .
C90B C 0.30562(14) 0.3991(2) 0.24417(11) 0.0213(8) Uani 1 1 d . . .
H90C H 0.3120 0.4528 0.2352 0.026 Uiso 1 1 calc R B .
H90D H 0.2718 0.3894 0.2358 0.026 Uiso 1 1 calc R . .
C1S C 0.8711(4) 0.3319(6) 0.6469(4) 0.066(3) Uani 0.50 1 d P C 1
H1S1 H 0.8567 0.2933 0.6262 0.079 Uiso 0.50 1 calc PR C 1
H1S2 H 0.8509 0.3367 0.6674 0.079 Uiso 0.50 1 calc PR C 1
C1S1 Cl 0.92626(10) 0.29681(15) 0.67056(9) 0.0613(7) Uani 0.50 1 d P C 1
C1S2 Cl 0.87445(10) 0.42390(16) 0.62340(9) 0.0604(7) Uani 0.50 1 d P C 1
C1T C 0.0018(6) 0.4543(15) 0.6469(7) 0.168(11) Uani 0.50 1 d P . .
H1T1 H -0.0065 0.4285 0.6711 0.201 Uiso 0.50 1 calc PR . .
H1T2 H -0.0236 0.4450 0.6234 0.201 Uiso 0.50 1 calc PR . .
C1T1 Cl 0.05395(15) 0.4159(2) 0.63706(11) 0.0919(12) Uani 0.50 1 d P . .
C1T2 Cl 0.01015(12) 0.5594(2) 0.65583(11) 0.0838(10) Uani 0.50 1 d P . .
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
<table>
<thead>
<tr>
<th>Atom</th>
<th>Ux</th>
<th>Uy</th>
<th>Uz</th>
<th>U11</th>
<th>U12</th>
<th>U13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1A</td>
<td>0.0281</td>
<td>0.0251</td>
<td>0.0237</td>
<td>-0.0038</td>
<td>0.0088</td>
<td>-0.0113</td>
</tr>
<tr>
<td>Zn2A</td>
<td>0.0174</td>
<td>0.0220</td>
<td>0.0341</td>
<td>-0.0039</td>
<td>0.0042</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Zn3A</td>
<td>0.0384</td>
<td>0.0203</td>
<td>0.0769</td>
<td>0.0116</td>
<td>0.0383</td>
<td>0.0069</td>
</tr>
<tr>
<td>Zn1B</td>
<td>0.0155</td>
<td>0.0281</td>
<td>0.0231</td>
<td>-0.0059</td>
<td>0.0055</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Zn2B</td>
<td>0.0180</td>
<td>0.0194</td>
<td>0.0237</td>
<td>0.0061</td>
<td>0.0044</td>
<td>0.0004</td>
</tr>
<tr>
<td>Zn3B</td>
<td>0.0170</td>
<td>0.0203</td>
<td>0.0326</td>
<td>-0.0016</td>
<td>0.0034</td>
<td>-0.0039</td>
</tr>
<tr>
<td>P1A</td>
<td>0.0321</td>
<td>0.0261</td>
<td>0.0260</td>
<td>-0.0034</td>
<td>0.0016</td>
<td>0.0028</td>
</tr>
<tr>
<td>N7A</td>
<td>0.0159</td>
<td>0.0201</td>
<td>0.0234</td>
<td>-0.0009</td>
<td>0.0033</td>
<td>-0.0058</td>
</tr>
<tr>
<td>N8A</td>
<td>0.0142</td>
<td>0.0151</td>
<td>0.0354</td>
<td>0.0053</td>
<td>0.0004</td>
<td>-0.0012</td>
</tr>
<tr>
<td>N9A</td>
<td>0.0139</td>
<td>0.0185</td>
<td>0.0181</td>
<td>-0.0019</td>
<td>0.0022</td>
<td>0.0002</td>
</tr>
<tr>
<td>O1A</td>
<td>0.0159</td>
<td>0.0201</td>
<td>0.0234</td>
<td>-0.0009</td>
<td>0.0033</td>
<td>-0.0058</td>
</tr>
<tr>
<td>C1A</td>
<td>0.0280</td>
<td>0.0174</td>
<td>0.0330</td>
<td>0.0031</td>
<td>0.0041</td>
<td>0.0047</td>
</tr>
<tr>
<td>C2A</td>
<td>0.0260</td>
<td>0.0230</td>
<td>0.0420</td>
<td>0.0021</td>
<td>0.0086</td>
<td>0.0081</td>
</tr>
<tr>
<td>C3A</td>
<td>0.0280</td>
<td>0.0350</td>
<td>0.0523</td>
<td>0.0112</td>
<td>0.0011</td>
<td>0.0019</td>
</tr>
<tr>
<td>C4A</td>
<td>0.0373</td>
<td>0.0383</td>
<td>0.0553</td>
<td>0.0182</td>
<td>0.0002</td>
<td>0.0003</td>
</tr>
<tr>
<td>C5A</td>
<td>0.0463</td>
<td>0.0443</td>
<td>0.0312</td>
<td>0.0112</td>
<td>0.0003</td>
<td>0.0132</td>
</tr>
<tr>
<td>C6A</td>
<td>0.0383</td>
<td>0.0292</td>
<td>0.0312</td>
<td>0.0074</td>
<td>0.0001</td>
<td>-0.0122</td>
</tr>
<tr>
<td>C7A</td>
<td>0.0152</td>
<td>0.0432</td>
<td>0.0432</td>
<td>-0.0177</td>
<td>0.0041</td>
<td>-0.0026</td>
</tr>
<tr>
<td>C8A</td>
<td>0.0423</td>
<td>0.0633</td>
<td>0.0252</td>
<td>0.0000</td>
<td>0.0055</td>
<td>0.0162</td>
</tr>
<tr>
<td>C9A</td>
<td>0.0263</td>
<td>0.0804</td>
<td>0.0804</td>
<td>-0.0563</td>
<td>0.0012</td>
<td>-0.0163</td>
</tr>
<tr>
<td>C10A</td>
<td>0.0303</td>
<td>0.0523</td>
<td>0.0623</td>
<td>-0.0112</td>
<td>0.0172</td>
<td>0.0032</td>
</tr>
<tr>
<td>C11A</td>
<td>0.0543</td>
<td>0.0312</td>
<td>0.0201</td>
<td>0.0021</td>
<td>0.0052</td>
<td>-0.0192</td>
</tr>
<tr>
<td>N1A</td>
<td>0.0362</td>
<td>0.0239</td>
<td>0.0273</td>
<td>0.0011</td>
<td>0.0078</td>
<td>-0.0095</td>
</tr>
<tr>
<td>C12A</td>
<td>0.0553</td>
<td>0.0232</td>
<td>0.0227</td>
<td>-0.0345</td>
<td>0.0143</td>
<td>0.0146</td>
</tr>
<tr>
<td>C13A</td>
<td>0.0663</td>
<td>0.0252</td>
<td>0.0213</td>
<td>0.0027</td>
<td>0.0042</td>
<td>-0.0112</td>
</tr>
<tr>
<td>C14A</td>
<td>0.0884</td>
<td>0.0222</td>
<td>0.0232</td>
<td>-0.0018</td>
<td>0.0132</td>
<td>-0.0052</td>
</tr>
<tr>
<td>C15A</td>
<td>0.0904</td>
<td>0.0232</td>
<td>0.0322</td>
<td>-0.0027</td>
<td>0.0283</td>
<td>-0.0122</td>
</tr>
<tr>
<td>C16A</td>
<td>0.0663</td>
<td>0.0292</td>
<td>0.0422</td>
<td>-0.0124</td>
<td>0.0312</td>
<td>-0.0242</td>
</tr>
<tr>
<td>C17A</td>
<td>0.0493</td>
<td>0.0242</td>
<td>0.0322</td>
<td>-0.0054</td>
<td>0.0162</td>
<td>-0.0197</td>
</tr>
<tr>
<td>N2A</td>
<td>0.0402</td>
<td>0.0328</td>
<td>0.0309</td>
<td>-0.0081</td>
<td>0.0164</td>
<td>-0.0180</td>
</tr>
<tr>
<td>C18A</td>
<td>0.0453</td>
<td>0.0195</td>
<td>0.0412</td>
<td>-0.0020</td>
<td>0.0232</td>
<td>-0.0096</td>
</tr>
<tr>
<td>C19A</td>
<td>0.0383</td>
<td>0.0208</td>
<td>0.0382</td>
<td>0.0055</td>
<td>0.0141</td>
<td>-0.0043</td>
</tr>
<tr>
<td>C20A</td>
<td>0.0303</td>
<td>0.0322</td>
<td>0.0463</td>
<td>0.0065</td>
<td>0.0112</td>
<td>0.0046</td>
</tr>
<tr>
<td>C21A</td>
<td>0.0313</td>
<td>0.0473</td>
<td>0.0573</td>
<td>-0.0032</td>
<td>0.0032</td>
<td>0.0082</td>
</tr>
<tr>
<td>C22A</td>
<td>0.0373</td>
<td>0.0332</td>
<td>0.0433</td>
<td>-0.0023</td>
<td>0.0005</td>
<td>0.0042</td>
</tr>
<tr>
<td>C23A</td>
<td>0.0282</td>
<td>0.0209</td>
<td>0.0352</td>
<td>0.0009</td>
<td>0.0026</td>
<td>-0.0012</td>
</tr>
<tr>
<td>C24A</td>
<td>0.0352</td>
<td>0.0154</td>
<td>0.0352</td>
<td>0.0004</td>
<td>0.0114</td>
<td>-0.0088</td>
</tr>
<tr>
<td>O2A</td>
<td>0.0273</td>
<td>0.0382</td>
<td>0.0284</td>
<td>-0.0102</td>
<td>0.0086</td>
<td>-0.0167</td>
</tr>
<tr>
<td>C25A</td>
<td>0.0352</td>
<td>0.0272</td>
<td>0.0252</td>
<td>0.0007</td>
<td>0.0016</td>
<td>-0.0076</td>
</tr>
<tr>
<td>C26A</td>
<td>0.0764</td>
<td>0.0543</td>
<td>0.0383</td>
<td>-0.0092</td>
<td>0.0253</td>
<td>-0.0353</td>
</tr>
<tr>
<td>C27A</td>
<td>0.0302</td>
<td>0.0352</td>
<td>0.0282</td>
<td>-0.0035</td>
<td>0.0069</td>
<td>-0.0033</td>
</tr>
<tr>
<td>C28A</td>
<td>0.0403</td>
<td>0.0583</td>
<td>0.0352</td>
<td>0.0016</td>
<td>0.0002</td>
<td>-0.0072</td>
</tr>
<tr>
<td>O3A</td>
<td>0.0219</td>
<td>0.0280</td>
<td>0.0333</td>
<td>0.0011</td>
<td>0.0083</td>
<td>0.0015</td>
</tr>
<tr>
<td>C29A</td>
<td>0.0172</td>
<td>0.0392</td>
<td>0.0262</td>
<td>-0.0051</td>
<td>0.0054</td>
<td>-0.0102</td>
</tr>
<tr>
<td>C30A</td>
<td>0.0212</td>
<td>0.0503</td>
<td>0.0272</td>
<td>-0.0020</td>
<td>0.0092</td>
<td>-0.0063</td>
</tr>
<tr>
<td>C31A</td>
<td>0.0343</td>
<td>0.0543</td>
<td>0.0463</td>
<td>-0.0132</td>
<td>0.0024</td>
<td>-0.0102</td>
</tr>
<tr>
<td>C32A</td>
<td>0.0363</td>
<td>0.0352</td>
<td>0.0553</td>
<td>0.0152</td>
<td>0.0022</td>
<td>-0.0012</td>
</tr>
<tr>
<td>C33A</td>
<td>0.0312</td>
<td>0.0272</td>
<td>0.0402</td>
<td>-0.0063</td>
<td>0.0129</td>
<td>-0.0043</td>
</tr>
<tr>
<td>C34A</td>
<td>0.0176</td>
<td>0.0226</td>
<td>0.0312</td>
<td>-0.0081</td>
<td>0.0054</td>
<td>-0.0076</td>
</tr>
<tr>
<td>C35A</td>
<td>0.0140</td>
<td>0.0242</td>
<td>0.0322</td>
<td>0.0000</td>
<td>0.0005</td>
<td>-0.0061</td>
</tr>
<tr>
<td>C36A</td>
<td>0.0323</td>
<td>0.0633</td>
<td>0.0332</td>
<td>0.0052</td>
<td>0.0172</td>
<td>-0.0042</td>
</tr>
<tr>
<td>C37A</td>
<td>0.0363</td>
<td>0.0864</td>
<td>0.0393</td>
<td>0.0173</td>
<td>0.0092</td>
<td>-0.0073</td>
</tr>
<tr>
<td>C38A</td>
<td>0.0283</td>
<td>0.0603</td>
<td>0.0503</td>
<td>0.0172</td>
<td>0.0112</td>
<td>-0.0022</td>
</tr>
</tbody>
</table>
C39A 0.059(4) 0.087(4) 0.039(3) 0.009(3) 0.030(3) 0.000(3)
N3A 0.0137(16) 0.0304(17) 0.0205(15) -0.0070(17) -0.0007(16) -0.0005(17)
C40A 0.015(2) 0.047(2) 0.0222(19) -0.0070(17) -0.0007(16) -0.0005(17)
C41A 0.017(2) 0.059(3) 0.030(2) -0.0071(19) -0.0013(17) -0.0006(19)
C42A 0.022(2) 0.082(4) 0.022(2) 0.007(2) -0.0018(19) -0.0008(2)
C43A 0.025(2) 0.083(4) 0.033(2) -0.025(2) -0.0028(19) 0.008(2)
C44A 0.014(2) 0.058(3) 0.033(2) -0.023(2) -0.0032(17) 0.000(2)
N4A 0.0210(19) 0.038(2) 0.042(2) -0.0170(16) -0.0056(15) 0.0055(16)
C46A 0.023(2) 0.070(4) 0.060(3) -0.044(3) -0.014(2) 0.006(2)
C47A 0.030(3) 0.051(4) 0.038(3) 0.012(3) 0.008(2) 0.003(3)
C48A 0.018(2) 0.024(2) 0.017(2) 0.002(2) 0.003(2) 0.001(2)
C49A 0.020(2) 0.030(3) 0.028(2) -0.016(2) 0.0045(19) -0.001(3)
C50A 0.025(2) 0.082(4) 0.022(2) 0.007(2) -0.0018(19) -0.0008(2)
C51A 0.022(2) 0.059(3) 0.030(2) -0.0071(19) -0.0013(17) -0.0006(19)
N5A 0.0210(19) 0.038(2) 0.042(2) -0.0170(16) -0.0056(15) 0.0055(16)
C68' 0.043(8) 0.028(7) 0.036(6) -0.025(5) 0.005(4) 0.000(4)
C68 0.046(8) 0.028(7) 0.036(6) -0.025(5) 0.005(4) 0.000(4)
<table>
<thead>
<tr>
<th>Atom</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>U5</th>
<th>U6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C69</td>
<td>0.021(6)</td>
<td>0.029(6)</td>
<td>0.059(7)</td>
<td>-0.007(5)</td>
<td>0.017(5)</td>
<td>0.005(4)</td>
</tr>
<tr>
<td>C70</td>
<td>0.060(9)</td>
<td>0.079(10)</td>
<td>0.018(6)</td>
<td>0.001(6)</td>
<td>0.008(6)</td>
<td>0.041(8)</td>
</tr>
<tr>
<td>C71</td>
<td>0.057(9)</td>
<td>0.054(8)</td>
<td>0.039(8)</td>
<td>0.007(7)</td>
<td>0.008(7)</td>
<td>0.039(7)</td>
</tr>
<tr>
<td>C72</td>
<td>0.070(8)</td>
<td>0.033(5)</td>
<td>0.033(5)</td>
<td>0.004(4)</td>
<td>0.020(5)</td>
<td>0.025(5)</td>
</tr>
<tr>
<td>C73</td>
<td>0.029(8)</td>
<td>0.032(6)</td>
<td>0.025(7)</td>
<td>0.006(5)</td>
<td>0.003(6)</td>
<td>0.006(5)</td>
</tr>
<tr>
<td>N6</td>
<td>0.030(5)</td>
<td>0.028(4)</td>
<td>0.031(4)</td>
<td>0.003(3)</td>
<td>0.004(4)</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>C74</td>
<td>0.058(9)</td>
<td>0.011(5)</td>
<td>0.037(6)</td>
<td>0.006(4)</td>
<td>0.034(6)</td>
<td>0.002(5)</td>
</tr>
<tr>
<td>C75</td>
<td>0.060(9)</td>
<td>0.079(10)</td>
<td>0.018(6)</td>
<td>0.001(6)</td>
<td>0.008(6)</td>
<td>0.041(8)</td>
</tr>
<tr>
<td>C76</td>
<td>0.057(9)</td>
<td>0.054(8)</td>
<td>0.039(8)</td>
<td>0.007(7)</td>
<td>0.008(7)</td>
<td>0.039(7)</td>
</tr>
<tr>
<td>C77</td>
<td>0.070(8)</td>
<td>0.033(5)</td>
<td>0.033(5)</td>
<td>0.004(4)</td>
<td>0.020(5)</td>
<td>0.025(5)</td>
</tr>
<tr>
<td>C78</td>
<td>0.029(8)</td>
<td>0.032(6)</td>
<td>0.025(7)</td>
<td>0.006(5)</td>
<td>0.003(6)</td>
<td>0.006(5)</td>
</tr>
<tr>
<td>N6'</td>
<td>0.030(5)</td>
<td>0.028(4)</td>
<td>0.031(4)</td>
<td>0.003(3)</td>
<td>0.004(4)</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>C74'</td>
<td>0.058(9)</td>
<td>0.011(5)</td>
<td>0.037(6)</td>
<td>0.006(4)</td>
<td>0.034(6)</td>
<td>0.002(5)</td>
</tr>
<tr>
<td>C75'</td>
<td>0.060(9)</td>
<td>0.079(10)</td>
<td>0.018(6)</td>
<td>0.001(6)</td>
<td>0.008(6)</td>
<td>0.041(8)</td>
</tr>
<tr>
<td>C76'</td>
<td>0.057(9)</td>
<td>0.054(8)</td>
<td>0.039(8)</td>
<td>0.007(7)</td>
<td>0.008(7)</td>
<td>0.039(7)</td>
</tr>
<tr>
<td>C77'</td>
<td>0.070(8)</td>
<td>0.033(5)</td>
<td>0.033(5)</td>
<td>0.004(4)</td>
<td>0.020(5)</td>
<td>0.025(5)</td>
</tr>
<tr>
<td>C78'</td>
<td>0.029(8)</td>
<td>0.032(6)</td>
<td>0.025(7)</td>
<td>0.006(5)</td>
<td>0.003(6)</td>
<td>0.006(5)</td>
</tr>
<tr>
<td>N6''</td>
<td>0.030(5)</td>
<td>0.028(4)</td>
<td>0.031(4)</td>
<td>0.003(3)</td>
<td>0.004(4)</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>C74''</td>
<td>0.058(9)</td>
<td>0.011(5)</td>
<td>0.037(6)</td>
<td>0.006(4)</td>
<td>0.034(6)</td>
<td>0.002(5)</td>
</tr>
<tr>
<td>C75''</td>
<td>0.060(9)</td>
<td>0.079(10)</td>
<td>0.018(6)</td>
<td>0.001(6)</td>
<td>0.008(6)</td>
<td>0.041(8)</td>
</tr>
<tr>
<td>C76''</td>
<td>0.057(9)</td>
<td>0.054(8)</td>
<td>0.039(8)</td>
<td>0.007(7)</td>
<td>0.008(7)</td>
<td>0.039(7)</td>
</tr>
<tr>
<td>C77''</td>
<td>0.070(8)</td>
<td>0.033(5)</td>
<td>0.033(5)</td>
<td>0.004(4)</td>
<td>0.020(5)</td>
<td>0.025(5)</td>
</tr>
<tr>
<td>C78''</td>
<td>0.029(8)</td>
<td>0.032(6)</td>
<td>0.025(7)</td>
<td>0.006(5)</td>
<td>0.003(6)</td>
<td>0.006(5)</td>
</tr>
<tr>
<td>N6'''</td>
<td>0.030(5)</td>
<td>0.028(4)</td>
<td>0.031(4)</td>
<td>0.003(3)</td>
<td>0.004(4)</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>C74'''</td>
<td>0.058(9)</td>
<td>0.011(5)</td>
<td>0.037(6)</td>
<td>0.006(4)</td>
<td>0.034(6)</td>
<td>0.002(5)</td>
</tr>
<tr>
<td>C75'''</td>
<td>0.060(9)</td>
<td>0.079(10)</td>
<td>0.018(6)</td>
<td>0.001(6)</td>
<td>0.008(6)</td>
<td>0.041(8)</td>
</tr>
<tr>
<td>C76'''</td>
<td>0.057(9)</td>
<td>0.054(8)</td>
<td>0.039(8)</td>
<td>0.007(7)</td>
<td>0.008(7)</td>
<td>0.039(7)</td>
</tr>
<tr>
<td>C77'''</td>
<td>0.070(8)</td>
<td>0.033(5)</td>
<td>0.033(5)</td>
<td>0.004(4)</td>
<td>0.020(5)</td>
<td>0.025(5)</td>
</tr>
</tbody>
</table>
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

; loop
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
 Zn1A O2A 1.952(2) . ?
 Zn1A O1A 1.979(3) . ?
 Zn1A N2A 2.062(3) . ?
 Zn1A N1A 2.066(3) . ?
 Zn1A N7A 2.211(3) . ?
 Zn2A O3A 1.940(3) . ?
 Zn2A O4A 1.982(3) . ?
 Zn2A N4A 2.065(4) . ?
 Zn2A N3A 2.076(3) . ?
 Zn2A N9A 2.199(3) . ?
 Zn3A O6A 1.866(4) . ?
 Zn3A N6' 1.909(6) . ?
 Zn3A O5A 1.932(3) . ?
 Zn3A N5A 2.113(4) . ?
 Zn3A O6' 2.171(5) . ?
 Zn3A N8A 2.216(3) . ?
 Zn3A N6A 2.247(5) . ?
 Zn1B O1B 1.952(2) . ?
 Zn1B O2B 1.959(3) . ?
 Zn1B N1B 2.072(3) . ?
 Zn1B N2B 2.077(3) . ?
 Zn1B N7B 2.210(3) . ?
 Zn2B O3B 1.942(2) . ?
 Zn2B O4B 1.977(3) . ?
 Zn2B N4B 2.055(3) . ?
 Zn2B N3B 2.076(3) . ?
 Zn2B N9B 2.197(3) . ?
 Zn3B O6B 1.899(5) . ?
 Zn3B O5B 1.946(3) . ?
 Zn3B N6" 1.991(10) . ?
 Zn3B N5B 2.076(3) . ?
 Zn3B O6" 2.087(8) . ?
 Zn3B N6B 2.146(7) . ?
 Zn3B N8B 2.213(3) . ?
 P1A C88A 1.844(4) . ?
 P1A C85A 1.857(4) . ?
 P1A C90A 1.857(4) . ?
 N7A C87A 1.476(5) . ?
 N7A C86A 1.477(5) . ?
 N7A C85A 1.484(4) . ?
 N8A C88A 1.473(5) . ?
 N8A C87A 1.480(4) . ?
 N8A C89A 1.488(5) . ?
 N9A C89A 1.473(5) . ?
 N9A C86A 1.480(4) . ?
 N9A C90A 1.489(4) . ?
N5B C68 1.436(11) . ?
N5B C68B 1.454(8) . ?
C68B C69B 1.385(6) . ?
C68B C73B 1.416(6) . ?
C69B C70B 1.390(6) . ?
C70B C71B 1.385(7) . ?
C71B C72B 1.372(7) . ?
C72B C73B 1.396(6) . ?
C73B N6B 1.404(6) . ?
N6B C74B 1.297(6) . ?
C74B C75B 1.435(7) . ?
C75B C76B 1.414(6) . ?
C75B C80B 1.419(6) . ?
C76B C77B 1.339(8) . ?
C77B C78B 1.403(8) . ?
C78B C79B 1.409(6) . ?
C79B C80B 1.432(6) . ?
C79B C81B 1.515(6) . ?
C80B O6B 1.308(5) . ?
C81B C82B 1.523(6) . ?
C81B C84B 1.539(6) . ?
C81B C83B 1.565(6) . ?
C68' C69' 1.385(6) . ?
C68' C73' 1.417(6) . ?
C69' C70' 1.390(6) . ?
C70' C71' 1.386(8) . ?
C71' C72' 1.373(7) . ?
C72' C73' 1.396(6) . ?
C73' N6' 1.402(6) . ?
N6' C74' 1.298(6) . ?
C74' C75' 1.435(7) . ?
C75' C77' 1.414(6) . ?
C75' C80' 1.421(6) . ?
C77' C76' 1.341(8) . ?
C76' C78' 1.403(8) . ?
C78' C79' 1.407(6) . ?
C79' C80' 1.434(6) . ?
C79' C81' 1.516(7) . ?
C80' O6' 1.309(5) . ?
C81' C83' 1.527(6) . ?
C81' C84' 1.536(6) . ?
C81' C82' 1.563(7) . ?
C1S Cl2S 1.759(11) . ?
C1S Cl1S 1.765(11) . ?
C1T Cl1T 1.74(2) . ?
C1T Cl2T 1.82(2) . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O3B Zn2B N3B 90.21(11)...
O4B Zn2B N3B 163.03(11)...
N4B Zn2B N3B 79.02(12)...
O3B Zn2B N9B 101.93(11)...
O4B Zn2B N9B 92.50(11)...
N4B Zn2B N9B 100.51(11)...
N3B Zn2B N9B 101.46(11)...
O6B Zn3B O5B 100.2(3)...
O6B Zn3B N6" 76.9(3)...
O5B Zn3B N6" 157.5(7)...
O6B Zn3B N5B 157.6(4)...
O5B Zn3B N5B 89.29(12)...
N6" Zn3B N5B 86.6(3)...
O6B Zn3B O6" 11.8(3)...
O5B Zn3B O6" 90.9(4)...
N6" Zn3B O6" 88.3(3)...
N5B Zn3B O6" 167.0(6)...
O6B Zn3B N6B 89.1(2)...
O5B Zn3B N6B 157.0(4)...
N6" Zn3B N6B 12.3(3)...
N5B Zn3B N6B 75.3(2)...
O6" Zn3B N6B 100.4(3)...
O6B Zn3B N8B 95.7(5)...
O5B Zn3B N8B 100.13(11)...
N6" Zn3B N8B 102.4(7)...
N5B Zn3B N8B 102.60(11)...
O6" Zn3B N8B 90.2(7)...
N6B Zn3B N8B 99.9(4)...
C88A P1A C85A 96.57(18)...
C88A P1A C90A 96.53(18)...
C85A P1A C90A 95.46(17)...
C87A N7A C86A 109.1(3)...
C87A N7A C85A 111.1(3)...
C86A N7A C85A 111.1(3)...
C87A N7A Zn1A 113.0(2)...
C86A N7A Zn1A 107.4(2)...
C85A N7A Zn1A 105.1(2)...
C88A N8A C87A 111.6(3)...
C88A N8A C89A 111.7(3)...
C87A N8A C89A 108.5(3)...
C88A N8A Zn3A 105.3(2)...
C87A N8A Zn3A 109.1(2)...
C89A N8A Zn3A 110.7(2)...
C89A N9A C86A 109.2(3)...
C89A N9A C90A 110.9(3)...
C86A N9A C90A 110.5(3)...
C89A N9A Zn2A 108.1(2)...
C86A N9A Zn2A 113.0(2)...
C90A N9A Zn2A 105.0(2)...
C1A O1A Zn1A 131.6(2)...
O1A C1A C2A 120.5(3)...
O1A C1A C6A 121.9(3)...
C2A C1A C6A 117.6(3)...
C3A C2A C1A 119.5(3)...
<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angle (°)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 A</td>
<td>C2 A</td>
<td>C7 A</td>
<td>121.6(3)</td>
<td></td>
</tr>
<tr>
<td>C1 A</td>
<td>C2 A</td>
<td>C7 A</td>
<td>118.9(3)</td>
<td></td>
</tr>
<tr>
<td>C2 A</td>
<td>C3 A</td>
<td>C4 A</td>
<td>122.3(4)</td>
<td></td>
</tr>
<tr>
<td>C5 A</td>
<td>C4 A</td>
<td>C3 A</td>
<td>119.7(4)</td>
<td></td>
</tr>
<tr>
<td>C4 A</td>
<td>C5 A</td>
<td>C6 A</td>
<td>121.5(4)</td>
<td></td>
</tr>
<tr>
<td>C5 A</td>
<td>C6 A</td>
<td>C1 A</td>
<td>116.9(3)</td>
<td></td>
</tr>
<tr>
<td>C5 A</td>
<td>C6 A</td>
<td>C1 A</td>
<td>119.4(3)</td>
<td></td>
</tr>
<tr>
<td>C11 A</td>
<td>C6 A</td>
<td>C1 A</td>
<td>123.6(3)</td>
<td></td>
</tr>
<tr>
<td>C8 A</td>
<td>C7 A</td>
<td>C9 A</td>
<td>110.3(4)</td>
<td></td>
</tr>
<tr>
<td>C8 A</td>
<td>C7 A</td>
<td>C10 A</td>
<td>106.9(3)</td>
<td></td>
</tr>
<tr>
<td>C9 A</td>
<td>C7 A</td>
<td>C10 A</td>
<td>107.8(3)</td>
<td></td>
</tr>
<tr>
<td>C8 A</td>
<td>C7 A</td>
<td>C2 A</td>
<td>110.9(3)</td>
<td></td>
</tr>
<tr>
<td>C9 A</td>
<td>C7 A</td>
<td>C2 A</td>
<td>109.0(3)</td>
<td></td>
</tr>
<tr>
<td>C10 A</td>
<td>C7 A</td>
<td>C2 A</td>
<td>111.7(3)</td>
<td></td>
</tr>
<tr>
<td>N1 A</td>
<td>C11 A</td>
<td>C6 A</td>
<td>126.6(3)</td>
<td></td>
</tr>
<tr>
<td>C11 A</td>
<td>N1 A</td>
<td>C12 A</td>
<td>119.5(3)</td>
<td></td>
</tr>
<tr>
<td>C11 A</td>
<td>N1 A</td>
<td>Zn1 A</td>
<td>125.4(2)</td>
<td></td>
</tr>
<tr>
<td>C12 A</td>
<td>N1 A</td>
<td>Zn1 A</td>
<td>113.4(3)</td>
<td></td>
</tr>
<tr>
<td>C17 A</td>
<td>C12 A</td>
<td>C13 A</td>
<td>120.1(3)</td>
<td></td>
</tr>
<tr>
<td>C17 A</td>
<td>C12 A</td>
<td>N1 A</td>
<td>115.6(3)</td>
<td></td>
</tr>
<tr>
<td>C13 A</td>
<td>C12 A</td>
<td>N1 A</td>
<td>124.3(4)</td>
<td></td>
</tr>
<tr>
<td>C14 A</td>
<td>C13 A</td>
<td>C12 A</td>
<td>119.8(4)</td>
<td></td>
</tr>
<tr>
<td>C13 A</td>
<td>C14 A</td>
<td>C15 A</td>
<td>120.5(4)</td>
<td></td>
</tr>
<tr>
<td>C14 A</td>
<td>C15 A</td>
<td>C16 A</td>
<td>119.9(4)</td>
<td></td>
</tr>
<tr>
<td>C17 A</td>
<td>C16 A</td>
<td>C15 A</td>
<td>120.9(5)</td>
<td></td>
</tr>
<tr>
<td>C16 A</td>
<td>C17 A</td>
<td>C12 A</td>
<td>118.5(4)</td>
<td></td>
</tr>
<tr>
<td>C16 A</td>
<td>C17 A</td>
<td>N2 A</td>
<td>126.2(4)</td>
<td></td>
</tr>
<tr>
<td>C12 A</td>
<td>C17 A</td>
<td>N2 A</td>
<td>115.2(3)</td>
<td></td>
</tr>
<tr>
<td>C18 A</td>
<td>N2 A</td>
<td>C17 A</td>
<td>121.9(3)</td>
<td></td>
</tr>
<tr>
<td>C18 A</td>
<td>N2 A</td>
<td>Zn1 A</td>
<td>123.1(3)</td>
<td></td>
</tr>
<tr>
<td>C17 A</td>
<td>N2 A</td>
<td>Zn1 A</td>
<td>114.8(3)</td>
<td></td>
</tr>
<tr>
<td>N2 A</td>
<td>C18 A</td>
<td>C19 A</td>
<td>127.4(4)</td>
<td></td>
</tr>
<tr>
<td>C20 A</td>
<td>C19 A</td>
<td>C18 A</td>
<td>115.3(4)</td>
<td></td>
</tr>
<tr>
<td>C20 A</td>
<td>C19 A</td>
<td>C24 A</td>
<td>120.4(4)</td>
<td></td>
</tr>
<tr>
<td>C18 A</td>
<td>C19 A</td>
<td>C24 A</td>
<td>123.9(3)</td>
<td></td>
</tr>
<tr>
<td>C21 A</td>
<td>C20 A</td>
<td>C19 A</td>
<td>120.2(4)</td>
<td></td>
</tr>
<tr>
<td>C20 A</td>
<td>C21 A</td>
<td>C22 A</td>
<td>120.0(4)</td>
<td></td>
</tr>
<tr>
<td>C23 A</td>
<td>C22 A</td>
<td>C21 A</td>
<td>123.4(4)</td>
<td></td>
</tr>
<tr>
<td>C22 A</td>
<td>C23 A</td>
<td>C24 A</td>
<td>117.7(4)</td>
<td></td>
</tr>
<tr>
<td>C22 A</td>
<td>C23 A</td>
<td>C25 A</td>
<td>121.2(3)</td>
<td></td>
</tr>
<tr>
<td>C24 A</td>
<td>C23 A</td>
<td>C25 A</td>
<td>121.1(3)</td>
<td></td>
</tr>
<tr>
<td>O2 A</td>
<td>C24 A</td>
<td>C19 A</td>
<td>122.5(3)</td>
<td></td>
</tr>
<tr>
<td>O2 A</td>
<td>C24 A</td>
<td>C23 A</td>
<td>119.2(3)</td>
<td></td>
</tr>
<tr>
<td>C19 A</td>
<td>C24 A</td>
<td>C23 A</td>
<td>118.3(3)</td>
<td></td>
</tr>
<tr>
<td>C24 A</td>
<td>O2 A</td>
<td>Zn1 A</td>
<td>130.8(2)</td>
<td></td>
</tr>
<tr>
<td>C23 A</td>
<td>C25 A</td>
<td>C27 A</td>
<td>109.9(3)</td>
<td></td>
</tr>
<tr>
<td>C23 A</td>
<td>C25 A</td>
<td>C26 A</td>
<td>112.1(3)</td>
<td></td>
</tr>
<tr>
<td>C27 A</td>
<td>C25 A</td>
<td>C26 A</td>
<td>108.3(4)</td>
<td></td>
</tr>
<tr>
<td>C23 A</td>
<td>C25 A</td>
<td>C28 A</td>
<td>111.8(3)</td>
<td></td>
</tr>
<tr>
<td>C27 A</td>
<td>C25 A</td>
<td>C28 A</td>
<td>107.6(3)</td>
<td></td>
</tr>
<tr>
<td>C26 A</td>
<td>C25 A</td>
<td>C28 A</td>
<td>107.0(3)</td>
<td></td>
</tr>
<tr>
<td>C29 A</td>
<td>O3 A</td>
<td>Zn2 A</td>
<td>131.0(2)</td>
<td></td>
</tr>
<tr>
<td>O3 A</td>
<td>C29 A</td>
<td>C34 A</td>
<td>123.1(3)</td>
<td></td>
</tr>
<tr>
<td>O3 A</td>
<td>C29 A</td>
<td>C30 A</td>
<td>118.9(4)</td>
<td></td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Bond Angle (°)</th>
<th>Error (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C83A</td>
<td>C81A</td>
<td>C82A</td>
<td>108.0(5)</td>
<td></td>
</tr>
<tr>
<td>C79A</td>
<td>C81A</td>
<td>C84A</td>
<td>111.7(5)</td>
<td></td>
</tr>
<tr>
<td>C83A</td>
<td>C81A</td>
<td>C84A</td>
<td>108.9(5)</td>
<td></td>
</tr>
<tr>
<td>C82A</td>
<td>C81A</td>
<td>C84A</td>
<td>106.7(5)</td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>C68'</td>
<td>C73'</td>
<td>127.0(6)</td>
<td></td>
</tr>
<tr>
<td>N5A</td>
<td>C68'</td>
<td>C69'</td>
<td>113.3(6)</td>
<td></td>
</tr>
<tr>
<td>C73'</td>
<td>C68'</td>
<td>C69'</td>
<td>119.6(5)</td>
<td></td>
</tr>
<tr>
<td>C70'</td>
<td>C69'</td>
<td>C68'</td>
<td>120.6(6)</td>
<td></td>
</tr>
<tr>
<td>C71'</td>
<td>C70'</td>
<td>C69'</td>
<td>119.5(6)</td>
<td></td>
</tr>
<tr>
<td>C70'</td>
<td>C71'</td>
<td>C72'</td>
<td>120.4(6)</td>
<td></td>
</tr>
<tr>
<td>C73'</td>
<td>C72'</td>
<td>C71'</td>
<td>121.0(6)</td>
<td></td>
</tr>
<tr>
<td>C72'</td>
<td>C73'</td>
<td>C68'</td>
<td>118.6(6)</td>
<td></td>
</tr>
<tr>
<td>C72'</td>
<td>C73'</td>
<td>N6'</td>
<td>125.9(6)</td>
<td></td>
</tr>
<tr>
<td>C68'</td>
<td>C73'</td>
<td>N6'</td>
<td>115.5(6)</td>
<td></td>
</tr>
<tr>
<td>C74'</td>
<td>N6'</td>
<td>C73'</td>
<td>120.8(6)</td>
<td></td>
</tr>
<tr>
<td>C74'</td>
<td>N6'</td>
<td>Zn3A</td>
<td>129.6(5)</td>
<td></td>
</tr>
<tr>
<td>C73'</td>
<td>N6'</td>
<td>Zn3A</td>
<td>108.0(4)</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>C74'</td>
<td>C75'</td>
<td>126.9(6)</td>
<td></td>
</tr>
<tr>
<td>C76'</td>
<td>C75'</td>
<td>C74'</td>
<td>116.1(6)</td>
<td></td>
</tr>
<tr>
<td>C76'</td>
<td>C75'</td>
<td>C80'</td>
<td>119.9(5)</td>
<td></td>
</tr>
<tr>
<td>C74'</td>
<td>C75'</td>
<td>C80'</td>
<td>123.9(5)</td>
<td></td>
</tr>
<tr>
<td>C77'</td>
<td>C76'</td>
<td>C75'</td>
<td>120.2(6)</td>
<td></td>
</tr>
<tr>
<td>C76'</td>
<td>C77'</td>
<td>C78'</td>
<td>120.3(6)</td>
<td></td>
</tr>
<tr>
<td>C79'</td>
<td>C78'</td>
<td>C77'</td>
<td>123.1(6)</td>
<td></td>
</tr>
<tr>
<td>C78'</td>
<td>C79'</td>
<td>C80'</td>
<td>117.4(5)</td>
<td></td>
</tr>
<tr>
<td>C78'</td>
<td>C79'</td>
<td>C81'</td>
<td>121.2(5)</td>
<td></td>
</tr>
<tr>
<td>C80'</td>
<td>C79'</td>
<td>C81'</td>
<td>121.5(5)</td>
<td></td>
</tr>
<tr>
<td>O6'</td>
<td>C80'</td>
<td>C75'</td>
<td>122.7(5)</td>
<td></td>
</tr>
<tr>
<td>O6'</td>
<td>C80'</td>
<td>C79'</td>
<td>118.7(5)</td>
<td></td>
</tr>
<tr>
<td>C75'</td>
<td>C80'</td>
<td>C79'</td>
<td>118.6(5)</td>
<td></td>
</tr>
<tr>
<td>C80'</td>
<td>O6'</td>
<td>Zn3A</td>
<td>126.3(4)</td>
<td></td>
</tr>
<tr>
<td>C79'</td>
<td>C81'</td>
<td>C83'</td>
<td>110.1(5)</td>
<td></td>
</tr>
<tr>
<td>C79'</td>
<td>C81'</td>
<td>C82'</td>
<td>113.3(5)</td>
<td></td>
</tr>
<tr>
<td>C83'</td>
<td>C81'</td>
<td>C82'</td>
<td>107.4(5)</td>
<td></td>
</tr>
<tr>
<td>C79'</td>
<td>C81'</td>
<td>C84'</td>
<td>111.4(5)</td>
<td></td>
</tr>
<tr>
<td>C83'</td>
<td>C81'</td>
<td>C84'</td>
<td>107.9(5)</td>
<td></td>
</tr>
<tr>
<td>C82'</td>
<td>C81'</td>
<td>C84'</td>
<td>106.5(5)</td>
<td></td>
</tr>
<tr>
<td>N7A</td>
<td>C85A</td>
<td>P1A</td>
<td>114.2(2)</td>
<td></td>
</tr>
<tr>
<td>N7A</td>
<td>C86A</td>
<td>N9A</td>
<td>113.1(3)</td>
<td></td>
</tr>
<tr>
<td>N7A</td>
<td>C87A</td>
<td>N8A</td>
<td>113.1(3)</td>
<td></td>
</tr>
<tr>
<td>N8A</td>
<td>C88A</td>
<td>P1A</td>
<td>114.1(3)</td>
<td></td>
</tr>
<tr>
<td>N9A</td>
<td>C89A</td>
<td>N8A</td>
<td>113.0(3)</td>
<td></td>
</tr>
<tr>
<td>N9A</td>
<td>C90A</td>
<td>P1A</td>
<td>114.5(2)</td>
<td></td>
</tr>
<tr>
<td>C88B</td>
<td>P1B</td>
<td>C90B</td>
<td>96.55(17)</td>
<td></td>
</tr>
<tr>
<td>C88B</td>
<td>P1B</td>
<td>C85B</td>
<td>96.36(17)</td>
<td></td>
</tr>
<tr>
<td>C90B</td>
<td>P1B</td>
<td>C85B</td>
<td>95.85(17)</td>
<td></td>
</tr>
<tr>
<td>C87B</td>
<td>N7B</td>
<td>C85B</td>
<td>111.6(3)</td>
<td></td>
</tr>
<tr>
<td>C87B</td>
<td>N7B</td>
<td>C86B</td>
<td>108.8(3)</td>
<td></td>
</tr>
<tr>
<td>C85B</td>
<td>N7B</td>
<td>C86B</td>
<td>110.5(3)</td>
<td></td>
</tr>
<tr>
<td>C87B</td>
<td>N7B</td>
<td>Zn1B</td>
<td>108.2(2)</td>
<td></td>
</tr>
<tr>
<td>C85B</td>
<td>N7B</td>
<td>Zn1B</td>
<td>105.6(2)</td>
<td></td>
</tr>
<tr>
<td>C86B</td>
<td>N7B</td>
<td>Zn1B</td>
<td>111.9(2)</td>
<td></td>
</tr>
<tr>
<td>C89B</td>
<td>N8B</td>
<td>C86B</td>
<td>109.5(3)</td>
<td></td>
</tr>
<tr>
<td>C89B</td>
<td>N8B</td>
<td>C88B</td>
<td>110.6(3)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td>Angle (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86B-N8B-C88B</td>
<td>111.5(3)</td>
<td></td>
<td>. . ?</td>
<td></td>
</tr>
<tr>
<td>C89B-N8B-Zn3B</td>
<td>111.5(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86B-N8B-Zn3B</td>
<td>108.7(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88B-N8B-Zn3B</td>
<td>105.0(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89B-N9B-C87B</td>
<td>109.0(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89B-N9B-C90B</td>
<td>110.9(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87B-N9B-C90B</td>
<td>110.9(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89B-N9B-Zn2B</td>
<td>107.6(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87B-N9B-Zn2B</td>
<td>113.5(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90B-N9B-Zn2B</td>
<td>104.9(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1B-O1B-Zn1B</td>
<td>131.0(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B-C1B-C6B</td>
<td>122.6(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B-C1B-C2B</td>
<td>119.7(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6B-C1B-C2B</td>
<td>117.6(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3B-C2B-C1B</td>
<td>118.5(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3B-C2B-C7B</td>
<td>121.1(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1B-C2B-C7B</td>
<td>120.4(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B-C3B-C4B</td>
<td>123.5(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5B-C4B-C3B</td>
<td>118.9(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4B-C5B-C6B</td>
<td>121.4(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5B-C6B-C11B</td>
<td>115.5(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5B-C6B-C1B</td>
<td>120.0(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11B-C6B-C1B</td>
<td>124.3(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B-C7B-C9B</td>
<td>107.1(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B-C7B-C2B</td>
<td>112.5(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9B-C7B-C2B</td>
<td>109.4(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8B-C7B-C10B</td>
<td>106.7(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9B-C7B-C10B</td>
<td>107.9(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2B-C7B-C10B</td>
<td>112.9(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11B-N1B-C12B</td>
<td>121.9(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11B-N1B-Zn1B</td>
<td>123.5(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12B-N1B-Zn1B</td>
<td>114.5(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B-C11B-C6B</td>
<td>126.8(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13B-C12B-C17B</td>
<td>118.8(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13B-C12B-N1B</td>
<td>126.2(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17B-C12B-N1B</td>
<td>114.9(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12B-C13B-C14B</td>
<td>121.4(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13B-C14B-C15B</td>
<td>119.3(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16B-C15B-C14B</td>
<td>120.6(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15B-C16B-C17B</td>
<td>120.4(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16B-C17B-N2B</td>
<td>124.6(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16B-C17B-C12B</td>
<td>119.2(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B-C17B-C12B</td>
<td>116.2(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18B-N2B-C17B</td>
<td>119.8(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18B-N2B-Zn1B</td>
<td>124.1(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17B-N2B-Zn1B</td>
<td>114.0(2)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B-C18B-C19B</td>
<td>126.8(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20B-C19B-C24B</td>
<td>120.0(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20B-C19B-C18B</td>
<td>115.6(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24B-C19B-C18B</td>
<td>124.3(3)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21B-C20B-C19B</td>
<td>121.5(5)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20B-C21B-C22B</td>
<td>119.9(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21B-C22B-C23B</td>
<td>122.1(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B-C23B-C24B</td>
<td>117.7(4)</td>
<td>. . ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (deg)</td>
<td>Error (a)</td>
<td>Error (b)</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>C22B C23B C25B</td>
<td>121.2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24B C23B C25B</td>
<td>121.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B C24B C19B</td>
<td>122.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B C24B C23B</td>
<td>119.3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19B C24B C23B</td>
<td>118.8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24B O2B Zn1B</td>
<td>131.9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23B C25B C26B</td>
<td>113.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23B C25B C28B</td>
<td>111.3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26B C25B C28B</td>
<td>107.6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23B C25B C27B</td>
<td>107.2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26B C25B C27B</td>
<td>107.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28B C25B C27B</td>
<td>110.4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29B O3B Zn2B</td>
<td>131.3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B C29B C34B</td>
<td>122.3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B C29B C30B</td>
<td>119.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34B C29B C30B</td>
<td>118.7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31B C30B C29B</td>
<td>117.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31B C30B C35B</td>
<td>122.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29B C30B C35B</td>
<td>119.8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30B C31B C32B</td>
<td>124.0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33B C32B C31B</td>
<td>119.1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32B C33B C34B</td>
<td>120.7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33B C34B C39E</td>
<td>115.5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33B C34B C29B</td>
<td>119.7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39E C34B C29B</td>
<td>124.5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30B C35B C36B</td>
<td>112.3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30B C35B C38B</td>
<td>109.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36B C35B C38B</td>
<td>106.7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30B C35B C37B</td>
<td>111.7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36B C35B C37B</td>
<td>106.8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38B C35B C37B</td>
<td>109.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3B C39E C34B</td>
<td>126.9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39E N3B C40B</td>
<td>122.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39E N3B Zn2B</td>
<td>123.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40B N3B Zn2B</td>
<td>114.1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B C40B N3B</td>
<td>126.2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41B C40B C45B</td>
<td>119.2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3B C40B C45B</td>
<td>114.6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42B C41B C40B</td>
<td>120.4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43B C42B C41B</td>
<td>120.1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44B C43B C42B</td>
<td>120.3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43B C44B C45B</td>
<td>121.0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44B C45B N4B</td>
<td>124.9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44B C45B C40B</td>
<td>118.7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B C45B C40B</td>
<td>116.4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46B N4B C45B</td>
<td>120.8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46B N4B Zn2B</td>
<td>124.2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45B N4B Zn2B</td>
<td>113.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4B C46B C47B</td>
<td>126.6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52B C47B C48B</td>
<td>119.2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52B C47B C46B</td>
<td>124.8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48B C47B C46B</td>
<td>115.9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C49B C48B C47B</td>
<td>120.9</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48B C49B C50B</td>
<td>120.0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C51B C50B C49B 122.7(4) . . ?
C50B C51B C52B 118.5(4) . . ?
C50B C51B C53B 121.2(4) . . ?
C52B C51B C53B 120.3(4) . . ?
O4B C52B C47B 121.6(4) . . ?
O4B C52B C51B 119.9(4) . . ?
C47B C52B C51B 118.6(4) . . ?
C52B O4B Zn2B 131.1(3) . . ?
C56B C53B C55B 110.4(4) . . ?
C56B C53B C54B 108.0(4) . . ?
C55B C53B C54B 107.4(4) . . ?
C56B C53B C51B 109.9(4) . . ?
C55B C53B C51B 109.1(4) . . ?
C54B C53B C51B 112.0(4) . . ?
C57B O5B Zn3B 130.9(2) . . ?
O5B C57B C62B 123.1(3) . . ?
O5B C57B C58B 118.6(3) . . ?
C62B C57B C58B 118.3(3) . . ?
C59B C58B C57B 118.6(3) . . ?
C59B C58B C63B 120.9(3) . . ?
C57B C58B C63B 120.5(3) . . ?
C58B C59B C60B 122.9(4) . . ?
C61B C60B C59B 118.3(4) . . ?
C60B C61B C62B 122.4(4) . . ?
C61B C62B C57B 119.4(3) . . ?
C61B C62B C67B 116.4(3) . . ?
C57B C62B C67B 124.1(3) . . ?
C66B C63B C65B 107.7(3) . . ?
C66B C63B C64B 107.2(3) . . ?
C65B C63B C64B 109.3(3) . . ?
C66B C63B C58B 111.8(3) . . ?
C65B C63B C58B 108.8(3) . . ?
C64B C63B C58B 111.8(3) . . ?
N5B C67B C62B 126.4(4) . . ?
C67B N5B C68" 131.1(5) . . ?
C67B N5B C68B 115.7(4) . . ?
C68" N5B C68B 15.7(5) . . ?
C67B N5B Zn3B 125.0(3) . . ?
C68" N5B Zn3B 103.9(5) . . ?
C68B N5B Zn3B 119.2(4) . . ?
C69B C68B C73B 119.1(5) . . ?
C69B C68B N5B 129.2(6) . . ?
C73B C68B N5B 111.7(6) . . ?
C68B C69B C70B 121.2(6) . . ?
C71B C70B C69B 118.9(6) . . ?
C72B C71B C70B 121.3(5) . . ?
C71B C72B C73B 120.1(6) . . ?
C72B C73B N6B 124.3(6) . . ?
C72B C73B C68B 119.2(5) . . ?
N6B C73B C68B 116.3(5) . . ?
C74B N6B C73B 120.6(5) . . ?
C74B N6B Zn3B 122.1(5) . . ?
C73B N6B Zn3B 115.9(4) . . ?
N6B C74B C75B 127.5(6) . . ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C76B-C75B-C80B</td>
<td>120.5(6)</td>
<td></td>
</tr>
<tr>
<td>C76B-C75B-C74B</td>
<td>115.1(6)</td>
<td></td>
</tr>
<tr>
<td>C80B-C75B-C74B</td>
<td>124.4(5)</td>
<td></td>
</tr>
<tr>
<td>C77B-C76B-C75B</td>
<td>121.0(6)</td>
<td></td>
</tr>
<tr>
<td>C76B-C77B-C78B</td>
<td>119.9(6)</td>
<td></td>
</tr>
<tr>
<td>C77B-C78B-C79B</td>
<td>122.1(6)</td>
<td></td>
</tr>
<tr>
<td>C78B-C79B-C80B</td>
<td>117.8(5)</td>
<td></td>
</tr>
<tr>
<td>C78B-C79B-C81B</td>
<td>120.8(5)</td>
<td></td>
</tr>
<tr>
<td>C80B-C79B-C81B</td>
<td>121.4(4)</td>
<td></td>
</tr>
<tr>
<td>O6B-C80B-C75B</td>
<td>122.1(5)</td>
<td></td>
</tr>
<tr>
<td>O6B-C80B-C79B</td>
<td>119.3(5)</td>
<td></td>
</tr>
<tr>
<td>C75B-C80B-C79B</td>
<td>118.5(5)</td>
<td></td>
</tr>
<tr>
<td>C80B-O6B-Zn3B</td>
<td>133.8(5)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C82B</td>
<td>113.2(5)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C84B</td>
<td>111.6(5)</td>
<td></td>
</tr>
<tr>
<td>C82B-C81B-C84B</td>
<td>107.4(5)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C83B</td>
<td>107.7(5)</td>
<td></td>
</tr>
<tr>
<td>C82B-C81B-C83B</td>
<td>108.8(5)</td>
<td></td>
</tr>
<tr>
<td>C84B-C81B-C83B</td>
<td>108.1(5)</td>
<td></td>
</tr>
<tr>
<td>C69B-C68B-C73B</td>
<td>119.1(6)</td>
<td></td>
</tr>
<tr>
<td>C69B-C68B-N5B</td>
<td>119.2(7)</td>
<td></td>
</tr>
<tr>
<td>C73B-C68B-N5B</td>
<td>121.5(7)</td>
<td></td>
</tr>
<tr>
<td>C68B-C69B-C70B</td>
<td>121.4(7)</td>
<td></td>
</tr>
<tr>
<td>C71B-C70B-C69B</td>
<td>118.5(6)</td>
<td></td>
</tr>
<tr>
<td>C72B-C71B-C70B</td>
<td>121.5(6)</td>
<td></td>
</tr>
<tr>
<td>C71B-C72B-C73B</td>
<td>120.0(6)</td>
<td></td>
</tr>
<tr>
<td>C72B-C73B-N6B</td>
<td>124.7(7)</td>
<td></td>
</tr>
<tr>
<td>C72B-C73B-C68B</td>
<td>118.6(6)</td>
<td></td>
</tr>
<tr>
<td>N6B-C73B-C68B</td>
<td>116.4(5)</td>
<td></td>
</tr>
<tr>
<td>C74B-N6B-C73B</td>
<td>120.9(7)</td>
<td></td>
</tr>
<tr>
<td>C74B-N6B-Zn3B</td>
<td>126.8(7)</td>
<td></td>
</tr>
<tr>
<td>C73B-N6B-Zn3B</td>
<td>110.2(5)</td>
<td></td>
</tr>
<tr>
<td>N6B-C74B-C75B</td>
<td>127.5(7)</td>
<td></td>
</tr>
<tr>
<td>C77B-C75B-C80B</td>
<td>120.8(6)</td>
<td></td>
</tr>
<tr>
<td>C77B-C75B-C74B</td>
<td>114.9(6)</td>
<td></td>
</tr>
<tr>
<td>C80B-C75B-C74B</td>
<td>124.3(5)</td>
<td></td>
</tr>
<tr>
<td>C76B-C77B-C75B</td>
<td>120.7(7)</td>
<td></td>
</tr>
<tr>
<td>C77B-C76B-C78B</td>
<td>119.7(6)</td>
<td></td>
</tr>
<tr>
<td>C76B-C78B-C79B</td>
<td>122.7(6)</td>
<td></td>
</tr>
<tr>
<td>C78B-C79B-C80B</td>
<td>117.4(6)</td>
<td></td>
</tr>
<tr>
<td>C78B-C79B-C81B</td>
<td>121.5(5)</td>
<td></td>
</tr>
<tr>
<td>C80B-C79B-C81B</td>
<td>121.1(5)</td>
<td></td>
</tr>
<tr>
<td>O6B-C80B-C75B</td>
<td>122.1(6)</td>
<td></td>
</tr>
<tr>
<td>O6B-C80B-C79B</td>
<td>119.2(6)</td>
<td></td>
</tr>
<tr>
<td>C75B-C80B-C79B</td>
<td>118.6(5)</td>
<td></td>
</tr>
<tr>
<td>C80B-O6B-Zn3B</td>
<td>128.9(6)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C83B</td>
<td>111.2(6)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C84B</td>
<td>111.7(6)</td>
<td></td>
</tr>
<tr>
<td>C83B-C81B-C84B</td>
<td>107.8(6)</td>
<td></td>
</tr>
<tr>
<td>C79B-C81B-C82B</td>
<td>108.6(6)</td>
<td></td>
</tr>
<tr>
<td>C83B-C81B-C82B</td>
<td>108.7(6)</td>
<td></td>
</tr>
<tr>
<td>C84B-C81B-C82B</td>
<td>108.7(6)</td>
<td></td>
</tr>
<tr>
<td>N7B-C85B-P1B</td>
<td>114.1(2)</td>
<td></td>
</tr>
<tr>
<td>N8B-C86B-N7B</td>
<td>113.0(3)</td>
<td></td>
</tr>
<tr>
<td>Atom 1</td>
<td>Atom 2</td>
<td>Atom 3</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>N7B</td>
<td>C87B</td>
<td>N9B</td>
</tr>
<tr>
<td>N8B</td>
<td>C88B</td>
<td>P1B</td>
</tr>
<tr>
<td>N8B</td>
<td>C89B</td>
<td>N9B</td>
</tr>
<tr>
<td>N9B</td>
<td>C90B</td>
<td>P1B</td>
</tr>
<tr>
<td>Cl2S</td>
<td>Cl1S</td>
<td>Cl1T</td>
</tr>
<tr>
<td>Cl1T</td>
<td>Cl1S</td>
<td>Cl2T</td>
</tr>
</tbody>
</table>

loop

<p>| O2A | Zn1A | N7A | C87A | -96.0(2) | ? |
| O1A | Zn1A | N7A | C87A | 165.7(2) | ? |
| N2A | Zn1A | N7A | C87A | -3.2(3) | ? |
| N1A | Zn1A | N7A | C87A | 77.3(3) | ? |
| O2A | Zn1A | N7A | C86A | 143.7(2) | ? |
| O1A | Zn1A | N7A | C86A | 45.3(2) | ? |
| N2A | Zn1A | N7A | C86A | -123.5(2)| ? |
| N1A | Zn1A | N7A | C86A | -43.1(2) | ? |
| O2A | Zn1A | N7A | C85A | 25.3(2) | ? |
| O1A | Zn1A | N7A | C85A | -73.1(2) | ? |
| N2A | Zn1A | N7A | C85A | 118.1(2) | ? |
| N1A | Zn1A | N7A | C85A | -161.5(2)| ? |
| O6A | Zn3A | N8A | C88A | -80.1(3) | ? |
| N6' | Zn3A | N8A | C88A | -149.2(3)| ? |
| O5A | Zn3A | N8A | C88A | 25.5(2) | ? |
| N5A | Zn3A | N8A | C88A | 117.6(2) | ? |
| O6' | Zn3A | N8A | C88A | -62.4(3) | ? |
| N6A | Zn3A | N8A | C88A | -169.1(3)| ? |
| O6A | Zn3A | N8A | C87A | 39.8(3) | ? |
| N6' | Zn3A | N8A | C87A | -29.4(3) | ? |
| O5A | Zn3A | N8A | C87A | 145.4(2) | ? |
| N5A | Zn3A | N8A | C87A | -122.6(2)| ? |
| O6' | Zn3A | N8A | C87A | 57.4(3) | ? |
| N6A | Zn3A | N8A | C87A | 49.3(3) | ? |
| O6A | Zn3A | N8A | C89A | 159.0(3) | ? |
| N6' | Zn3A | N8A | C89A | 89.8(3) | ? |
| O5A | Zn3A | N8A | C89A | -95.4(2) | ? |
| N5A | Zn3A | N8A | C89A | -3.3(2) | ? |
| O6' | Zn3A | N8A | C89A | 176.7(3) | ? |
| N6A | Zn3A | N8A | C89A | 70.0(3) | ? |
| O3A | Zn2A | N9A | C89A | 148.2(2) | ? |
| O4A | Zn2A | N9A | C89A | 50.7(2) | ? |
| N4A | Zn2A | N9A | C89A | -38.0(2) | ? |
| N3A | Zn2A | N9A | C89A | -119.3(2)| ? |
| O3A | Zn2A | N9A | C86A | -90.9(2) | ? |
| O4A | Zn2A | N9A | C86A | 171.7(2) | ? |
| N4A | Zn2A | N9A | C86A | 82.9(2) | ? |</p>
<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Atom 4</th>
<th>Bond Angle</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3A</td>
<td>Zn2A</td>
<td>N9A</td>
<td>C86A</td>
<td>1.6(2)</td>
<td>.</td>
</tr>
<tr>
<td>O3A</td>
<td>Zn2A</td>
<td>N9A</td>
<td>C90A</td>
<td>29.7(2)</td>
<td>.</td>
</tr>
<tr>
<td>O4A</td>
<td>Zn2A</td>
<td>N9A</td>
<td>C90A</td>
<td>-67.7(2)</td>
<td>.</td>
</tr>
<tr>
<td>N4A</td>
<td>Zn2A</td>
<td>N9A</td>
<td>C90A</td>
<td>122.2(2)</td>
<td>.</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>O1A</td>
<td>C1A</td>
<td>139.3(3)</td>
<td>.</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>O1A</td>
<td>C1A</td>
<td>23.8(6)</td>
<td>.</td>
</tr>
<tr>
<td>N1A</td>
<td>Zn1A</td>
<td>O1A</td>
<td>C1A</td>
<td>-19.2(3)</td>
<td>.</td>
</tr>
<tr>
<td>N7A</td>
<td>Zn1A</td>
<td>O1A</td>
<td>C1A</td>
<td>-119.0(3)</td>
<td>.</td>
</tr>
<tr>
<td>Zn1A</td>
<td>O1A</td>
<td>C1A</td>
<td>C2A</td>
<td>159.2(3)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>C1A</td>
<td>C2A</td>
<td>C3A</td>
<td>177.9(4)</td>
<td>.</td>
</tr>
<tr>
<td>C6A</td>
<td>C1A</td>
<td>C2A</td>
<td>C3A</td>
<td>-3.4(5)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>C1A</td>
<td>C2A</td>
<td>C7A</td>
<td>0.5(5)</td>
<td>.</td>
</tr>
<tr>
<td>C6A</td>
<td>C1A</td>
<td>C2A</td>
<td>C7A</td>
<td>179.2(3)</td>
<td>.</td>
</tr>
<tr>
<td>C1A</td>
<td>C2A</td>
<td>C3A</td>
<td>C4A</td>
<td>2.4(6)</td>
<td>.</td>
</tr>
<tr>
<td>C7A</td>
<td>C2A</td>
<td>C3A</td>
<td>C4A</td>
<td>179.7(4)</td>
<td>.</td>
</tr>
<tr>
<td>C2A</td>
<td>C3A</td>
<td>C4A</td>
<td>C5A</td>
<td>-1.0(7)</td>
<td>.</td>
</tr>
<tr>
<td>C3A</td>
<td>C4A</td>
<td>C5A</td>
<td>C6A</td>
<td>0.6(7)</td>
<td>.</td>
</tr>
<tr>
<td>C4A</td>
<td>C5A</td>
<td>C6A</td>
<td>C11A</td>
<td>-178.0(4)</td>
<td>.</td>
</tr>
<tr>
<td>C4A</td>
<td>C5A</td>
<td>C6A</td>
<td>C1A</td>
<td>-1.7(6)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>C1A</td>
<td>C6A</td>
<td>C5A</td>
<td>-178.3(4)</td>
<td>.</td>
</tr>
<tr>
<td>C2A</td>
<td>C1A</td>
<td>C6A</td>
<td>C5A</td>
<td>3.0(5)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>C1A</td>
<td>C6A</td>
<td>C11A</td>
<td>-2.2(6)</td>
<td>.</td>
</tr>
<tr>
<td>C2A</td>
<td>C1A</td>
<td>C6A</td>
<td>C11A</td>
<td>179.1(4)</td>
<td>.</td>
</tr>
<tr>
<td>C3A</td>
<td>C2A</td>
<td>C7A</td>
<td>C8A</td>
<td>121.7(4)</td>
<td>.</td>
</tr>
<tr>
<td>C1A</td>
<td>C2A</td>
<td>C7A</td>
<td>C8A</td>
<td>-61.0(4)</td>
<td>.</td>
</tr>
<tr>
<td>C3A</td>
<td>C2A</td>
<td>C7A</td>
<td>C9A</td>
<td>-116.6(4)</td>
<td>.</td>
</tr>
<tr>
<td>C1A</td>
<td>C2A</td>
<td>C7A</td>
<td>C9A</td>
<td>60.7(5)</td>
<td>.</td>
</tr>
<tr>
<td>C3A</td>
<td>C2A</td>
<td>C7A</td>
<td>C10A</td>
<td>2.5(5)</td>
<td>.</td>
</tr>
<tr>
<td>C1A</td>
<td>C2A</td>
<td>C7A</td>
<td>C10A</td>
<td>179.8(3)</td>
<td>.</td>
</tr>
<tr>
<td>C5A</td>
<td>C6A</td>
<td>C11A</td>
<td>N1A</td>
<td>176.4(4)</td>
<td>.</td>
</tr>
<tr>
<td>C1A</td>
<td>C6A</td>
<td>C11A</td>
<td>N1A</td>
<td>0.2(7)</td>
<td>.</td>
</tr>
<tr>
<td>C6A</td>
<td>C11A</td>
<td>N1A</td>
<td>C12A</td>
<td>-174.6(4)</td>
<td>.</td>
</tr>
<tr>
<td>C6A</td>
<td>C11A</td>
<td>N1A</td>
<td>Zn1A</td>
<td>-10.3(6)</td>
<td>.</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C11A</td>
<td>-89.5(4)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C11A</td>
<td>15.6(3)</td>
<td>.</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C11A</td>
<td>-151.8(3)</td>
<td>.</td>
</tr>
<tr>
<td>N7A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C11A</td>
<td>108.5(3)</td>
<td>.</td>
</tr>
<tr>
<td>O2A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>75.6(4)</td>
<td>.</td>
</tr>
<tr>
<td>O1A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>-179.4(3)</td>
<td>.</td>
</tr>
<tr>
<td>N2A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>13.3(3)</td>
<td>.</td>
</tr>
<tr>
<td>N7A</td>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>-86.4(3)</td>
<td>.</td>
</tr>
<tr>
<td>C11A</td>
<td>N1A</td>
<td>C12A</td>
<td>C17A</td>
<td>152.4(4)</td>
<td>.</td>
</tr>
<tr>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>C17A</td>
<td>-13.7(4)</td>
<td>.</td>
</tr>
<tr>
<td>C11A</td>
<td>N1A</td>
<td>C12A</td>
<td>C13A</td>
<td>-26.4(6)</td>
<td>.</td>
</tr>
<tr>
<td>Zn1A</td>
<td>N1A</td>
<td>C12A</td>
<td>C13A</td>
<td>167.6(3)</td>
<td>.</td>
</tr>
<tr>
<td>C17A</td>
<td>C12A</td>
<td>C13A</td>
<td>C14A</td>
<td>-3.3(6)</td>
<td>.</td>
</tr>
<tr>
<td>N1A</td>
<td>C12A</td>
<td>C13A</td>
<td>C14A</td>
<td>175.4(4)</td>
<td>.</td>
</tr>
<tr>
<td>C12A</td>
<td>C13A</td>
<td>C14A</td>
<td>C15A</td>
<td>-1.7(6)</td>
<td>.</td>
</tr>
<tr>
<td>C13A</td>
<td>C14A</td>
<td>C15A</td>
<td>C16A</td>
<td>3.9(6)</td>
<td>.</td>
</tr>
<tr>
<td>C14A</td>
<td>C15A</td>
<td>C16A</td>
<td>C17A</td>
<td>-1.1(6)</td>
<td>.</td>
</tr>
<tr>
<td>C15A</td>
<td>C16A</td>
<td>C17A</td>
<td>C12A</td>
<td>-3.8(6)</td>
<td>.</td>
</tr>
<tr>
<td>C15A</td>
<td>C16A</td>
<td>C17A</td>
<td>N2A</td>
<td>179.4(4)</td>
<td>.</td>
</tr>
</tbody>
</table>
C13A C12A C17A C16A 6.0(6) ?
N1A C12A C17A C16A -172.8(4) ?
C13A C12A C17A N2A -176.9(3) ?
N1A C12A C17A N2A 4.3(5) ?
C16A C17A N2A C18A -1.3(6) ?
C12A C17A N2A C18A -178.1(4) ?
C16A C17A N2A Zn1A -175.9(3) ?
C12A C17A N2A Zn1A 7.2(4) ?
O2A Zn1A N2A C18A 13.6(3) ?
O1A Zn1A N2A C18A 130.2(4) ?
N1A Zn1A N2A C18A 174.2(3) ?
N7A Zn1A N2A C18A -87.8(3) ?
O2A Zn1A N2A C17A -171.8(3) ?
O1A Zn1A N2A C17A -55.2(5) ?
N1A Zn1A N2A C17A -11.2(3) ?
N7A Zn1A N2A C17A 86.8(3) ?
C17A N2A C18A C19A 174.8(4) ?
Zn1A N2A C18A C19A -11.0(6) ?
N2A C18A C19A C20A -174.8(4) ?
N2A C18A C19A C24A -1.5(6) ?
C18A C19A C20A C21A 174.0(4) ?
C24A C19A C20A C21A 0.5(6) ?
C19A C20A C21A C22A -0.8(7) ?
C20A C21A C22A C23A 0.6(7) ?
C21A C22A C23A C24A -0.2(6) ?
C21A C22A C23A C25A -178.2(4) ?
C20A C19A C24A O2A -179.7(4) ?
C18A C19A C24A O2A 7.3(6) ?
C20A C19A C24A C23A 0.0(5) ?
C18A C19A C24A C23A -173.0(3) ?
C22A C23A C24A O2A 179.6(4) ?
C25A C23A C24A O2A -2.3(5) ?
C22A C23A C24A C19A -0.1(5) ?
C25A C23A C24A C19A 177.9(3) ?
C19A C24A O2A Zn1A 1.2(5) ?
C23A C24A O2A Zn1A -178.5(3) ?
O1A Zn1A O2A C24A -173.0(3) ?
N2A Zn1A O2A C24A -9.4(3) ?
N1A Zn1A O2A C24A -69.8(5) ?
N7A Zn1A O2A C24A 92.2(3) ?
C22A C23A C25A C27A 114.5(4) ?
C24A C23A C25A C27A -63.5(4) ?
C22A C23A C25A C26A -125.0(4) ?
C24A C23A C25A C26A 57.0(5) ?
C22A C23A C25A C28A -4.9(5) ?
C24A C23A C25A C28A 177.1(4) ?
O4A Zn2A O3A C29A -171.6(3) ?
N4A Zn2A O3A C29A -68.7(5) ?
N3A Zn2A O3A C29A -7.9(3) ?
N9A Zn2A O3A C29A 94.9(3) ?
Zn2A O3A C29A C34A 1.9(6) ?
Zn2A O3A C29A C30A -178.7(3) ?
O3A C29A C30A C31A 179.2(4) ?
C34A C29A C30A C31A -1.3(6) ?
O3A C39A C30A C36A -0.9(6) ʔ
C34A C39A C30A C36A 178.5(4) ʔ
C39A C30A C31A C32A 1.6(7) ʔ
C36A C30A C31A C32A -178.3(4) ʔ
C30A C31A C32A C33A -0.5(7) ʔ
C31A C32A C33A C34A -0.9(7) ʔ
C32A C33A C34A C29A 1.1(6) ʔ
C32A C33A C34A C35A 176.6(4) ʔ
O3A C39A C34A C33A 179.4(4) ʔ
C30A C39A C34A C33A 0.0(6) ʔ
O3A C39A C34A C35A 4.4(6) ʔ
C30A C39A C34A C35A -175.0(4) ʔ
C33A C34A C35A N3A -174.9(4) ʔ
C29A C34A C35A N3A 0.4(6) ʔ
C31A C30A C36A C38A 115.4(5) ʔ
C29A C30A C36A C38A -64.5(5) ʔ
C31A C30A C36A C39A -3.4(6) ʔ
C29A C30A C36A C39A 176.7(4) ʔ
C31A C30A C36A C37A -122.0(5) ʔ
C29A C30A C36A C37A 58.1(6) ʔ
C34A C35A N3A C40A 174.4(4) ʔ
C34A C35A N3A Zn2A -9.9(5) ʔ
O3A Zn2A N3A C35A 11.5(3) ʔ
O4A Zn2A N3A C35A 124.7(4) ʔ
N4A Zn2A N3A C35A 172.1(3) ʔ
N9A Zn2A N3A C35A -89.9(3) ʔ
O3A Zn2A N3A C40A -172.5(3) ʔ
O4A Zn2A N3A C40A -59.3(5) ʔ
N4A Zn2A N3A C40A -11.9(2) ʔ
N9A Zn2A N3A C40A 86.1(2) ʔ
C35A N3A C40A C41A 1.7(6) ʔ
Zn2A N3A C40A C41A -174.4(3) ʔ
C35A N3A C40A C45A -176.0(3) ʔ
Zn2A N3A C40A C45A 7.9(4) ʔ
C45A C40A C41A C42A -2.2(6) ʔ
N3A C40A C41A C42A -179.8(4) ʔ
C40A C41A C42A C43A -1.2(6) ʔ
C41A C42A C43A C44A 2.1(7) ʔ
C42A C43A C44A C45A 0.6(7) ʔ
C43A C44A C45A C40A -4.0(7) ʔ
C43A C44A C45A N4A 174.5(4) ʔ
C41A C40A C45A C44A 4.8(6) ʔ
N3A C40A C45A C44A -177.4(4) ʔ
C41A C40A C45A N4A -173.8(4) ʔ
N3A C40A C45A N4A 4.0(5) ʔ
C44A C45A N4A C46A -25.6(7) ʔ
C40A C45A N4A C46A 152.9(4) ʔ
C44A C45A N4A Zn2A 167.5(3) ʔ
C40A C45A N4A Zn2A -14.0(5) ʔ
O3A Zn2A N4A C46A -90.7(5) ʔ
O4A Zn2A N4A C46A 13.9(3) ʔ
N3A Zn2A N4A C46A -153.2(4) ʔ
N9A Zn2A N4A C46A 105.7(3) ʔ
O3A Zn2A N4A C45A 76.3(5) ʔ
O4A Zn2A N4A C45A -179.2(3) ?
N3A Zn2A N4A C45A 13.8(3) ?
N9A Zn2A N4A C45A -87.3(3) ?
C45A N4A C46A C47A -175.9(4) ?
Zn2A N4A C46A C47A -10.3(7) ?
N4A C46A C47A C48A 178.3(5) ?
C52A C47A C48A C49A 0.5(9) ?
C46A C47A C48A C49A -177.4(5) ?
C47A C48A C49A C50A -3.1(10) ?
C48A C49A C50A C51A 3.6(11) ?
C49A C50A C51A C52A -1.4(9) ?
C49A C50A C51A C53A -178.0(6) ?
C46A C47A C52A O4A 0.1(8) ?
C48A C47A C52A O4A -177.5(5) ?
C46A C47A C52A C51A 179.1(5) ?
C48A C47A C52A C51A 1.5(7) ?
C50A C51A C52A O4A 177.9(5) ?
C53A C51A C52A O4A -5.4(7) ?
C50A C51A C52A C47A -1.1(7) ?
C53A C51A C52A C47A 175.6(5) ?
C47A C52A O4A Zn2A 11.2(7) ?
C51A C52A O4A Zn2A -167.8(3) ?
O3A Zn2A O4A C52A 142.9(4) ?
N4A Zn2A O4A C52A -15.8(4) ?
N3A Zn2A O4A C52A 30.6(7) ?
N9A Zn2A O4A C52A -115.7(4) ?
C50A C51A C53A C56A 116.6(6) ?
C52A C51A C53A C56A -59.8(6) ?
C50A C51A C53A C55A -119.0(6) ?
C52A C51A C53A C55A 64.6(7) ?
C50A C51A C53A C54A -2.6(8) ?
C52A C51A C53A C54A -179.0(4) ?
O6A Zn3A O5A C57A -163.4(4) ?
N6' Zn3A O5A C57A -97.4(6) ?
N5A Zn3A O5A C57A -9.3(3) ?
O6' Zn3A O5A C57A -179.0(4) ?
N8A Zn3A O5A C57A 94.9(3) ?
N6A Zn3A O5A C57A -50.9(6) ?
Zn3A O5A C57A C62A 2.7(5) ?
Zn3A O5A C57A C58A -178.2(3) ?
O5A C57A C58A C59A 179.1(4) ?
C62A C57A C58A C59A -1.8(5) ?
O5A C57A C58A C63A -2.7(5) ?
C62A C57A C58A C63A 176.4(3) ?
C57A C58A C59A C60A 1.8(7) ?
C63A C58A C59A C60A -176.4(4) ?
C58A C59A C60A C61A -0.7(8) ?
C59A C60A C61A C62A -0.3(8) ?
C60A C61A C62A C67A 174.2(4) ?
C60A C61A C62A C57A 0.3(7) ?
O5A C57A C62A C61A 179.9(4) ?
C58A C57A C62A C61A 0.8(6) ?
O5A C57A C62A C67A 6.6(6) ?
<table>
<thead>
<tr>
<th>Atoms</th>
<th>Bond Angles (°)</th>
<th>Errors</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C58A C57A C62A C67A</td>
<td>-172.5(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C59A C58A C63A C64A</td>
<td>-5.5(5)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C57A C58A C63A C65A</td>
<td>114.3(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C59A C58A C63A C66A</td>
<td>-125.9(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C57A C58A C63A C66A</td>
<td>56.0(5)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C61A C62A C67A N5A</td>
<td>-177.3(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C57A C62A C67A N5A</td>
<td>-3.8(7)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C62A C67A N5A C68'</td>
<td>169.0(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C62A C67A N5A C68A</td>
<td>176.0(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C62A C67A N5A Zn3A</td>
<td>-6.7(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6A Zn3A N5A C67A</td>
<td>129.0(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6' Zn3A N5A C67A</td>
<td>166.2(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O5A Zn3A N5A C67A</td>
<td>10.8(3)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6' Zn3A N5A C67A</td>
<td>90.5(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N8A Zn3A N5A C67A</td>
<td>-89.4(3)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6A Zn3A N5A C67A</td>
<td>172.7(4)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6A Zn3A N5A C68'</td>
<td>-48.2(7)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6' Zn3A N5A C68'</td>
<td>-11.0(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O5A Zn3A N5A C68'</td>
<td>-166.4(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6' Zn3A N5A C68'</td>
<td>-86.6(11)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N8A Zn3A N5A C68'</td>
<td>93.5(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6A Zn3A N5A C68'</td>
<td>-4.5(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6A Zn3A N5A C68A</td>
<td>-53.9(7)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6' Zn3A N5A C68A</td>
<td>-16.7(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O5A Zn3A N5A C68A</td>
<td>-172.1(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6' Zn3A N5A C68A</td>
<td>-92.3(11)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N8A Zn3A N5A C68A</td>
<td>87.8(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6A Zn3A N5A C68A</td>
<td>-10.2(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C67A N5A C68A C73A</td>
<td>-175.8(7)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C68' N5A C68A C73A</td>
<td>-6.6(15)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>Zn3A N5A C68A C73A</td>
<td>6.8(11)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C67A N5A C68A C69A</td>
<td>2.5(14)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C68' N5A C68A C69A</td>
<td>172(3)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>Zn3A N5A C68A C69A</td>
<td>-174.9(8)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C73A C68A C69A C70A</td>
<td>0.5(15)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N5A C68A C69A C70A</td>
<td>-177.7(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C68A C69A C70A C71A</td>
<td>-1.9(14)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C69A C70A C71A C72A</td>
<td>1.4(14)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C70A C71A C72A C73A</td>
<td>0.4(17)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C71A C72A C73A C68A</td>
<td>-1.8(17)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C71A C72A C73A N6A</td>
<td>173.0(10)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C69A C68A C73A C72A</td>
<td>179.8(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C69A C68A C73A N6A</td>
<td>-174.1(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N5A C68A C73A N6A</td>
<td>4.4(12)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C72A C73A N6A C74A</td>
<td>-19.8(16)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C68A C73A N6A C74A</td>
<td>155.2(8)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C72A C73A N6A Zn3A</td>
<td>172.0(9)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>C68A C73A N6A Zn3A</td>
<td>-13.1(11)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O6A Zn3A N6A C74A</td>
<td>5.1(7)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>N6' Zn3A N6A C74A</td>
<td>4.7(8)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>O5A Zn3A N6A C74A</td>
<td>-110.8(6)</td>
<td>. . . . ?</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td>Torsion (°)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>N5A-Zn3A-N6A</td>
<td>1.55(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6'-Zn3A-N6A</td>
<td>1.37(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8A-Zn3A-N6A</td>
<td>1.03(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6A-Zn3A-N6A</td>
<td>1.72(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6'-Zn3A-N6A</td>
<td>1.74(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5A-Zn3A-N6A</td>
<td>1.56(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5A-Zn3A-N6A</td>
<td>1.23(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6'-Zn3A-N6A</td>
<td>1.78(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8A-Zn3A-N6A</td>
<td>1.10(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A-Zn3A-C75A</td>
<td>1.72(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A-Zn3A-C80A</td>
<td>2.8(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A-C76A-C77A</td>
<td>1.79(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A-C75A-C76A</td>
<td>1.4(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A-C76A-C77A</td>
<td>4.7(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A-C77A-C78A</td>
<td>5.8(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C77A-C78A-C79A</td>
<td>1.77(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A-C75A-C80A</td>
<td>1.79(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A-C75A-C80A</td>
<td>1.4(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76A-C75A-C80A</td>
<td>0.0(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C74A-C75A-C80A</td>
<td>1.79(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A-C79A-C80A</td>
<td>1.78(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C81A-C79A-C80A</td>
<td>6.3(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A-C79A-C75A</td>
<td>2.1(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C81A-C79A-C80A</td>
<td>1.74(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75A-C80A-O6A-Zn3A</td>
<td>4.0(16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C79A-C80A-O6A-Zn3A</td>
<td>1.76(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6'-Zn3A-O6A-C80A</td>
<td>4.7(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5A-Zn3A-O6A-C80A</td>
<td>1.51(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5A-Zn3A-O6A-C80A</td>
<td>3.61(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6'-Zn3A-O6A-C80A</td>
<td>1.61(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6A-Zn3A-O6A-C80A</td>
<td>1.06(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A-C79A-C81A-C83A</td>
<td>111.5(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A-C79A-C81A-C83A</td>
<td>60.2(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A-C79A-C81A-C82A</td>
<td>8.2(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A-C79A-C81A-C82A</td>
<td>179.9(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78A-C79A-C81A-C84A</td>
<td>128.0(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80A-C79A-C81A-C84A</td>
<td>60.2(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67A-N5A-C68'-C73'</td>
<td>168.5(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C68A-N5A-C68'-C73'</td>
<td>176(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn3A-N5A-C68'-C73'</td>
<td>7.9(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67A-N5A-C68'-C69'</td>
<td>7.4(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C68A-N5A-C68'-C69'</td>
<td>7.7(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn3A-N5A-C68'-C69'</td>
<td>176.3(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5A-C68'-C69'-C70'</td>
<td>178.7(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C73'-C68'-C69'-C70'</td>
<td>-5.1(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C68'-C69'-C70'-C71'</td>
<td>0.3(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C69'-C70'-C71'-C72'</td>
<td>2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C70'-C71'-C72'-C73'</td>
<td>0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C71'-C72'-C73'-C68'</td>
<td>-4.5(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C71'-C72'-C73'-N6'</td>
<td>176.4(12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom 1</td>
<td>Atom 2</td>
<td>Atom 3</td>
<td>Atom 4</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>N5A</td>
<td>C68'</td>
<td>C73'</td>
<td>C72'</td>
</tr>
<tr>
<td>C69'</td>
<td>C68'</td>
<td>C73'</td>
<td>C72'</td>
</tr>
<tr>
<td>N5A</td>
<td>C68'</td>
<td>C73'</td>
<td>N6'</td>
</tr>
<tr>
<td>C69'</td>
<td>C68'</td>
<td>C73'</td>
<td>N6'</td>
</tr>
<tr>
<td>C72'</td>
<td>C73'</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>C68'</td>
<td>C73'</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>C72'</td>
<td>C73'</td>
<td>N6'</td>
<td>Zn3A</td>
</tr>
<tr>
<td>C68'</td>
<td>C73'</td>
<td>N6'</td>
<td>Zn3A</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>O5A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>N5A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>O6'</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C74'</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>O5A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>N5A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>O6'</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>N6'</td>
<td>C73'</td>
</tr>
<tr>
<td>C73'</td>
<td>N6'</td>
<td>C74'</td>
<td>C75'</td>
</tr>
<tr>
<td>C73'</td>
<td>N6'</td>
<td>C74'</td>
<td>C75'</td>
</tr>
<tr>
<td>C73'</td>
<td>C74'</td>
<td>C76'</td>
<td>C77'</td>
</tr>
<tr>
<td>C80'</td>
<td>C75'</td>
<td>C76'</td>
<td>C77'</td>
</tr>
<tr>
<td>C80'</td>
<td>C75'</td>
<td>C76'</td>
<td>C77'</td>
</tr>
<tr>
<td>C80'</td>
<td>C76'</td>
<td>C77'</td>
<td>C78'</td>
</tr>
<tr>
<td>C80'</td>
<td>C76'</td>
<td>C77'</td>
<td>C79'</td>
</tr>
<tr>
<td>C80'</td>
<td>C76'</td>
<td>C77'</td>
<td>C80'</td>
</tr>
<tr>
<td>C80'</td>
<td>O6'</td>
<td>C75'</td>
<td>C79'</td>
</tr>
<tr>
<td>C79'</td>
<td>O6'</td>
<td>C75'</td>
<td>C79'</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N6'</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>O5A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N5A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N8A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N6A</td>
<td>O6'</td>
<td>C80'</td>
<td>C75'</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>C75'</td>
<td>O6'</td>
<td>C80'</td>
<td>C81'</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>C75'</td>
<td>C80'</td>
<td>O6'</td>
<td>Zn3A</td>
</tr>
<tr>
<td>O6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N6'</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N5A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>N6A</td>
<td>Zn3A</td>
<td>O6'</td>
<td>C80'</td>
</tr>
<tr>
<td>C78'</td>
<td>C81'</td>
<td>C83'</td>
<td>120.3(9)</td>
</tr>
<tr>
<td>C80'</td>
<td>C81'</td>
<td>C83'</td>
<td>-59.6(9)</td>
</tr>
<tr>
<td>C80'</td>
<td>C81'</td>
<td>C82'</td>
<td>0.0(11)</td>
</tr>
<tr>
<td>C80'</td>
<td>C81'</td>
<td>C82'</td>
<td>-179.9(8)</td>
</tr>
<tr>
<td>C80'</td>
<td>C81'</td>
<td>C84'</td>
<td>-120.1(9)</td>
</tr>
<tr>
<td>C80'</td>
<td>C81'</td>
<td>C84'</td>
<td>60.0(9)</td>
</tr>
<tr>
<td>C87A</td>
<td>N7A</td>
<td>C85A</td>
<td>P1A</td>
</tr>
<tr>
<td>C86A</td>
<td>N7A</td>
<td>C85A</td>
<td>P1A</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td>Torsion (°)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Zn1A N7A C85A P1A</td>
<td>177.36(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88A P1A C85A N7A</td>
<td>48.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90A P1A C85A N7A</td>
<td>-49.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87A N7A C86A N9A</td>
<td>55.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C85A N7A C86A N9A</td>
<td>-67.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1A N7A C86A N9A</td>
<td>178.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89A N9A C86A N7A</td>
<td>-55.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90A N9A C86A N7A</td>
<td>66.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn2A N9A C86A N7A</td>
<td>-176.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86A N7A C87A N8A</td>
<td>-56.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C85A N7A C87A N8A</td>
<td>66.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn1A N7A C87A N8A</td>
<td>-175.7(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88A N8A C87A N7A</td>
<td>-67.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89A N8A C87A N7A</td>
<td>56.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn3A N8A C87A N7A</td>
<td>177.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87A N8A C88A P1A</td>
<td>60.8(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89A N8A C88A P1A</td>
<td>-60.8(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn3A N8A C88A P1A</td>
<td>179.01(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C85A P1A C88A N8A</td>
<td>-48.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90A P1A C88A N8A</td>
<td>48.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86A N9A C89A N8A</td>
<td>56.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90A N9A C89A N8A</td>
<td>-66.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn2A N9A C89A N8A</td>
<td>179.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88A N8A C89A N9A</td>
<td>67.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87A N8A C89A N9A</td>
<td>-56.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn3A N8A C89A N9A</td>
<td>-176.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89A N9A C90A P1A</td>
<td>60.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86A N9A C90A P1A</td>
<td>-61.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn2A N9A C90A P1A</td>
<td>176.49(17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88A P1A C90A N9A</td>
<td>-47.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C85A P1A C90A N9A</td>
<td>49.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N7B C87B</td>
<td>-143.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N7B C87B</td>
<td>-45.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N7B C87B</td>
<td>124.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N7B C87B</td>
<td>43.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N7B C85B</td>
<td>-23.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N7B C85B</td>
<td>73.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N7B C85B</td>
<td>-115.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N7B C85B</td>
<td>163.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1B Zn1B N7B C86B</td>
<td>96.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2B Zn1B N7B C86B</td>
<td>-165.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1B Zn1B N7B C86B</td>
<td>4.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2B Zn1B N7B C86B</td>
<td>-76.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6B Zn3B N8B C89B</td>
<td>-164.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5B Zn3B N8B C89B</td>
<td>94.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6" Zn3B N8B C89B</td>
<td>86.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5B Zn3B N8B C89B</td>
<td>2.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6" Zn3B N8B C89B</td>
<td>-174.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6B Zn3B N8B C89B</td>
<td>-74.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6B Zn3B N8B C86B</td>
<td>-43.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5B Zn3B N8B C86B</td>
<td>-144.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6" Zn3B N8B C86B</td>
<td>34.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5B Zn3B N8B C86B</td>
<td>123.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6" Zn3B N8B C86B</td>
<td>-54.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom Location</td>
<td>Bond Type</td>
<td>Bond Angle</td>
<td>Torsion Angle</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>N6B Zn3B N8B C86B</td>
<td>46.6(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O6B Zn3B N8B C88B</td>
<td>75.9(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O5B Zn3B N8B C88B</td>
<td>-25.5(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N6'' Zn3B N8B C88B</td>
<td>153.7(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N5B Zn3B N8B C88B</td>
<td>-117.1(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O6'' Zn3B N8B C88B</td>
<td>65.4(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N6B Zn3B N8B C88B</td>
<td>166.0(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O3B Zn2B N9B C89B</td>
<td>-147.6(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O4B Zn2B N9B C89B</td>
<td>-50.5(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N4B Zn2B N9B C89B</td>
<td>39.0(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N3B Zn2B N9B C89B</td>
<td>119.8(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O3B Zn2B N9B C87B</td>
<td>91.8(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O4B Zn2B N9B C87B</td>
<td>-171.2(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N4B Zn2B N9B C87B</td>
<td>-81.7(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N3B Zn2B N9B C87B</td>
<td>-0.9(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O3B Zn2B N9B C90B</td>
<td>-29.5(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O4B Zn2B N9B C90B</td>
<td>67.6(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N4B Zn2B N9B C90B</td>
<td>157.1(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N3B Zn2B N9B C90B</td>
<td>-122.1(2)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O2B Zn1B O1B C1B</td>
<td>174.0(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N1B Zn1B O1B C1B</td>
<td>11.5(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N2B Zn1B O1B C1B</td>
<td>70.6(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N7B Zn1B O1B C1B</td>
<td>-91.4(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>Zn1B O1B C1B C6B</td>
<td>-4.5(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>Zn1B O1B C1B C2B</td>
<td>177.3(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O1B C1B C2B C3B</td>
<td>179.6(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C6B C1B C2B C3B</td>
<td>1.3(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O1B C1B C2B C7B</td>
<td>2.4(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C6B C1B C2B C7B</td>
<td>-175.9(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C1B C2B C3B C4B</td>
<td>-1.0(7)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C7B C2B C3B C4B</td>
<td>176.1(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C2B C3B C4B C5B</td>
<td>1.7(8)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C3B C4B C5B C6B</td>
<td>-2.7(7)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C4B C5B C6B C11B</td>
<td>-172.8(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C4B C5B C6B C1B</td>
<td>3.0(7)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O1B C1B C6B C5B</td>
<td>179.4(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C2B C1B C6B C5B</td>
<td>-2.3(6)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O1B C1B C6B C11B</td>
<td>-5.1(6)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C2B C1B C6B C11B</td>
<td>173.1(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C3B C2B C7B C8B</td>
<td>5.2(6)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C1B C2B C7B C8B</td>
<td>-177.7(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C3B C2B C7B C9B</td>
<td>-113.7(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C1B C2B C7B C9B</td>
<td>63.4(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C3B C2B C7B C10B</td>
<td>126.1(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C1B C2B C7B C10B</td>
<td>-56.8(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O2B Zn1B N1B C11B</td>
<td>-13.7(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O2B Zn1B N1B C11B</td>
<td>-124.7(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N2B Zn1B N1B C11B</td>
<td>-174.4(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N7B Zn1B N1B C11B</td>
<td>87.1(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O1B Zn1B N1B C12B</td>
<td>170.1(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>O2B Zn1B N1B C12B</td>
<td>59.1(5)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N2B Zn1B N1B C12B</td>
<td>9.5(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>N7B Zn1B N1B C12B</td>
<td>-89.1(3)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>C12B N1B C11B C6B</td>
<td>-173.9(4)</td>
<td>. . . .</td>
<td>?</td>
</tr>
<tr>
<td>Bond 1</td>
<td>Bond 2</td>
<td>Bond 3</td>
<td>Bond 4</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C22B</td>
<td>C23B</td>
<td>C25B</td>
<td>C26B</td>
</tr>
<tr>
<td>C24B</td>
<td>C23B</td>
<td>C25B</td>
<td>C27B</td>
</tr>
<tr>
<td>C22B</td>
<td>C23B</td>
<td>C25B</td>
<td>C28B</td>
</tr>
<tr>
<td>C24B</td>
<td>C23B</td>
<td>C25B</td>
<td>C28B</td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>O3B</td>
<td>C29B</td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>O3B</td>
<td>C29B</td>
</tr>
<tr>
<td>N3B</td>
<td>Zn2B</td>
<td>O3B</td>
<td>C29B</td>
</tr>
<tr>
<td>Zn2B</td>
<td>O3B</td>
<td>C29B</td>
<td>C44B</td>
</tr>
<tr>
<td>Zn2B</td>
<td>O3B</td>
<td>C29B</td>
<td>C44B</td>
</tr>
<tr>
<td>O3B</td>
<td>C29B</td>
<td>C30B</td>
<td>C31B</td>
</tr>
<tr>
<td>O3B</td>
<td>C29B</td>
<td>C30B</td>
<td>C35B</td>
</tr>
<tr>
<td>C34B</td>
<td>C29B</td>
<td>C30B</td>
<td>C35B</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>C31B</td>
<td>C32B</td>
</tr>
<tr>
<td>C35B</td>
<td>C30B</td>
<td>C31B</td>
<td>C32B</td>
</tr>
<tr>
<td>C30B</td>
<td>C31B</td>
<td>C32B</td>
<td>C33B</td>
</tr>
<tr>
<td>C31B</td>
<td>C32B</td>
<td>C33B</td>
<td>C34B</td>
</tr>
<tr>
<td>C32B</td>
<td>C33B</td>
<td>C34B</td>
<td>C39E</td>
</tr>
<tr>
<td>C32B</td>
<td>C33B</td>
<td>C34B</td>
<td>C29B</td>
</tr>
<tr>
<td>O3B</td>
<td>C29B</td>
<td>C34B</td>
<td>C33B</td>
</tr>
<tr>
<td>C30B</td>
<td>C29B</td>
<td>C34B</td>
<td>C33B</td>
</tr>
<tr>
<td>O3B</td>
<td>C29B</td>
<td>C34B</td>
<td>C39E</td>
</tr>
<tr>
<td>O3B</td>
<td>C29B</td>
<td>C34B</td>
<td>C39E</td>
</tr>
<tr>
<td>C31B</td>
<td>C30B</td>
<td>C35B</td>
<td>C36B</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>C35B</td>
<td>C36B</td>
</tr>
<tr>
<td>C31B</td>
<td>C30B</td>
<td>C35B</td>
<td>C38B</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>C35B</td>
<td>C38B</td>
</tr>
<tr>
<td>C31B</td>
<td>C30B</td>
<td>C35B</td>
<td>C37B</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>C35B</td>
<td>C37B</td>
</tr>
<tr>
<td>C33B</td>
<td>C34B</td>
<td>C39E</td>
<td>N3B</td>
</tr>
<tr>
<td>C29B</td>
<td>C34B</td>
<td>C39E</td>
<td>N3B</td>
</tr>
<tr>
<td>C34B</td>
<td>C39E</td>
<td>N3B</td>
<td>C40B</td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C39E</td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C39E</td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C39E</td>
</tr>
<tr>
<td>N9B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C39E</td>
</tr>
<tr>
<td>O3B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
</tr>
<tr>
<td>O4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
</tr>
<tr>
<td>N4B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
</tr>
<tr>
<td>N9B</td>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
</tr>
<tr>
<td>C39E</td>
<td>N3B</td>
<td>C40B</td>
<td>C41B</td>
</tr>
<tr>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
<td>C41B</td>
</tr>
<tr>
<td>C39E</td>
<td>N3B</td>
<td>C40B</td>
<td>C45B</td>
</tr>
<tr>
<td>Zn2B</td>
<td>N3B</td>
<td>C40B</td>
<td>C45B</td>
</tr>
<tr>
<td>N3B</td>
<td>C40B</td>
<td>C41B</td>
<td>C42B</td>
</tr>
<tr>
<td>C45B</td>
<td>C40B</td>
<td>C41B</td>
<td>C42B</td>
</tr>
<tr>
<td>C40B</td>
<td>C41B</td>
<td>C42B</td>
<td>C43B</td>
</tr>
<tr>
<td>C41B</td>
<td>C42B</td>
<td>C43B</td>
<td>C44B</td>
</tr>
<tr>
<td>C42B</td>
<td>C43B</td>
<td>C44B</td>
<td>C45B</td>
</tr>
<tr>
<td>C43B</td>
<td>C44B</td>
<td>C45B</td>
<td>N4B</td>
</tr>
<tr>
<td>Bond</td>
<td>C43B</td>
<td>C44B</td>
<td>C45B</td>
</tr>
</tbody>
</table>
Zn3B O5B C57B C58B 176.6(2)?
O5B C57B C58B C59B -179.5(3)?
C62B C57B C58B C59B 1.7(5)?
O5B C57B C58B C63B 1.4(5)?
C62B C57B C58B C63B -177.3(3)?
C57B C58B C59B C60B -0.8(6)?
C63B C58B C59B C60B 178.2(4)?
C58B C59B C60B C61B -0.2(7)?
C59B C60B C61B C62B 0.1(6)?
C60B C61B C62B C57B 0.9(6)?
C60B C61B C62B C67B -175.9(4)?
O5B C57B C62B C61B 179.6(3)?
C58B C57B C62B C61B -1.8(5)?
O5B C57B C62B C67B -3.9(5)?
C58B C57B C62B C67B 174.8(3)?
C59B C58B C63B C66B 5.3(5)?
C57B C58B C63B C66B -175.7(3)?
C59B C58B C63B C65B -113.6(4)?
C57B C58B C63B C65B 65.4(4)?
C59B C58B C63B C64B 125.6(4)?
C57B C58B C63B C64B -55.4(5)?
C61B C62B C67B N5B 178.4(4)?
C57B C62B C67B N5B 1.8(6)?
C62B C67B N5B C68" -171.0(13)?
C62B C67B N5B C68B -175.0(8)?
C62B C67B N5B Zn3B 7.7(5)?
O6B Zn3B N5B C67B -126.9(12)?
O5B Zn3B N5B C67B -11.2(3)?
N6" Zn3B N5B C67B -169.0(7)?
O6" Zn3B N5B C67B -102.0(18)?
N6B Zn3B N5B C67B -173.9(5)?
N8B Zn3B N5B C67B 89.0(3)?
O6B Zn3B N5B C68" 52.1(16)?
O5B Zn3B N5B C68" 167.8(10)?
N6" Zn3B N5B C68" 10.0(12)?
O6" Zn3B N5B C68" 77(2)?
N6B Zn3B N5B C68" 5.1(11)?
N8B Zn3B N5B C68" -91.9(10)?
O6B Zn3B N5B C68B 56.0(15)?
O5B Zn3B N5B C68B 171.7(8)?
N6" Zn3B N5B C68B 13.8(10)?
O6" Zn3B N5B C68B 81(2)?
N6B Zn3B N5B C68B 9.0(9)?
N8B Zn3B N5B C68B -88.1(8)?
C67B N5B C68B C69B 0(2)?
C68" N5B C68B C69B -169(7)?
Zn3B N5B C68B C69B 177.1(15)?
C67B N5B C68B C73B 177.7(9)?
C68" N5B C68B C73B 9(5)?
Zn3B N5B C68B C73B -5.0(15)?
C73B C68B C69B C70B 1(3)?
N5B C68B C69B C70B 178.8(14)?
C68B C69B C70B C71B 2(2)?
C69B C70B C71B C72B -4(2)?
C70B C71B C72B C73B 3(2) ?
C71B C72B C73B N6B -174.2(11) ?
C71B C72B C73B C68B 0.2(19) ?
C69B C68B C73B C72B -2(2) ?
N5B C68B C73B C72B 179.6(11) ?
C69B C68B C73B N6B 172.7(14) ?
N5B C68B C73B N6B -5.5(16) ?
C72B C73B N6B C74B 21.1(18) ?
C68B C73B N6B C74B -153.4(13) ?
C72B C73B N6B Zn3B -172.2(10) ?
C68B C73B N6B Zn3B 13.2(14) ?
O6B Zn3B N6B C74B -9.2(12) ?
O5B Zn3B N6B C74B 105.2(9) ?
N6" Zn3B N6B C74B -2(4) ?
N5B Zn3B N6B C74B 154.7(12) ?
O6" Zn3B N6B C74B -12.8(14) ?
N8B Zn3B N6B C74B -104.8(11) ?
O6B Zn3B N6B C73B -175.6(10) ?
O5B Zn3B N6B C73B -61.2(13) ?
N6" Zn3B N6B C73B -168(6) ?
N5B Zn3B N6B C73B -11.7(8) ?
O6" Zn3B N6B C73B -179.2(11) ?
N8B Zn3B N6B C73B 88.8(9) ?
C73B N6B C74B C75B 172.9(11) ?
Zn3B N6B C74B C75B 7.1(19) ?
N6B C74B C75B C76B 179.4(11) ?
N6B C74B C75B C80B -1.8(19) ?
C80B C75B C76B C77B 1.3(13) ?
C74B C75B C76B C77B -179.9(9) ?
C75B C76B C77B C78B 0.0(14) ?
C76B C77B C78B C79B -3.1(15) ?
C77B C78B C79B C80B 4.7(14) ?
C77B C78B C79B C81B -175.7(8) ?
C76B C75B C80B O6B -179.8(12) ?
C74B C75B C80B O6B 1.5(18) ?
C76B C75B C80B C79B 0.5(14) ?
C74B C75B C80B C79B -178.2(9) ?
C78B C79B C80B O6B 176.9(12) ?
C81B C79B C80B O6B -2.6(15) ?
C78B C79B C80B C75B -3.4(13) ?
C81B C79B C80B C75B 177.1(7) ?
C75B C80B O6B Zn3B -9(2) ?
C79B C80B O6B Zn3B 171.0(12) ?
O5B Zn3B O6B C80B -148.1(17) ?
N6" Zn3B O6B C80B 9.1(18) ?
N5B Zn3B O6B C80B -34(3) ?
O6" Zn3B O6B C80B 173(8) ?
N6B Zn3B O6B C80B 10.7(18) ?
N8B Zn3B O6B C80B 110.6(18) ?
C78B C79B C81B C82B -122.2(8) ?
C80B C79B C81B C82B 57.3(9) ?
C78B C79B C81B C84B -0.9(9) ?
C80B C79B C81B C84B 178.6(7) ?
C78B C79B C81B C83B 117.5(8) ?
<table>
<thead>
<tr>
<th>Bond Length</th>
<th>Angle</th>
<th>Torsion</th>
<th>Bond Angle</th>
<th>Torsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>C80 - C79</td>
<td>C81</td>
<td>C83</td>
<td>-63.0(8)</td>
<td>.</td>
</tr>
<tr>
<td>C67 - N5</td>
<td>C68</td>
<td>C69</td>
<td>-5(3)</td>
<td>.</td>
</tr>
<tr>
<td>C68 - C69</td>
<td>C70</td>
<td>C71</td>
<td>9(4)</td>
<td>.</td>
</tr>
<tr>
<td>Zn3 - N5</td>
<td>C68</td>
<td>C69</td>
<td>176(2)</td>
<td>.</td>
</tr>
<tr>
<td>C67 - N5</td>
<td>C68</td>
<td>C73</td>
<td>170.2(12)</td>
<td>.</td>
</tr>
<tr>
<td>C68 - C73</td>
<td>-176(8)</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Zn3 - N5</td>
<td>C68</td>
<td>C73</td>
<td>-9(2)</td>
<td>.</td>
</tr>
<tr>
<td>C73 - C68</td>
<td>C69</td>
<td>C70</td>
<td>5(4)</td>
<td>.</td>
</tr>
<tr>
<td>N5 - C68</td>
<td>C69</td>
<td>C70</td>
<td>180(2)</td>
<td>.</td>
</tr>
<tr>
<td>C68 - C69</td>
<td>C70</td>
<td>C71</td>
<td>0(4)</td>
<td>.</td>
</tr>
<tr>
<td>C69 - C70</td>
<td>C71</td>
<td>C72</td>
<td>2(3)</td>
<td>.</td>
</tr>
<tr>
<td>C70 - C71</td>
<td>C72</td>
<td>C73</td>
<td>-7(3)</td>
<td>.</td>
</tr>
</tbody>
</table>

C71 - C72 - C73 - N6 - 175.0(17) . . .
C71 - C72 - C73 - C68 - 12(3) . . .
C69 - C68 - C73 - C72 - -10(3) . . .
N5 - C68 - C73 - C72 - 174.7(17) . . .
C69 - C68 - C73 - N6 - 176(2) . . .
N5 - C68 - C73 - N6 - 1(3) . . .
C72 - C73 - N6 - C74 - 30(3) . . .
C68 - C73 - N6 - Zn3B - 165.3(15) . . .
C68 - C73 - N6 - Zn3B - 8(2) . . .
O6B - Zn3B - N6 - C74 - -12(2) . . .
O5B - Zn3B - N6 - C74 - 73(2) . . .
N5B - Zn3B - N6 - C74 - 153(2) . . .
O6 - Zn3B - N6 - C74 - -15(2) . . .
N6B - Zn3B - N6 - C74 - 176(7) . . .
N8B - Zn3B - N6 - C74 - -105(2) . . .
O6B - Zn3B - N6 - C73 - -152.2(17) . . .
O5B - Zn3B - N6 - C73 - -90.2(14) . . .
N5B - Zn3B - N6 - C73 - -10.4(14) . . .
O6 - Zn3B - N6 - C73 - -178.4(16) . . .
N6B - Zn3B - N6 - C73 - 12(4) . . .
N8B - Zn3B - N6 - C73 - 91.8(14) . . .
C73 - N6 - C74 - C75 - 173.0(17) . . .
Zn3B - N6 - C74 - C75 - 11(3) . . .
N6 - C74 - C75 - C77 - -176.7(18) . . .
N6 - C74 - C75 - C80 - 2(3) . . .
C80 - C75 - C77 - C69 - 0(2) . . .
C74 - C75 - C77 - C76 - 178.6(15) . . .
C75 - C77 - C76 - C78 - 3(2) . . .
C77 - C76 - C78 - C79 - -5(2) . . .
C76 - C78 - C79 - C80 - 2.6(19) . . .
C76 - C78 - C79 - C81 - -176.7(11) . . .
C77 - C75 - C80 - O6 - 174.1(18) . . .
C74 - C75 - C80 - O6 - -5(3) . . .
C77 - C75 - C80 - C79 - -2(3) . . .
C74 - C75 - C80 - C79 - 179.7(14) . . .
C78 - C79 - C80 - O6 - -175.5(17) . . .
C81 - C79 - C80 - O6 - 4(2) . . .
C78 - C79 - C80 - C75 - 0(2) . . .
C81 - C79 - C80 - C75 - 179.8(13) . . .
C75 - C80 - O6 - Zn3B - 6(3) . . .
C79 - C80 - O6 - Zn3B - 169.8(15) . . .
O6B Zn3B O6" C80" -3(4) ?
O5B Zn3B O6" C80" -144(2) ?
N6" Zn3B O6" C80" 13(2) ?
N5B Zn3B O6" C80" -54(4) ?
N6B Zn3B O6" C80" 15(2) ?
N8B Zn3B O6" C80" 115(2) ?
C78" C79" C81" C83" -117.9(11) ?
C80" C79" C81" C83" -61.4(13) ?
C78" C79" C81" C84" -2.6(12) ?
C80" C79" C81" C84" 178.1(12) ?
C78" C79" C81" C82" -122.5(10) ?
C80" C79" C81" C82" 58.2(13) ?
C87B N7B C85B P1B -60.4(3) ?
C86B N7B C85B P1B 60.9(3) ?
Zn1B N7B C85B P1B -177.82(16) ?
C88B P1B C85B N7B -48.3(3) ?
C90B P1B C85B N7B 48.5(3) ?
C89B N8B C86B N7B -55.7(4) ?
C88B N8B C86B N7B 67.1(4) ?
Zn3B N8B C86B N7B -177.7(2) ?
C87B N7B C86B N8B 55.9(4) ?
C85B N7B C86B N8B -67.1(4) ?
Zn1B N7B C86B N8B 175.5(2) ?
C85B N7B C87B N9B 66.1(4) ?
C86B N7B C87B N9B -56.2(4) ?
Zn1B N7B C87B N9B -178.0(2) ?
C89B N9B C87B N7B 56.1(4) ?
C90B N9B C87B N7B -66.3(3) ?
Zn2B N9B C87B N7B 175.9(2) ?
C89B N8B C88B P1B 61.4(3) ?
C86B N8B C88B P1B -60.7(3) ?
Zn3B N8B C88B P1B -178.24(18) ?
C90B P1B C88B N8B -48.5(3) ?
C85B P1B C88B N8B 48.2(3) ?
C86B N8B C89B N9B 55.5(4) ?
C88B N8B C89B N9B -67.7(4) ?
Zn3B N8B C89B N9B 175.8(2) ?
C87B N9B C89B N8B -55.4(4) ?
C90B N9B C89B N8B 67.0(4) ?
Zn2B N9B C89B N8B -178.8(2) ?
C89B N9B C90B P1B -59.9(3) ?
C87B N9B C90B P1B 61.3(3) ?
Zn2B N9B C90B P1B -175.76(17) ?
C88B P1B C90B N9B 47.9(3) ?
C85B P1B C90B N9B -49.2(3) ?

_diffrn_measured_fraction_theta_max 0.994
_diffrn_reflns_theta_full 25.00
_diffrn_measured_fraction_theta_full 1.000
_refine_diff_density_max 1.542
_refine_diff_density_min -0.846
_refine_diff_density_rms 0.065

data_mo_da623_0m
_exptl_absorp_correction_type_empirical
_exptl_absorp_correction_T_min 0.8069
_exptl_absorp_correction_T_max 0.9845
_exptl_absorp_process_details
;
SADABS Version 2008/1 Bruker-Nonius
;
_exptl_special_details
;
It should be noted that the esd's of the cell dimensions are probably too low;
they should be multiplied by a factor of 2 to 10
;
_diffn_ambient_temperature 100(2)
_diffn_measurement_specimen_suppport 'magnetic support whith MicroMount'
_diffn_radiation_wavelength 0.71073
_diffn_radiation_type MoK\alpha
_diffn_source 'Micorfocus source E025 IuS'
_diffn_source_type 'Bruker APEX DUO'
_diffn_source_power 50
_diffn_source_current 0.6
_diffn_source_size '0.2 mm x 0.2 mm fine focus'
_diffn_radiation_monochromator 'Quazar MX Multilayer Optics'
_diffn_detector_type '4K CCD area detector APEX II'
_diffn_measurement_device_type 'APEX DUO Kappa 4-axis goniometer'
_diffn_measurement_method

Fullsphere data collection, phi and omega scans
;
_diffn_detector_area_resol_mean 512
_diffn_reflns_number 71356
_diffn_reflns_av_R_equivalents 0.0846
_diffn_reflns_av_sigmaI/netI 0.0774
_diffn_reflns_limit_h_min -20
_diffn_reflns_limit_h_max 20
_diffn_reflns_limit_k_min -18
_diffn_reflns_limit_k_max 16
_diffn_reflns_limit_l_min -35
_diffn_reflns_limit_l_max 35
_diffn_reflns_theta_min 1.52
_diffn_reflns_theta_max 25.91
_reflns_number_total 13912
_reflns_number_gt 9460
_reflns_threshold_expression >2sigma(I)
_computing_data_collection 'Bruker APEX2 v2011.4-0'
_computing_cell_refinement 'Bruker APEX2 v2011.4-0'
_computing_data_reduction 'Bruker SAINT V7.60A'
_computing_structure_solution Sir2011
_computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit \(S \) are based on \(F^2 \), conventional \(R \)-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of
\(F^2 > 2\sigma(F^2) \) is used only for calculating \(R \)-factors(gt) etc. and is not relevant to the choice of reflections for refinement. \(R \)-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and \(R \)-factors based on ALL data will be even larger.

;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[s^2(Fo^2)+(0.0504P)^2+10.3497P] where P=(Fo^2+2Fc^2)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution Hydrogens geom
_refine_ls_hydrogen_treatment noref
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 13912
_refine_ls_number_parameters 993
_refine_ls_number_restraints 744
_refine_ls_R_factor_all 0.0949
_refine_ls_R_factor_gt 0.0547
_refine_ls_wR_factor_ref 0.1313
_refine_ls_wR_factor_gt 0.1156
_refine_ls_goodness_of_fit_ref 1.017
_refine_ls_goodness_of_fit_S_all 1.011
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
Zn1 Zn 0.28059(2) 0.66624(3) 0.40505(13) 0.01707(11) Uani 1 1 d . . .
Zn2 Zn 0.20398(2) 1.00221(3) 0.494790(13) 0.01882(11) Uani 1 1 d . . .
N1 N 0.16337(16) 0.66710(19) 0.4277(9) 0.0177(6) Uani 1 1 d . . .
N2 N 0.28837(17) 0.56356(18) 0.45319(9) 0.0173(6) Uani 1 1 d . B .
N3 N 0.22832(18) 1.1050(2) 0.44975(10) 0.0210(7) Uani 1 1 d . . .
N4 N 0.11805(19) 0.9771(2) 0.44213(10) 0.0225(7) Uani 1 1 d . A .
O1 O 0.24244(14) 0.73948(16) 0.35273(8) 0.0231(6) Uani 1 1 d . . .
O2 O 0.36630(15) 0.60674(16) 0.37227(8) 0.0236(6) Uani 1 1 d . . .
O3 O 0.25071(15) 1.07303(16) 0.54569(8) 0.0226(6) Uani 1 1 d . . .
O4 O 0.15104(14) 0.91221(16) 0.53217(8) 0.0224(6) Uani 1 1 d . . .
C1 C 0.1694(2) 0.7634(2) 0.33756(12) 0.0211(8) Uani 1 1 d . . .
C2 C 0.1594(2) 0.8084(2) 0.29394(12) 0.0231(8) Uani 1 1 d...
C3 C 0.0810(2) 0.8309(3) 0.27779(13) 0.0283(9) Uani 1 1 d...
H3 H 0.0740 0.8592 0.2487 0.034 Uiso 1 1 calc R B.
C4 C 0.0116(2) 0.8143(3) 0.30208(13) 0.0299(9) Uani 1 1 d...
H4 H -0.0411 0.8313 0.3607 0.034 Uiso 1 1 calc R B.
C5 C 0.0810(2) 0.8309(3) 0.27779(13) 0.0283(9) Uani 1 1 d...
H5 H -0.0268 0.7621 0.3607 0.034 Uiso 1 1 calc R B.
C6 C 0.0203(2) 0.7731(3) 0.34393(13) 0.0286(9) Uani 1 1 d...
H6 H -0.0268 0.7621 0.3607 0.034 Uiso 1 1 calc R B.
C7 C 0.0980(2) 0.7469(2) 0.36264(12) 0.0226(8) Uani 1 1 d...
H7 H 0.0458 0.6629 0.4889 0.025 Uiso 1 1 calc R B.
C8 C 0.0995(2) 0.7010(2) 0.40558(12) 0.0217(8) Uani 1 1 d...
H8 H 0.0458 0.6629 0.4889 0.025 Uiso 1 1 calc R B.
C9 C 0.1561(2) 0.6188(2) 0.46894(11) 0.0176(8) Uani 1 1 d...
H9 H 0.1561(2) 0.6188(2) 0.46894(11) 0.0176(8) Uani 1 1 d...
C10 C 0.0878(2) 0.5726(2) 0.53597(12) 0.0217(8) Uani 1 1 d...
H10 H 0.0418 0.5767 0.5543 0.026 Uiso 1 1 calc R B.
C11 C 0.1513(2) 0.5151(2) 0.54926(11) 0.0170(7) Uani 1 1 d...
C12 C 0.2184(2) 0.5118(2) 0.52208(11) 0.0183(8) Uani 1 1 d...
H12 H 0.2629 0.4738 0.5308 0.022 Uiso 1 1 calc R B.
C13 C 0.2220(2) 0.5629(2) 0.48601(12) 0.0190(8) Uani 1 1 d...
H13 H 0.2629 0.4738 0.5308 0.022 Uiso 1 1 calc R B.
C14 C 0.3529(2) 0.5139(2) 0.46018(12) 0.0190(8) Uani 1 1 d...
H14 H 0.3529(2) 0.5139(2) 0.46018(12) 0.0190(8) Uani 1 1 d...
C15 C 0.4200(2) 0.5076(2) 0.44596(13) 0.0257(9) Uani 1 1 d...
H15 H 0.4200(2) 0.5076(2) 0.44596(13) 0.0257(9) Uani 1 1 d...
C16 C 0.4854(2) 0.4523(3) 0.44596(13) 0.0257(9) Uani 1 1 d...
H16 H 0.4854(2) 0.4523(3) 0.44596(13) 0.0257(9) Uani 1 1 d...
C17 C 0.5491(2) 0.4363(3) 0.41885(14) 0.0309(9) Uani 1 1 d...
H17 H 0.5491(2) 0.4363(3) 0.41885(14) 0.0309(9) Uani 1 1 d...
C18 C 0.5466(2) 0.4710(3) 0.37448(14) 0.0319(10) Uani 1 1 d...
C19 C 0.5906 0.4579 0.3557 0.038 Uiso 1 1 calc R B.
C20 C 0.5235(2) 0.35640(12) 0.0232(8) Uani 1 1 d...
C21 C 0.4203(2) 0.35640(12) 0.0232(8) Uani 1 1 d...
C22 C 0.2349(2) 0.8293(3) 0.26692(13) 0.0293(9) Uani 1 1 d...
C23 C 0.2958(2) 0.8293(3) 0.26692(13) 0.0293(9) Uani 1 1 d...
H22A H 0.2681 0.9388 0.3068 0.052 Uiso 1 1 calc R B.
H22B H 0.3414 0.9028 0.2778 0.052 Uiso 1 1 calc R B.
H22C H 0.3167 0.8510 0.3230 0.052 Uiso 1 1 calc R B.
C24 C 0.2121(2) 0.8830(3) 0.22319(13) 0.0372(10) Uani 1 1 d...
H24A H 0.1724 0.8497 0.2035 0.056 Uiso 1 1 calc R B.
H24B H 0.2615 0.8939 0.2065 0.056 Uiso 1 1 calc R B.
H24C H 0.1880 0.9397 0.2317 0.056 Uiso 1 1 calc R B.
C25 C 0.1505(2) 0.4566(2) 0.59233(11) 0.0200(8) Uani 1 1 d...
C26 C 0.0764(2) 0.4751(3) 0.62055(13) 0.0302(10) Uani 1 1 d...
H26A H 0.0776 0.5371 0.6307 0.045 Uiso 1 1 calc R B.
H26B H 0.0781 0.4362 0.6475 0.045 Uiso 1 1 calc R B.
H26C H 0.0259 0.4641 0.6016 0.045 Uiso 1 1 calc R B.
C27 C 0.2285(2) 0.4728(3) 0.62287(12) 0.0299(9) Uani 1 1 d...
H27A H 0.2765 0.4577 0.6058 0.045 Uiso 1 1 calc R B.
H27B H 0.2276 0.4359 0.6505 0.045 Uiso 1 1 calc R B.
H27C H 0.2313 0.5354 0.6318 0.045 Uiso 1 1 calc R B.
C28 C 0.1477(2) 0.3592(2) 0.57721(13) 0.0251(9) Uani 1 1 d...
H28A H 0.0979 0.3485 0.5576 0.038 Uiso 1 1 calc R B.
C67 C 0.4106(2) 0.8045(3) 0.42038(15) 0.0191(8) Uani 0.85 1 d PDU B 1
H67A H 0.3912 0.8213 0.3887 0.023 Uiso 0.85 1 calc PR B 1
H67B H 0.4502 0.7552 0.4180 0.023 Uiso 0.85 1 calc PDU B 1
C68 C 0.3369(2) 0.8428(3) 0.45041(14) 0.0144(7) Uani 0.85 1 d PDU B 1
H68A H 0.3593 0.9296 0.5448 0.021 Uiso 0.85 1 calc PR B 1
H68B H 0.3213 0.7139 0.5073 0.020 Uiso 0.85 1 calc PDU B 1
C65' C 0.4880(6) 0.8868(9) 0.4687(4) 0.0240(3) Uani 0.15 1 d PDU B 2
H65C H 0.5113 0.9442 0.4794 0.029 Uiso 0.15 1 calc PR B 2
H65D H 0.5332 0.8512 0.4570 0.029 Uiso 0.15 1 calc PDU B 2
C66' C 0.3919(7) 0.7400(6) 0.4849(3) 0.0189(9) Uani 0.15 1 d PDU B 2
H66C H 0.4324 0.6977 0.4737 0.023 Uiso 0.15 1 calc PR B 2
H66D H 0.3564 0.8327 0.4318 0.020 Uiso 0.15 1 calc PDU B 2
C1S C 0.9049(5) 0.5114(7) 0.6965(3) 0.0480(11) Uani 0.75 1 d PDU C 1
H2S1 H 0.8686 0.5570 0.6339 0.087 Uiso 0.75 1 calc PR C 1
H2S2 H 0.7944 0.5277 0.6640 0.087 Uiso 0.75 1 calc PDU C 1
C1S' C 0.9033(14) 0.5001(17) 0.7025(9) 0.0480(11) Uani 0.25 1 d PDU D 2
C2S C 0.8498(4) 0.5127(6) 0.6555(2) 0.0579(18) Uani 0.75 1 d PDU C 1
H2S1' H 0.8936 0.3841 0.7246 0.110 Uiso 0.75 1 calc PR C 1
H2S2' H 0.8248 0.4507 0.7408 0.110 Uiso 0.75 1 calc PDU C 1
C3S C 0.8229(5) 0.4446(6) 0.7348(3) 0.0736(17) Uani 0.75 1 d PDU C 1
H2S4' H 0.9567 0.5879 0.6572 0.076 Uiso 0.25 1 Calc PR D 2
H2S5' H 0.8230 0.6323 0.6611 0.088 Uiso 0.25 1 calc PDU D 2
C3S' C 0.9659(16) 0.5723(17) 0.6897(10) 0.051(3) Uani 0.25 1 d PDU D 2
H2S6' H 0.8401 0.5304 0.6433 0.088 Uiso 0.25 1 calc PR D 2
H2S7' H 0.7833 0.5156 0.6855 0.088 Uiso 0.25 1 calc PDU D 2
C2S' C 0.8316(12) 0.4941(19) 0.6705(7) 0.059(3) Uani 0.25 1 d PDU D 2
H2S4' H 0.8401 0.5304 0.6433 0.088 Uiso 0.25 1 calc PR D 2
H2S5' H 0.7833 0.5156 0.6855 0.088 Uiso 0.25 1 calc PDU D 2
http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
<table>
<thead>
<tr>
<th>Atom</th>
<th>Fractional Coordinates</th>
<th>Uiso</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1T</td>
<td>0.5835(6) 0.8514(6) 0.6085(4) 0.095(2)</td>
<td>0.50</td>
</tr>
<tr>
<td>C1T</td>
<td>0.5444(9) 0.8054(12) 0.6320(8) 0.0784(19)</td>
<td>0.50</td>
</tr>
<tr>
<td>C2T</td>
<td>0.4589(6) 0.8138(8) 0.6427(4) 0.077(3)</td>
<td>0.50</td>
</tr>
<tr>
<td>H2T1</td>
<td>0.4353 0.8667 0.6276 0.116</td>
<td>0.50</td>
</tr>
<tr>
<td>H2T2</td>
<td>0.4553 0.8190 0.6760 0.116</td>
<td>0.50</td>
</tr>
<tr>
<td>C3T</td>
<td>0.5837(8) 0.7143(7) 0.6456(5) 0.088(2)</td>
<td>0.50</td>
</tr>
<tr>
<td>H3T1</td>
<td>0.6324 0.7047 0.6282 0.132</td>
<td>0.50</td>
</tr>
<tr>
<td>H3T2</td>
<td>0.5442(11) 0.7891(11) 0.6353(7) 0.0774(19)</td>
<td>0.50</td>
</tr>
<tr>
<td>C2T'</td>
<td>0.5400(8) 0.7214(7) 0.6706(4) 0.080(3)</td>
<td>0.50</td>
</tr>
<tr>
<td>H2T4</td>
<td>0.4855 0.6942 0.6686 0.120</td>
<td>0.50</td>
</tr>
<tr>
<td>H2T5</td>
<td>0.5501 0.7484 0.7010 0.120</td>
<td>0.50</td>
</tr>
<tr>
<td>C3T'</td>
<td>0.4829(8) 0.8669(8) 0.6399(4) 0.087(3)</td>
<td>0.50</td>
</tr>
<tr>
<td>H3T4</td>
<td>0.5063 0.9212 0.6276 0.130</td>
<td>0.50</td>
</tr>
<tr>
<td>Zn1</td>
<td>0.0195(2) 0.0156(2) 0.0165(2) 0.00158(17)</td>
<td>0.50</td>
</tr>
<tr>
<td>Zn2</td>
<td>0.0209(2) 0.0188(2) 0.0170(2) 0.00062(18)</td>
<td>0.50</td>
</tr>
<tr>
<td>N1</td>
<td>0.0163(15) 0.0163(16) 0.0207(15) 0.0002(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>N2</td>
<td>0.0187(15) 0.0131(16) 0.0206(15) 0.0000(12)</td>
<td>0.50</td>
</tr>
<tr>
<td>N3</td>
<td>0.0243(16) 0.0191(18) 0.0201(16) 0.0003(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>N4</td>
<td>0.0279(17) 0.0228(18) 0.0167(15) 0.0017(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>O1</td>
<td>0.0215(13) 0.0273(15) 0.0210(13) 0.0080(11)</td>
<td>0.50</td>
</tr>
<tr>
<td>C1</td>
<td>0.0209(2) 0.0188(2) 0.0170(2) 0.00062(18)</td>
<td>0.50</td>
</tr>
<tr>
<td>C2</td>
<td>0.0163(15) 0.0163(16) 0.0207(15) 0.0002(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C3</td>
<td>0.0187(15) 0.0131(16) 0.0206(15) 0.0000(12)</td>
<td>0.50</td>
</tr>
<tr>
<td>C4</td>
<td>0.0243(16) 0.0191(18) 0.0201(16) 0.0003(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C5</td>
<td>0.0279(17) 0.0228(18) 0.0167(15) 0.0017(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C6</td>
<td>0.0215(13) 0.0273(15) 0.0210(13) 0.0080(11)</td>
<td>0.50</td>
</tr>
<tr>
<td>C7</td>
<td>0.0209(2) 0.0188(2) 0.0170(2) 0.00062(18)</td>
<td>0.50</td>
</tr>
<tr>
<td>C8</td>
<td>0.0163(15) 0.0163(16) 0.0207(15) 0.0002(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C9</td>
<td>0.0187(15) 0.0131(16) 0.0206(15) 0.0000(12)</td>
<td>0.50</td>
</tr>
<tr>
<td>C10</td>
<td>0.0243(16) 0.0191(18) 0.0201(16) 0.0003(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C11</td>
<td>0.0279(17) 0.0228(18) 0.0167(15) 0.0017(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C12</td>
<td>0.0215(13) 0.0273(15) 0.0210(13) 0.0080(11)</td>
<td>0.50</td>
</tr>
<tr>
<td>C13</td>
<td>0.0209(2) 0.0188(2) 0.0170(2) 0.00062(18)</td>
<td>0.50</td>
</tr>
<tr>
<td>C14</td>
<td>0.0163(15) 0.0163(16) 0.0207(15) 0.0002(13)</td>
<td>0.50</td>
</tr>
<tr>
<td>C15</td>
<td>0.0187(15) 0.0131(16) 0.0206(15) 0.0000(12)</td>
<td>0.50</td>
</tr>
<tr>
<td>C16</td>
<td>0.0243(16) 0.0191(18) 0.0201(16) 0.0003(13)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

_loop_geom_bond_atom_site_label_1 geom_bond_atom_site_label_2 geom_bond_distance geom_bond_site_symmetry_2 geom_bond_publ_flag
Zn1 O1 1.955(2) . ?
Zn1 O2 1.959(2) . ?
Zn1 N1 2.063(3) . ?
Zn1 N2 2.089(3) . ?
Zn1 N5 2.175(3) . ?

N6 0.0166(11) 0.0147(11) 0.0219(11) 0.0000(10) 0.0035(9) -0.0002(9)
N7 0.0095(13) 0.0172(15) 0.0250(14) -0.0028(12) 0.0015(12) 0.0001(12)
C65 0.0248(11) 0.0261(11) 0.0314(18) -0.0017(8) 0.0036(8) 0.0000(8)
C66 0.0175(16) 0.0137(16) 0.0314(18) -0.0015(14) 0.0047(15) -0.0028(13)
C67 0.0135(16) 0.0168(17) 0.0250(14) -0.0028(12) 0.0015(12) 0.0001(12)
C68 0.0146(16) 0.0160(17) 0.0219(11) 0.0000(10) 0.0035(9) -0.0002(9)
P1' 0.0248(11) 0.0261(11) 0.0302(10) -0.0017(8) 0.0036(8) 0.0000(8)
N5' 0.0166(11) 0.0147(11) 0.0219(11) 0.0000(10) 0.0035(9) -0.0002(9)
N6' 0.0147(11) 0.0148(11) 0.0214(11) 0.0016(10) 0.0052(9) 0.0023(9)
N7' 0.0137(5) 0.0177(6) 0.0415(7) -0.0026(5) 0.0084(5) -0.0011(5)
C65' 0.0137(5) 0.0177(6) 0.0415(7) -0.0026(5) 0.0084(5) -0.0011(5)
C66' 0.0152(18) 0.0158(17) 0.0259(18) -0.0003(16) 0.0038(16) 0.0002(15)
C67' 0.015(2) 0.017(3) 0.023(2) -0.002(2) 0.007(2) 0.0044(13)
C68' 0.016(2) 0.015(2) 0.020(2) 0.001(2) 0.004(2) 0.0014(19)
C69' 0.014(3) 0.016(2) 0.027(2) 0.001(2) 0.006(2) 0.0044(13)
C70' 0.0124(16) 0.0160(16) 0.0221(16) -0.0006(14) 0.0038(14) 0.0044(13)
O1S 0.044(2) 0.057(3) 0.056(3) -0.018(2) 0.020(2) -0.022(2)
C1S 0.043(2) 0.043(2) 0.059(2) -0.0180(19) 0.0172(19) -0.0082(18)
C2S 0.056(4) 0.056(4) 0.062(4) -0.028(3) 0.006(3) -0.001(3)
C3S 0.065(4) 0.072(3) 0.086(3) 0.006(3) 0.018(3) -0.018(3)
O1S' 0.065(4) 0.072(3) 0.086(3) 0.006(3) 0.018(3) -0.018(3)
C1S' 0.043(2) 0.043(2) 0.059(2) -0.0180(19) 0.0172(19) -0.0082(18)
C2S' 0.057(5) 0.053(6) 0.067(6) -0.023(5) 0.011(5) -0.012(5)
C3S' 0.045(5) 0.051(5) 0.058(6) -0.012(5) 0.019(5) -0.009(4)
O1T 0.105(5) 0.094(6) 0.083(4) 0.017(5) -0.013(4) -0.026(5)
C1T 0.093(4) 0.077(5) 0.064(4) -0.002(4) -0.006(3) -0.014(4)
C2T 0.101(5) 0.075(6) 0.055(5) -0.011(5) -0.004(4) 0.002(5)
C3T 0.099(5) 0.077(5) 0.087(5) -0.002(5) -0.011(5) -0.007(4)
O1T' 0.094(5) 0.099(6) 0.073(4) -0.005(5) 0.004(3) 0.001(5)
C1T' 0.091(4) 0.076(5) 0.064(4) -0.004(4) -0.007(3) -0.011(4)
C2T' 0.098(6) 0.067(5) 0.074(5) -0.006(4) 0.001(5) -0.015(5)
C3T' 0.101(6) 0.090(6) 0.068(5) -0.009(5) -0.010(5) 0.010(5)

_geom_special_details

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
Zn\(\text{O}_3\) 1.947(2) . ?
Zn\(\text{O}_4\) 1.972(2) . ?
Zn\(\text{N}_4\) 2.053(3) . ?
Zn\(\text{N}_3\) 2.086(3) . ?
Zn\(\text{N}_6\) 2.182(3) . ?
N\(\text{C}_7\) 1.300(4) . ?
N\(\text{C}_8\) 1.415(4) . ?
N\(\text{C}_14\) 1.300(4) . ?
N\(\text{C}_13\) 1.417(4) . ?
N\(\text{C}_46\) 1.292(5) . ?
N\(\text{C}_45\) 1.416(5) . ?
O\(\text{C}_1\) 1.300(4) . ?
O\(\text{C}_2\) 1.288(4) . ?
O\(\text{C}_3\) 1.294(4) . ?
O\(\text{C}_4\) 1.304(4) . ?
C\(\text{C}_6\) 1.434(5) . ?
C\(\text{C}_7\) 1.440(5) . ?
C\(\text{C}_21\) 1.382(5) . ?
C\(\text{C}_22\) 1.406(5) . ?
C\(\text{C}_23\) 1.367(5) . ?
C\(\text{C}_24\) 1.410(5) . ?
C\(\text{C}_25\) 1.428(5) . ?
C\(\text{C}_26\) 1.393(5) . ?
C\(\text{C}_10\) 1.378(5) . ?
C\(\text{C}_11\) 1.391(5) . ?
C\(\text{C}_12\) 1.390(5) . ?
C\(\text{C}_15\) 1.435(5) . ?
C\(\text{C}_16\) 1.406(5) . ?
C\(\text{C}_17\) 1.436(5) . ?
C\(\text{C}_18\) 1.435(5) . ?
C\(\text{C}_19\) 1.392(5) . ?
C\(\text{C}_20\) 1.381(5) . ?
C\(\text{C}_21\) 1.445(5) . ?
C\(\text{C}_22\) 1.524(5) . ?
C\(\text{C}_23\) 1.530(6) . ?
C\(\text{C}_24\) 1.533(6) . ?
C\(\text{C}_25\) 1.537(5) . ?
C\(\text{C}_26\) 1.529(5) . ?
C\(\text{C}_27\) 1.531(5) . ?
C\(\text{C}_28\) 1.536(5) . ?
C\(\text{C}_32\) 1.528(6) . ?
C\(\text{C}_31\) 1.531(6) . ?
C\(\text{C}_30\) 1.544(5) . ?
C\(\text{C}_38\) 1.439(5) . ?
C\(\text{C}_34\) 1.446(5) . ?
C\(\text{C}_35\) 1.387(5) . ?
C\(\text{C}_36\) 1.534(5) . ?
C\(\text{C}_37\) 1.408(5) . ?
O1T' C1T' 1.183(7) . ?
C1T' C2T' 1.455(8) . ?
C1T' C3T' 1.555(12) . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O1 Zn1 O2 94.87(10) . . ?
O1 Zn1 N1 89.17(10) . . ?
O2 Zn1 N1 149.66(11) . . ?
O1 Zn1 N2 161.23(11) . . ?
O2 Zn1 N2 88.22(10) . . ?
N1 Zn1 N2 79.13(11) . . ?
O1 Zn1 N5 96.60(10) . . ?
O2 Zn1 N5 107.02(10) . . ?
N1 Zn1 N5 102.34(10) . . ?
N2 Zn1 N5 100.19(11) . . ?
O3 Zn2 O4 97.12(10) . . ?
O3 Zn2 N4 152.95(11) . . ?
O4 Zn2 N4 88.93(11) . . ?
O3 Zn2 N3 89.34(11) . . ?
O4 Zn2 N3 164.99(11) . . ?
N4 Zn2 N3 79.39(12) . . ?
O3 Zn2 N6 101.88(10) . . ?
O4 Zn2 N6 94.25(10) . . ?
N4 Zn2 N6 103.93(11) . . ?
N3 Zn2 N6 97.67(11) . . ?
C7 N1 C8 121.2(3) . . ?
C7 N1 Zn1 125.3(2) . . ?
C8 N1 Zn1 113.2(2) . . ?
C14 N2 C13 123.0(3) . . ?
C14 N2 Zn1 123.4(2) . . ?
C13 N2 Zn1 112.9(2) . . ?
C39 N3 C40 122.4(3) . . ?
C39 N3 Zn2 125.3(2) . . ?
C40 N3 Zn2 112.2(2) . . ?
C46 N4 C45 121.6(3) . . ?
C46 N4 Zn2 124.9(2) . . ?
C45 N4 Zn2 113.1(2) . . ?
C1 O1 Zn1 131.8(2) . . ?
C20 O2 Zn1 130.5(2) . . ?
C33 O3 Zn2 131.6(2) . . ?
C52 O4 Zn2 131.0(2) . . ?
O1 C1 C6 122.5(3) . . ?
O1 C1 C2 119.0(3) . . ?
C6 C1 C2 118.5(3) . . ?
C3 C2 C1 118.1(3) . . ?
C3 C2 C21 122.2(3) . . ?
C1 C2 C21 119.8(3) . . ?
C2 C3 C4 123.3(3) . . ?
C5 C4 C3 119.3(4) ...
C4 C5 C6 121.0(4) ...
C5 C6 C7 116.3(3) ...
C5 C6 C1 119.8(3) ...
C7 C6 C1 123.9(3) ...
N1 C7 C6 126.6(3) ...
C9 C8 C13 118.6(3) ...
C9 C8 N1 125.0(3) ...
C13 C8 N1 116.3(3) ...
C10 C9 C8 120.6(3) ...
C9 C10 C11 121.7(3) ...
C12 C11 C10 117.7(3) ...
C12 C11 C25 119.3(3) ...
C10 C11 C25 123.0(3) ...
C11 C12 C13 121.7(3) ...
C12 C13 C8 119.6(3) ...
C12 C13 N2 124.9(3) ...
C8 C13 N2 115.5(3) ...
N2 C14 C15 126.0(3) ...
C16 C15 C14 116.5(3) ...
C16 C15 C20 120.0(3) ...
C14 C15 C20 123.3(3) ...
C17 C16 C15 121.0(4) ...
C16 C17 C18 119.2(4) ...
C19 C18 C17 123.4(3) ...
C18 C19 C20 118.0(3) ...
C18 C19 C29 122.0(3) ...
C20 C19 C29 120.0(3) ...
O2 C20 C15 123.0(3) ...
O2 C20 C19 119.3(3) ...
C15 C20 C19 117.7(3) ...
C22 C21 C23 110.6(3) ...
C22 C21 C2 110.2(3) ...
C23 C21 C2 110.1(3) ...
C22 C21 C24 106.7(3) ...
C23 C21 C24 107.4(3) ...
C2 C21 C24 111.8(3) ...
C26 C25 C27 108.5(3) ...
C26 C25 C11 112.3(3) ...
C27 C25 C11 109.5(3) ...
C26 C25 C28 108.6(3) ...
C27 C25 C28 109.2(3) ...
C11 C25 C28 108.6(3) ...
C19 C29 C32 111.1(3) ...
C19 C29 C31 109.7(3) ...
C32 C29 C31 109.6(4) ...
C19 C29 C30 111.4(3) ...
C32 C29 C30 108.7(4) ...
C31 C29 C30 106.2(4) ...
O3 C33 C38 123.1(3) ...
O3 C33 C34 119.0(3) ...
C38 C33 C34 117.9(3) ...
C35 C34 C33 118.4(3) ...
C35 C34 C53 122.1(3) ...
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Torsion</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>C33-C34-C53</td>
<td>119.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34-C35-C36</td>
<td>122.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37-C36-C35</td>
<td>119.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36-C37-C38</td>
<td>121.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37-C38-C39</td>
<td>116.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37-C38-C33</td>
<td>120.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3-C39-C38</td>
<td>126.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41-C40-C45</td>
<td>119.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41-C40-N3</td>
<td>124.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45-C40-N3</td>
<td>115.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42-C41-C40</td>
<td>121.3(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41-C42-C43</td>
<td>118.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41-C42-C57</td>
<td>119.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43-C42-C57</td>
<td>121.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44-C43-C42</td>
<td>121.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43-C44-C45</td>
<td>120.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44-C45-C40</td>
<td>119.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44-C45-N4</td>
<td>124.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40-C45-N4</td>
<td>116.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4-C46-C47</td>
<td>126.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48-C47-C52</td>
<td>119.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48-C47-C46</td>
<td>116.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52-C47-C46</td>
<td>124.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C49-C48-C47</td>
<td>121.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48-C49-C50</td>
<td>119.8(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C51-C50-C49</td>
<td>122.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50-C51-C52</td>
<td>118.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50-C51-C61</td>
<td>120.7(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52-C51-C61</td>
<td>121.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4-C52-C47</td>
<td>121.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4-C52-C51</td>
<td>119.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C47-C52-C51</td>
<td>118.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54-C53-C34</td>
<td>111.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54-C53-C56</td>
<td>107.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34-C53-C56</td>
<td>109.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C54-C53-C55</td>
<td>106.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34-C53-C55</td>
<td>111.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C56-C53-C55</td>
<td>109.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59-C57-C42</td>
<td>113.1(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59-C57-C60</td>
<td>107.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42-C57-C60</td>
<td>108.2(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59-C57-C58</td>
<td>108.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42-C57-C58</td>
<td>108.7(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C60-C57-C58</td>
<td>110.8(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62-C61-C63</td>
<td>107.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62-C61-C51</td>
<td>110.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63-C61-C51</td>
<td>112.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C62-C61-C64</td>
<td>110.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C63-C61-C64</td>
<td>107.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C51-C61-C64</td>
<td>109.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65-P1-C66</td>
<td>97.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C65-P1-C67</td>
<td>95.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C66-P1-C67</td>
<td>96.97(19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C68 N5 C67 111.8(3) . . ?
C68 N5 C70 107.5(3) . . ?
C67 N5 C70 107.9(3) . . ?
C68 N5 Zn1 107.3(2) . . ?
C67 N5 Zn1 108.2(2) . . ?
C70 N5 Zn1 112.1(2) . . ?
C68 N6 C66 111.8(3) . . ?
C68 N6 C69 108.1(3) . . ?
C66 N6 C69 110.4(3) . . ?
C68 N6 Zn2 109.8(2) . . ?
C66 N6 Zn2 111.7(2) . . ?
C69 N6 Zn2 107.4(2) . . ?
C70 N7 C69 108.6(3) . . ?
C70 N7 C65 111.9(3) . . ?
C69 N7 C65 110.9(3) . . ?
N7 C65 P1 113.9(3) . . ?
N6 C66 P1 114.2(3) . . ?
N5 C67 P1 114.3(3) . . ?
N6 C68 N5 113.9(3) . . ?
N7 C69 N6 113.7(3) . . ?
N7 C70 N5 114.0(3) . . ?
C65' P1' C66' 98.0(5) . . ?
C65' P1' C66' 96.5(5) . . ?
C66' P1' C67' 96.6(4) . . ?
C70' N7' C69' 108.6(6) . . ?
C70' N7' C65' 111.0(7) . . ?
C69' N7' C65' 110.5(7) . . ?
N7' C65' P1' 113.8(5) . . ?
O1S C1S C2S 126.1(8) . . ?
O1S C1S C3S 117.9(6) . . ?
C2S C1S C3S 116.0(6) . . ?
O1S' C1S' C2S' 127.4(11) . . ?
O1S' C1S' C3S' 116.8(10) . . ?
C2S' C1S' C3S' 114.1(9) . . ?
O1T C1T C2T 128.9(10) . . ?
O1T C1T C3T 115.8(8) . . ?
C2T C1T C3T 114.1(8) . . ?
O1T C1T' C2T' 128.4(10) . . ?
O1T C1T' C3T' 116.6(8) . . ?
C2T' C1T' C3T' 114.4(8) . . ?
loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion_
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
O1 Zn1 N1 C7 5.9(3) ?
O2 Zn1 N1 C7 -92.3(3) ?
N2 Zn1 N1 C7 -159.3(3) ?
C3 C4 C5 C6 -0.5(6) ?
C4 C5 C6 C1 0.1(6) ?
O1 C1 C6 C5 -178.9(3) ?
C2 C1 C6 C5 1.1(5) ?
O1 C1 C6 C7 -1.7(6) ?
C2 C1 C6 C7 178.3(3) ?
C8 N1 C7 C6 -176.5(3) ?
Zn1 N1 C7 C6 -2.7(5) ?
C5 C6 C7 N1 176.3(4) ?
C1 C6 C7 N1 -0.9(6) ?
C7 N1 C8 C9 -20.0(5) ?
Zn1 N1 C8 C9 165.5(3) ?
C7 N1 C8 C13 161.0(3) ?
Zn1 N1 C8 C13 -13.5(4) ?
C13 C8 C9 C10 -2.3(5) ?
N1 C8 C9 C10 178.7(3) ?
C8 C9 C10 C11 0.6(6) ?
C9 C10 C11 C12 1.1(5) ?
C9 C10 C11 C25 -179.4(3) ?
C10 C11 C12 C13 -1.0(5) ?
C25 C11 C12 C13 179.4(3) ?
C11 C12 C13 C8 -0.7(5) ?
C11 C12 C13 N2 179.5(3) ?
C9 C8 C13 C12 2.3(5) ?
N1 C8 C13 C12 -178.6(3) ?
C9 C8 C13 N2 -177.9(3) ?
N1 C8 C13 N2 1.2(4) ?
C14 N2 C13 C12 1.7(5) ?
Zn1 N2 C13 C12 -168.7(3) ?
C14 N2 C13 C8 -178.1(3) ?
Zn1 N2 C13 C8 11.5(4) ?
C13 N2 C14 C15 176.3(3) ?
Zn1 N2 C14 C15 -14.3(5) ?
N2 C14 C15 C16 177.4(3) ?
N2 C14 C15 C20 -6.9(6) ?
C14 C15 C16 C17 174.8(4) ?
C20 C15 C16 C17 -1.2(6) ?
C15 C16 C17 C18 -3.9(6) ?
C16 C17 C18 C19 1.8(6) ?
C17 C18 C19 C20 5.2(6) ?
C17 C18 C19 C29 -172.6(4) ?
Zn1 O2 C20 C15 9.0(5) ?
Zn1 O2 C20 C19 -172.6(2) ?
C16 C15 C20 O2 -173.6(3) ?
C14 C15 C20 O2 10.8(6) ?
C16 C15 C20 C19 8.0(5) ?
C14 C15 C20 C19 -167.6(3) ?
C18 C19 C20 O2 171.7(3) ?
C29 C19 C20 O2 -10.4(5) ?
C18 C19 C20 C15 -9.9(5) ?
C29 C19 C20 C15 168.1(3) ?
C3 C2 C21 C22 122.7(4) ?
C1 C2 C21 C22 -57.5(4) ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond</th>
<th>Bond</th>
<th>Bond</th>
<th>Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3-C2</td>
<td>C2-C1</td>
<td>C21-C23</td>
<td>-115.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>C1-C2</td>
<td>C2-C1</td>
<td>C21-C23</td>
<td>64.8(4)</td>
<td>?</td>
</tr>
<tr>
<td>C3-C2</td>
<td>C2-C1</td>
<td>C24</td>
<td>4.3(5)</td>
<td>?</td>
</tr>
<tr>
<td>C1-C2</td>
<td>C2-C1</td>
<td>C24</td>
<td>-176.0(3)</td>
<td>?</td>
</tr>
<tr>
<td>C12-C11</td>
<td>C11-C25</td>
<td>C26</td>
<td>174.4(3)</td>
<td>?</td>
</tr>
<tr>
<td>C10-C11</td>
<td>C11-C25</td>
<td>C26</td>
<td>-5.1(5)</td>
<td>?</td>
</tr>
<tr>
<td>C12-C11</td>
<td>C11-C25</td>
<td>C27</td>
<td>53.8(4)</td>
<td>?</td>
</tr>
<tr>
<td>C10-C11</td>
<td>C11-C25</td>
<td>C27</td>
<td>-125.8(4)</td>
<td>?</td>
</tr>
<tr>
<td>C12-C11</td>
<td>C11-C25</td>
<td>C28</td>
<td>-65.5(4)</td>
<td>?</td>
</tr>
<tr>
<td>C10-C11</td>
<td>C11-C25</td>
<td>C28</td>
<td>115.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>C18-C19</td>
<td>C19-C32</td>
<td>C32</td>
<td>-116.6(4)</td>
<td>?</td>
</tr>
<tr>
<td>C20-C19</td>
<td>C19-C32</td>
<td>C32</td>
<td>65.5(5)</td>
<td>?</td>
</tr>
<tr>
<td>C18-C19</td>
<td>C19-C31</td>
<td>C31</td>
<td>122.0(4)</td>
<td>?</td>
</tr>
<tr>
<td>C20-C19</td>
<td>C19-C31</td>
<td>C31</td>
<td>-55.8(5)</td>
<td>?</td>
</tr>
<tr>
<td>C18-C19</td>
<td>C19-C30</td>
<td>C30</td>
<td>4.7(6)</td>
<td>?</td>
</tr>
<tr>
<td>C20-C19</td>
<td>C19-C30</td>
<td>C30</td>
<td>-173.1(4)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2-O3</td>
<td>C33-C38</td>
<td>C38</td>
<td>4.3(5)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2-O3</td>
<td>C33-C34</td>
<td>C34</td>
<td>-175.7(2)</td>
<td>?</td>
</tr>
<tr>
<td>O3-C33</td>
<td>C33-C34</td>
<td>C35</td>
<td>178.3(3)</td>
<td>?</td>
</tr>
<tr>
<td>O3-C33</td>
<td>C33-C34</td>
<td>C35</td>
<td>-1.7(5)</td>
<td>?</td>
</tr>
<tr>
<td>O3-C33</td>
<td>C33-C34</td>
<td>C35</td>
<td>176.1(3)</td>
<td>?</td>
</tr>
<tr>
<td>C33-C34</td>
<td>C34-C35</td>
<td>C36</td>
<td>0.6(5)</td>
<td>?</td>
</tr>
<tr>
<td>C33-C34</td>
<td>C34-C35</td>
<td>C36</td>
<td>-177.1(3)</td>
<td>?</td>
</tr>
<tr>
<td>C34-C35</td>
<td>C35-C36</td>
<td>C37</td>
<td>1.3(5)</td>
<td>?</td>
</tr>
<tr>
<td>C35-C36</td>
<td>C36-C37</td>
<td>C38</td>
<td>-2.2(5)</td>
<td>?</td>
</tr>
<tr>
<td>C35-C36</td>
<td>C36-C37</td>
<td>C38</td>
<td>177.7(3)</td>
<td>?</td>
</tr>
<tr>
<td>C35-C36</td>
<td>C36-C37</td>
<td>C38</td>
<td>1.1(5)</td>
<td>?</td>
</tr>
<tr>
<td>O3-C33</td>
<td>C33-C38</td>
<td>C37</td>
<td>0.9(5)</td>
<td>?</td>
</tr>
<tr>
<td>O3-C33</td>
<td>C33-C38</td>
<td>C37</td>
<td>-179.1(3)</td>
<td>?</td>
</tr>
<tr>
<td>C34-C33</td>
<td>C33-C38</td>
<td>C37</td>
<td>4.6(5)</td>
<td>?</td>
</tr>
<tr>
<td>C34-C33</td>
<td>C33-C38</td>
<td>C37</td>
<td>-175.4(3)</td>
<td>?</td>
</tr>
<tr>
<td>C40-N3</td>
<td>C39-C38</td>
<td>C38</td>
<td>176.1(3)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2-N3</td>
<td>C39-C38</td>
<td>C38</td>
<td>1.1(5)</td>
<td>?</td>
</tr>
<tr>
<td>C37-C38</td>
<td>C38-N3</td>
<td>C39</td>
<td>176.3(3)</td>
<td>?</td>
</tr>
<tr>
<td>C37-C38</td>
<td>C38-N3</td>
<td>-7.2(6)</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>C39-N3</td>
<td>C40-C41</td>
<td>C41</td>
<td>18.9(5)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2-N3</td>
<td>C40-C41</td>
<td>C41</td>
<td>-165.4(3)</td>
<td>?</td>
</tr>
<tr>
<td>Zn2-N3</td>
<td>C40-C41</td>
<td>C41</td>
<td>13.4(4)</td>
<td>?</td>
</tr>
<tr>
<td>C45-C40</td>
<td>C40-C41</td>
<td>C42</td>
<td>1.5(5)</td>
<td>?</td>
</tr>
<tr>
<td>N3-C40</td>
<td>C40-C41</td>
<td>C42</td>
<td>1.2(5)</td>
<td>?</td>
</tr>
<tr>
<td>C40-C41</td>
<td>C42-C43</td>
<td>C43</td>
<td>2.8(6)</td>
<td>?</td>
</tr>
<tr>
<td>C40-C41</td>
<td>C42-C57</td>
<td>C57</td>
<td>-179.8(3)</td>
<td>?</td>
</tr>
<tr>
<td>C41-C42</td>
<td>C42-C43</td>
<td>C44</td>
<td>1.4(6)</td>
<td>?</td>
</tr>
<tr>
<td>C57-C42</td>
<td>C42-C43</td>
<td>C44</td>
<td>178.4(4)</td>
<td>?</td>
</tr>
<tr>
<td>C42-C43</td>
<td>C43-C44</td>
<td>C45</td>
<td>1.3(6)</td>
<td>?</td>
</tr>
<tr>
<td>C43-C44</td>
<td>C44-C45</td>
<td>C40</td>
<td>-2.6(5)</td>
<td>?</td>
</tr>
<tr>
<td>C43-C44</td>
<td>C44-C45</td>
<td>N4</td>
<td>-179.4(3)</td>
<td>?</td>
</tr>
<tr>
<td>C41-C40</td>
<td>C40-C45</td>
<td>C44</td>
<td>1.2(5)</td>
<td>?</td>
</tr>
<tr>
<td>N3-C40</td>
<td>C40-C45</td>
<td>C44</td>
<td>177.7(3)</td>
<td>?</td>
</tr>
<tr>
<td>C41-C40</td>
<td>C40-C45</td>
<td>N4</td>
<td>178.4(3)</td>
<td>?</td>
</tr>
<tr>
<td>N3-C40</td>
<td>C40-N4</td>
<td>C45</td>
<td>-0.5(5)</td>
<td>?</td>
</tr>
<tr>
<td>C46-N4</td>
<td>C45-C44</td>
<td>C44</td>
<td>-22.9(5)</td>
<td>?</td>
</tr>
</tbody>
</table>
O4 Zn2 N6 C68 66.7(2) ?
N4 Zn2 N6 C68 -23.2(3) ?
N3 Zn2 N6 C68 -104.1(2) ?
O3 Zn2 N6 C66 -70.5(2) ?
O4 Zn2 N6 C66 -168.7(2) ?
N4 Zn2 N6 C66 101.4(2) ?
N3 Zn2 N6 C66 20.5(3) ?
O3 Zn2 N6 C69 49.0(2) ?
O4 Zn2 N6 C69 -49.2(2) ?
N4 Zn2 N6 C69 -139.1(2) ?
N3 Zn2 N6 C69 140.0(2) ?
C70 N7 C65 P1 60.9(4) ?
C69 N7 C65 P1 -60.6(4) ?
C66 P1 C65 N7 48.4(3) ?
C67 P1 C65 N7 -49.4(3) ?
C68 N6 C66 P1 -60.3(4) ?
C69 N6 C66 P1 60.1(4) ?
Zn2 N6 C66 P1 176.18(18) ?
C65 P1 C66 N6 -49.1(3) ?
C67 P1 C66 N6 47.6(3) ?
C68 N5 C67 P1 58.2(4) ?
C70 N5 C67 P1 -61.1(3) ?
Zn1 N5 C67 P1 176.22(18) ?
C65 P1 C67 N5 51.0(3) ?
C66 P1 C67 N5 -46.8(3) ?
C66 N6 C68 N5 66.3(4) ?
C69 N6 C68 N5 -55.5(4) ?
Zn2 N6 C68 N5 -169.1(2) ?
C70 N5 C68 N6 65.3(4) ?
C70 N5 C68 N6 55.5(4) ?
Zn1 N5 C68 N6 176.3(2) ?
C70 N7 C69 N6 -56.7(4) ?
C65 N7 C69 N6 66.7(4) ?
C68 N6 C69 N7 55.8(4) ?
C66 N6 C69 N7 -66.8(4) ?
Zn2 N6 C69 N7 172.8(3) ?
C69 N7 C70 N5 57.2(4) ?
C65 N7 C70 N5 -65.6(4) ?
C68 N5 C70 N7 -56.3(4) ?
C67 N5 C70 N7 65.6(4) ?
Zn1 N5 C70 N7 -174.0(2) ?
C70' N7' C65' P1' 60.7(9) ?
C69' N7' C65' P1' -59.8(8) ?
C66' P1' C65' N7' 47.9(8) ?
C70' P1' C65' N7' -49.8(8) ?

_data_mo_da635_0m

_diffrn_measured_fraction_theta_max 0.996
_diffrn_reflns_theta_full 25.91
_diffrn_measured_fraction_theta_full 0.996
_refine_diff_density_max 0.671
_refine_diff_density_min -0.824
_refine_diff_density_rms 0.078

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
_database_code_depnum_ccdc_archive 'CCDC 893441'
#TrackingRef 'mo_d635_0mX.cif'
_audit_creation_method SHELXL-97
_chemical_name_systematic
_
_chemical_name_common ??
_chemical_melting_point ??
_chemical_formula_moiety ??
_chemical_formula_sum 'C70.50 H88 Cl N7 O4 P Zn2'
_chemical_formula_weight 1294.64
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Zn Zn 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Cl Cl 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
loop_
_symmetry_cell_setting Monoclinic
_symmetry_space_group_name_H-M P2(1)/c
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
' -x, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y-1/2, z-1/2'
_cell_length_a 14.3779(7)
_cell_length_b 30.8290(15)
_cell_length_c 17.5123(8)
_cell_angle_alpha 90.00
_cell_angle_beta 110.964(2)
_cell_angle_gamma 90.00
_cell_volume 7248.6(6)
_cell_formula_units_Z 4
_cell_measurement_temperature 100(2)
_cell_measurement_reflms_used 9983
_cell_measurement_theta_min 2.34
_cell_measurement_theta_max 25.22
_exptl_crystal_description block
_exptl_crystal_colour orange
_exptl_crystal_size_max 0.35
_exptl_crystal_size_mid 0.10
_exptl_crystal_size_min 0.10
_exptl_crystal_density_meas ??
_exptl_crystal_density_diffm 1.186
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 2736
_exptl_absorpt_coefficient_mu 0.769
_exptl_absorpt_correction_type empirical
_exptl_absorpt_correction_T_min 0.7745
_exptl_absorpt_correction_T_max 0.9270
_exptl_absorpt_process_details
;
SADABS Version 2008/1 Bruker-Nonius
;
_exptl_special_details
;
It should be noted that the esd's of the cell dimensions are probably too low;
they should be multiplied by a factor of 2 to 10
;
_diffrn_ambient_temperature 100(2)
_diffrn_measurement_specimen_suppport 'magnetic support whith MicroMount'
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
_diffrn_source 'Micorfocus source E025 IuS'
_diffrn_source_type 'Bruker APEX DUO'
_diffrn_source_power 50
_diffrn_source_current 0.6
_diffrn_source_size '0.2 mm x 0.2 mm fine focus'
_diffrn_radiation_monochromator 'Quazar MX Multilayer Optics'
_diffrn_detector_type '4K CCD area detector APEX II'
_diffrn_measurement_device_type 'APEX DUO Kappa 4-axis goniometer'
_diffrn_measurement_method
;
Fullsphere data collection, phi and omega scans
;
_diffrn_detector_area_resol_mean 512
_diffrn_reflns_number 73204
_diffrn_reflns_av_R_equivalents 0.0410
_diffrn_reflns_av_sigmaI/netI 0.0396
_diffrn_reflns_limit_h_min -18
_diffrn_reflns_limit_h_max 18
_diffrn_reflns_limit_k_min -39
_diffrn_reflns_limit_k_max 39
_diffrn_reflns_limit_l_min -20
_diffrn_reflns_limit_l_max 21
_diffrn_reflns_theta_min 1.41
_diffrn_reflns_theta_max 26.80
_reflns_number_total 15211
_reflns_number_gt 11757
_reflns_threshold_expression >2sigma(I)
_computing_data_collection 'Bruker APEX2 v2011.4-0'
_computing_cell_refinement 'Bruker APEX2 v2011.4-0'
_computing_data_reduction 'Bruker SAINT V7.60A'
_computing_structure_solution Sir2011
_computing_structure_refinement 'SHELXS-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'
_refine_special_details
;
Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

; _refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc $w=1/[\sigma^2(Fo^2)+(0.1170P)^2+7.3184P]$ where $P=(Fo^2+2Fc^2)/3$'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment noref
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 15211
_refine_ls_number_parameters 944
_refine_ls_number_restraints 515
_refine_ls_R_factor_all 0.0751
_refine_ls_R_factor_gt 0.0588
_refine_ls_wR_factor_ref 0.1907
_refine_ls_wR_factor_gt 0.1798
_refine_ls_goodness_of_fit_ref 1.045
_refine_ls_restrained_S_all 1.053
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000

SQUEEZE RESULTS (APPEND TO CIF)
Note: Data are Listed for all Voids in the P1 Unit Cell
i.e. Centre of Gravity, Solvent Accessible Volume,
Recovered number of Electrons in the Void and
Details about the Squeezed Material
loop_
_platon_squeeze_void_nr
_platon_squeeze_void_average_x
_platon_squeeze_void_average_y
_platon_squeeze_void_average_z
_platon_squeeze_void_volume
_platon_squeeze_void_count_electrons
_platon_squeeze_void_content
1 0.500 0.000 1.000 381 87 ' '
2 0.500 0.500 0.500 381 87 ' '

_platon_squeeze_details
;
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
atom_site_U_iso_or_equiv
atom_site_adp_type
atom_site_occupancy
atom_site_symmetry_multiplicity
atom_site_calc_flag
atom_site_refinement_flags
atom_site_disorder_assembly
atom_site_disorder_group

Zn1 Zn 0.16840(3) 0.177904(12) 0.24194(2) 0.02236(11) Uani 1 1 d . . .
Zn2 Zn -0.02897(3) 0.157831(12) -0.10759(2) 0.02674(12) Uani 1 1 d . . .
N1 N 0.0669(2) 0.16960(9) 0.30065(17) 0.0243(6) Uani 1 1 d . . .
N2 N 0.0779(2) 0.23118(9) 0.19959(16) 0.0258(6) Uani 1 1 d . B .
N3 N -0.02897(3) 0.157831(12) -0.10759(2) 0.02674(12) Uani 1 1 d . . .
N4 N -0.02897(3) 0.157831(12) -0.10759(2) 0.02674(12) Uani 1 1 d . B .
O1 O 0.26830(16) 0.14769(8) 0.33192(14) 0.0273(5) Uani 1 1 d . . .
O2 O 0.25842(17) 0.20019(7) 0.18836(14) 0.0276(5) Uani 1 1 d . . .
O3 O -0.12280(18) 0.18583(7) -0.06524(15) 0.0294(5) Uani 1 1 d . . .
O4 O -0.12838(19) 0.11895(8) -0.18081(15) 0.0355(6) Uani 1 1 d . . .
C1 C 0.2570(2) 0.12172(10) 0.38596(19) 0.0230(7) Uani 1 1 d . . .
C2 C 0.3401(2) 0.09645(10) 0.43669(19) 0.0234(7) Uani 1 1 d . . .
C3 C 0.3274(2) 0.06929(11) 0.4945(2) 0.0282(7) Uani 1 1 d . . .
H3 H 0.3832 0.0525 0.5270 0.034 Uiso 1 1 calc R B .
C4 C 0.2384(3) 0.06428(11) 0.5089(2) 0.0289(7) Uani 1 1 d . A .
C5 C 0.1656(2) 0.11718(10) 0.4000(2) 0.0246(7) Uani 1 1 d . . .
C6 C 0.0785(2) 0.14289(11) 0.3596(2) 0.0258(7) Uani 1 1 d . . .
H6 H 0.0244 0.1398 0.3782 0.031 Uiso 1 1 calc R B .
C7 C -0.0187(2) 0.19610(11) 0.2683(2) 0.0254(7) Uani 1 1 d . . .
C8 C -0.1059(3) 0.19102(12) 0.2841(2) 0.0312(8) Uani 1 1 d . . .
H8 H -0.1129 0.1671 0.3159 0.037 Uiso 1 1 calc R . .
C9 C -0.1833(3) 0.22069(14) 0.2537(2) 0.0367(9) Uani 1 1 d . . .
H9 H -0.2418 0.2177 0.2664 0.044 Uiso 1 1 calc R B .
C10 C -0.1748(3) 0.25472(13) 0.2045(2) 0.0402(9) Uani 1 1 d . . .
H10 H -0.2272 0.2752 0.1841 0.048 Uiso 1 1 calc R . .
C11 C -0.0904(3) 0.25868(12) 0.1855(2) 0.0347(8) Uani 1 1 d . . .
H11 H -0.0861 0.2814 0.1503 0.042 Uiso 1 1 calc R B .
C12 C -0.0110(2) 0.22995(11) 0.2169(2) 0.0261(7) Uani 1 1 d . B .
C13 C 0.1029(3) 0.26548(11) 0.1682(2) 0.0293(7) Uani 1 1 d . . .
H13 H 0.0591 0.2896 0.1582 0.035 Uiso 1 1 calc R B .
C14 C 0.1897(3) 0.27052(11) 0.1474(2) 0.0317(8) Uani 1 1 d . . .
C15 C 0.2005(3) 0.31180(12) 0.1151(2) 0.0364(8) Uani 1 1 d . . .
H15 H 0.1497 0.3329 0.1064 0.044 Uiso 1 1 calc R B .
C16 C 0.2817(3) 0.32156(13) 0.0966(2) 0.0412(9) Uani 1 1 d . . .
H16 H 0.2878 0.3492 0.0751 0.049 Uiso 1 1 calc R . .
C17 C 0.3568(3) 0.29027(13) 0.1097(2) 0.0411(9) Uani 1 1 d . . .
H17 H 0.4136 0.2974 0.0966 0.049 Uiso 1 1 calc R B .
C18 C 0.3514(3) 0.24951(12) 0.1410(2) 0.0339(8) Uani 1 1 d . . .
C19 C 0.2647(3) 0.23849(12) 0.1595(2) 0.0299(7) Uani 1 1 d . . .
C20 C 0.4426(2) 0.10154(10) 0.4281(2) 0.0255(7) Uani 1 1 d . . .
C21 C 0.4811(3) 0.14775(11) 0.4543(2) 0.0323(8) Uani 1 1 d . . .
H21 A H 0.4342 0.1688 0.4190 0.048 Uiso 1 1 calc R . .
H21 B H 0.5464 0.1514 0.4493 0.048 Uiso 1 1 calc R .
H21 C H 0.4872 0.1525 0.5112 0.048 Uiso 1 1 calc R .
C22 C 0.4368(3) 0.09293(12) 0.3404(2) 0.0318(8) Uani 1 1 d . . .
H22 A H 0.4135 0.0632 0.3248 0.048 Uiso 1 1 calc R . .
H22B H 0.5030 0.0966 0.3372 0.048 Uiso 1 1 calc R . .
H22C H 0.3903 0.1135 0.3033 0.048 Uiso 1 1 calc R . .
C23 C 0.5192(3) 0.06983(12) 0.4831(2) 0.0329(8) Uani 1 1 d . .
H23A H 0.5230 0.0734 0.5397 0.049 Uiso 1 1 calc R . .
H23B H 0.5846 0.0758 0.4797 0.049 Uiso 1 1 calc R . .
H23C H 0.4992 0.0401 0.5397 0.049 Uiso 1 1 calc R . .
C24 C 0.2298(3) 0.03520(12) 0.5777(2) 0.0379(8) Uani 0.60 1 d PDU A 1
C25 C 0.1395(5) 0.0053(3) 0.5425(6) 0.0481(19) Uani 0.60 1 d PDU A 1
H25A H 0.0795 0.0088 0.5170 0.072 Uiso 0.60 1 calc PR A 1
H25B H 0.1229 -0.0022 0.5571 0.074 Uiso 0.60 1 calc PR A 1
H25C H 0.1008 0.0041 0.5048 0.074 Uiso 0.60 1 calc PR A 1
C26 C 0.2131(6) 0.0632(2) 0.6441(4) 0.0443(16) Uani 0.60 1 d PDU A 1
H26A H 0.2681 0.0838 0.6656 0.066 Uiso 0.60 1 calc PR A 1
H26B H 0.2103 0.0445 0.6885 0.066 Uiso 0.60 1 calc PR A 1
H26C H 0.1502 0.0791 0.6206 0.066 Uiso 0.60 1 calc PR A 1
C27 C 0.3221(5) 0.0075(2) 0.5919(8) 0.050(2) Uani 0.40 1 d PDU A 2
C27' C 0.3013(8) -0.0029(3) 0.5919(8) 0.050(2) Uani 0.40 1 d PDU A 2
C28 C 0.4353(3) 0.21604(14) 0.1546(2) 0.0414(9) Uani 1 1 d . .
C29 C 0.5217(3) 0.23528(18) 0.1335(3) 0.0612(14) Uani 1 1 d . .
H29A H 0.4977 0.2436 0.0756 0.092 Uiso 1 1 calc R . .
H29B H 0.5747 0.2136 0.1439 0.092 Uiso 1 1 calc R . .
H29C H 0.5479 0.2609 0.1674 0.092 Uiso 1 1 calc R . .
C30 C 0.4772(3) 0.20206(16) 0.2446(3) 0.0504(11) Uani 1 1 d . .
H30A H 0.5018 0.2276 0.2793 0.076 Uiso 1 1 calc R . .
H30B H 0.5321 0.1816 0.2529 0.076 Uiso 1 1 calc R . .
H30C H 0.4246 0.1881 0.2590 0.076 Uiso 1 1 calc R . .
C31 C 0.3964(3) 0.17693(15) 0.1546(2) 0.0414(9) Uani 1 1 d . .
C32 C -0.1296(3) 0.22638(10) -0.04731(19) 0.0265(7) Uani 1 1 d . .
C33 C -0.2205(3) 0.24167(11) -0.0385(2) 0.0280(7) Uani 1 1 d . .
C34 C -0.2267(3) 0.28462(11) -0.0213(2) 0.0291(7) Uani 1 1 d . .
H34 H -0.2876 0.29477 -0.0180 0.035 Uiso 1 1 calc RB .
C35 C -0.1493(3) 0.31511(11) -0.0080(2) 0.0281(7) Uani 1 1 d . .
C36 C -0.0636(3) 0.30023(11) -0.0162(2) 0.0271(7) Uani 1 1 d . .
H36 H -0.0099 0.3199 -0.0075 0.033 Uiso 1 1 calc RB .
C37 C -0.0521(2) 0.25691(10) -0.0369(2) 0.0253(7) Uani 1 1 d . .
C38 C 0.0349(3) 0.24834(11) -0.0559(2) 0.0271(7) Uani 1 1 d . .
<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Uiso</th>
<th>Calc/Pr</th>
<th>Index</th>
<th>PDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>H62A</td>
<td>H</td>
<td>-0.4080</td>
<td>0.1111</td>
<td>-0.2839</td>
<td>0.065</td>
<td>Uiso 1 1</td>
<td>calc R . .</td>
<td></td>
</tr>
<tr>
<td>H62B</td>
<td>H</td>
<td>-0.2987</td>
<td>0.1310</td>
<td>-0.2614</td>
<td>0.065</td>
<td>Uiso 1 1</td>
<td>calc R . .</td>
<td></td>
</tr>
<tr>
<td>H62C</td>
<td>H</td>
<td>-0.3730(4)</td>
<td>0.02795(14)</td>
<td>-0.0289(3)</td>
<td>0.0563(12)</td>
<td>Uani 1 1</td>
<td>d . .</td>
<td></td>
</tr>
<tr>
<td>C63</td>
<td>C</td>
<td>-0.3489</td>
<td>0.1049</td>
<td>-0.3451</td>
<td>0.065</td>
<td>Uiso 1 1</td>
<td>calc R . .</td>
<td></td>
</tr>
<tr>
<td>H63A</td>
<td>H</td>
<td>-0.4082</td>
<td>0.0235</td>
<td>-0.3381</td>
<td>0.084</td>
<td>Uiso 1 1</td>
<td>calc R . .</td>
<td></td>
</tr>
<tr>
<td>H63B</td>
<td>H</td>
<td>-0.3495</td>
<td>0.0011</td>
<td>-0.2501</td>
<td>0.084</td>
<td>Uiso 1 1</td>
<td>calc R . .</td>
<td></td>
</tr>
<tr>
<td>C64</td>
<td>C</td>
<td>0.1188(6)</td>
<td>0.0888(2)</td>
<td>-0.0028(4)</td>
<td>0.0388(12)</td>
<td>Uani 0.60 1 d PDU B 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H64A</td>
<td>H</td>
<td>0.0190</td>
<td>0.1769</td>
<td>0.0701</td>
<td>0.033</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H64B</td>
<td>H</td>
<td>0.1283</td>
<td>0.1665</td>
<td>0.0658</td>
<td>0.033</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>N</td>
<td>0.1117(5)</td>
<td>0.12565(18)</td>
<td>0.1510(6)</td>
<td>0.0265(8)</td>
<td>Uani 0.60 1</td>
<td>d PDU B 1</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>N</td>
<td>0.0386(5)</td>
<td>0.1181(2)</td>
<td>0.0012(7)</td>
<td>0.0313(9)</td>
<td>Uani 0.60 1</td>
<td>d PDU B 1</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>N</td>
<td>0.1799(3)</td>
<td>0.07129(17)</td>
<td>0.0797(3)</td>
<td>0.0399(10)</td>
<td>Uani 0.60 1</td>
<td>d PDU B 1</td>
<td></td>
</tr>
<tr>
<td>C64'</td>
<td>C</td>
<td>0.066(2)</td>
<td>0.1472(7)</td>
<td>0.0717(10)</td>
<td>0.0279(13)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>H64C</td>
<td>H</td>
<td>0.0067</td>
<td>0.1639</td>
<td>0.0707</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>H64D</td>
<td>H</td>
<td>0.1145</td>
<td>0.1681</td>
<td>0.0647</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>C65</td>
<td>C</td>
<td>0.1546</td>
<td>0.0203</td>
<td>0.1412</td>
<td>0.050</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H65A</td>
<td>H</td>
<td>0.1626</td>
<td>0.1049</td>
<td>-0.0255</td>
<td>0.047</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>N</td>
<td>0.0355(7)</td>
<td>0.1172(4)</td>
<td>0.0011(10)</td>
<td>0.0355(12)</td>
<td>Uani 0.60 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>N</td>
<td>0.1108(8)</td>
<td>0.1267(3)</td>
<td>0.1531(9)</td>
<td>0.0266(10)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N7'</td>
<td>N</td>
<td>-0.0191(4)</td>
<td>0.0726(2)</td>
<td>0.0951(4)</td>
<td>0.0420(12)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>C64'</td>
<td>C</td>
<td>0.066(2)</td>
<td>0.1472(7)</td>
<td>0.0717(10)</td>
<td>0.0279(13)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>H64C</td>
<td>H</td>
<td>0.0067</td>
<td>0.1639</td>
<td>0.0707</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>H64D</td>
<td>H</td>
<td>0.1145</td>
<td>0.1681</td>
<td>0.0647</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>C65</td>
<td>C</td>
<td>0.1546</td>
<td>0.0203</td>
<td>0.1412</td>
<td>0.050</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H65A</td>
<td>H</td>
<td>0.1626</td>
<td>0.1049</td>
<td>-0.0255</td>
<td>0.047</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P</td>
<td>0.1686(3)</td>
<td>0.05251(10)</td>
<td>0.08777(18)</td>
<td>0.0539(9)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>N</td>
<td>0.0355(7)</td>
<td>0.1172(4)</td>
<td>0.0011(10)</td>
<td>0.0321(11)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>N</td>
<td>0.1108(8)</td>
<td>0.1267(3)</td>
<td>0.1531(9)</td>
<td>0.0266(10)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N7'</td>
<td>N</td>
<td>-0.0191(4)</td>
<td>0.0726(2)</td>
<td>0.0951(4)</td>
<td>0.0420(12)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>C64'</td>
<td>C</td>
<td>0.066(2)</td>
<td>0.1472(7)</td>
<td>0.0717(10)</td>
<td>0.0279(13)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>H64C</td>
<td>H</td>
<td>0.0067</td>
<td>0.1639</td>
<td>0.0707</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>H64D</td>
<td>H</td>
<td>0.1145</td>
<td>0.1681</td>
<td>0.0647</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>C65</td>
<td>C</td>
<td>0.1546</td>
<td>0.0203</td>
<td>0.1412</td>
<td>0.050</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>H65A</td>
<td>H</td>
<td>0.1626</td>
<td>0.1049</td>
<td>-0.0255</td>
<td>0.047</td>
<td>Uiso 0.60 1</td>
<td>calc PR B 1</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P</td>
<td>0.1686(3)</td>
<td>0.05251(10)</td>
<td>0.08777(18)</td>
<td>0.0539(9)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N5'</td>
<td>N</td>
<td>0.0355(7)</td>
<td>0.1172(4)</td>
<td>0.0011(10)</td>
<td>0.0321(11)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N6'</td>
<td>N</td>
<td>0.1108(8)</td>
<td>0.1267(3)</td>
<td>0.1531(9)</td>
<td>0.0266(10)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>N7'</td>
<td>N</td>
<td>-0.0191(4)</td>
<td>0.0726(2)</td>
<td>0.0951(4)</td>
<td>0.0420(12)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>C64'</td>
<td>C</td>
<td>0.066(2)</td>
<td>0.1472(7)</td>
<td>0.0717(10)</td>
<td>0.0279(13)</td>
<td>Uani 0.40 1</td>
<td>d PDU B 2</td>
<td></td>
</tr>
<tr>
<td>H64C</td>
<td>H</td>
<td>0.0067</td>
<td>0.1639</td>
<td>0.0707</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
<tr>
<td>H64D</td>
<td>H</td>
<td>0.1145</td>
<td>0.1681</td>
<td>0.0647</td>
<td>0.033</td>
<td>Uiso 0.40 1</td>
<td>calc PR B 2</td>
<td></td>
</tr>
</tbody>
</table>

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
H1X2 H -0.2556 0.4268 -0.3728 0.073 Uiso 0.25 1 calc PR C 1
C11X Cl -0.1445(17) 0.4350(8) -0.2406(12) 0.0559(7) Uani 0.25 1 d PDU C 1
C12X Cl -0.3425(6) 0.3936(3) -0.3000(5) 0.121(3) Uani 0.25 1 d PDU C 1
C1Z C -0.1906(14) 0.4668(5) -0.3277(8) 0.061(3) Uani 0.25 1 d PDU D 2
H1Z1 H -0.2397 0.4874 -0.3206 0.073 Uiso 0.25 1 calc PR D 2
H1Z2 H -0.1364 0.4840 -0.3355 0.073 Uiso 0.25 1 calc PR D 2
C11Z Cl -0.2493(6) 0.4348(3) -0.4163(5) 0.122(3) Uani 0.25 1 d PDU D 2
C1Z1 Zn 0.02120(19) 0.0268(2) 0.0183(2) 0.00253(14) 0.00605(15) 0.00031(14)
C1Z2 Zn 0.0337(2) 0.0255(2) 0.0185(2) -0.00037(14) 0.00626(16) 0.00597(15)
N1 0.0211(13) 0.0297(14) 0.0204(14) 0.0019(11) 0.0054(11) 0.0005(11)
N2 0.0317(15) 0.0266(14) 0.0212(14) 0.0046(11) 0.0105(12) 0.0080(11)
N3 0.0439(17) 0.0330(15) 0.0241(15) 0.0000(12) 0.0100(13) 0.0098(13)
O1 0.0214(11) 0.0349(12) 0.0227(12) 0.0072(10) 0.0044(9) -0.0010(9)
O2 0.0278(12) 0.0311(12) 0.0260(12) 0.0048(10) 0.0122(10) -0.0005(9)
O3 0.0368(13) 0.0242(11) 0.0280(13) 0.0015(11) 0.0128(11) 0.0040(9)
O4 0.0378(14) 0.0317(13) 0.0286(13) -0.0066(11) 0.0015(11) 0.0026(11)
N1 0.0229(15) 0.0257(15) 0.0184(15) -0.0004(12) 0.0048(12) -0.0015(12)
C2 0.0218(15) 0.0257(15) 0.0217(16) -0.0006(13) 0.0066(13) -0.0019(12)
C3 0.0263(17) 0.0279(16) 0.0276(18) 0.0022(14) 0.0065(14) 0.0016(13)
C4 0.0317(18) 0.0271(16) 0.0302(18) 0.0026(14) 0.0139(15) 0.0012(13)
C5 0.0231(16) 0.0272(16) 0.0222(16) 0.0003(13) 0.0066(13) -0.0006(12)
C6 0.0246(16) 0.0307(16) 0.0223(17) 0.0002(13) 0.0085(13) -0.0028(13)
C7 0.0219(16) 0.0323(17) 0.0189(16) -0.0021(13) 0.0036(13) 0.0034(13)
C8 0.0252(17) 0.0424(19) 0.0250(18) 0.0042(15) 0.0077(14) 0.0025(14)
C9 0.0259(18) 0.058(2) 0.0281(19) 0.0065(17) 0.0113(15) 0.0097(16)
C10 0.0322(19) 0.049(2) 0.038(2) 0.0083(18) 0.0098(17) 0.0164(17)
C11 0.0334(19) 0.0377(19) 0.033(2) 0.0100(16) 0.0123(16) 0.0087(15)
C12 0.0242(16) 0.0323(17) 0.0210(16) -0.0012(13) 0.0072(13) 0.0036(13)
C13 0.0309(17) 0.0258(16) 0.0277(18) 0.0019(14) 0.0062(14) 0.0007(13)
C14 0.0323(18) 0.0330(18) 0.0272(18) 0.0036(14) 0.0076(15) -0.0029(14)
C15 0.042(2) 0.0323(18) 0.034(2) 0.0048(15) 0.0125(17) -0.0025(15)
C16 0.048(2) 0.036(2) 0.036(2) 0.0086(17) 0.0117(18) -0.0120(17)
C17 0.040(2) 0.050(2) 0.035(2) 0.0082(18) 0.0148(17) -0.0101(18)
C18 0.0319(18) 0.042(2) 0.0279(18) 0.0074(15) 0.0108(15) -0.0036(15)
C19 0.0301(18) 0.0368(18) 0.0213(17) 0.0002(14) 0.0074(14) -0.0026(14)
C20 0.0203(15) 0.0261(15) 0.0267(17) 0.0002(13) 0.0043(13) -0.0006(12)
C21 0.0228(17) 0.0285(17) 0.039(2) -0.0030(15) 0.0030(15) -0.0014(13)
C22 0.0268(17) 0.0407(19) 0.0286(18) -0.0056(15) 0.0108(14) -0.0049(14)
C23 0.0253(17) 0.0355(18) 0.035(2) 0.0043(15) 0.0072(15) 0.0033(14)
C24 0.0457(17) 0.0330(16) 0.0393(17) 0.0127(13) 0.0203(14) 0.0042(13)
C25 0.051(3) 0.042(4) 0.048(4) 0.014(3) 0.015(3) -0.005(3)
C26 0.060(4) 0.040(3) 0.037(3) 0.014(2) 0.022(3) 0.013(3)
C27 0.045(3) 0.034(3) 0.041(4) 0.012(3) 0.017(3) 0.002(3)
C24' 0.0457(17) 0.0330(16) 0.0393(17) 0.0127(13) 0.0203(14) 0.0042(13)

http://www.rsc.org/suppdata/dt/c3/c3dt00078h/c3dt00078h.txt[10-3-2014 11:33:01]
C65' 0.040(2) 0.026(2) 0.020(2) 0.005(2) 0.002(2) -0.003(2)
C66' 0.048(2) 0.027(2) 0.022(2) 0.000(2) -0.001(2) -0.002(2)
C67' 0.051(2) 0.031(2) 0.022(2) -0.007(2) 0.002(2) 0.010(2)
C68' 0.042(2) 0.029(2) 0.019(2) 0.003(2) 0.006(2) 0.010(2)
C69' 0.073(3) 0.030(2) 0.027(3) -0.001(2) -0.008(3) 0.006(2)
C70 0.0329(18) 0.0274(16) 0.0283(18) 0.0018(14) 0.0116(15) 0.0013(13)
C1X 0.049(8) 0.033(8) 0.093(14) -0.001(7) 0.016(6) 0.027(6)
C11X 0.0676(18) 0.0488(12) 0.0763(17) -0.0124(12) 0.0560(12) -0.0077(12)
C12X 0.093(5) 0.158(8) 0.095(5) -0.019(5) 0.015(4) -0.073(5)
C1Z 0.060(6) 0.058(5) 0.064(4) -0.021(3) 0.022(4) 0.001(4)
C11Z 0.091(5) 0.172(8) 0.115(4) -0.110(5) 0.050(4) -0.045(5)
C12Z 0.0676(18) 0.0488(12) 0.0763(17) -0.0124(12) 0.0560(12) -0.0077(12)

_all esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

loop__geom_bond_atom_site_label_1__geom_bond_atom_site_label_2__geom_bond_distance__geom_bond_site_symmetry_2__geom_bond_publ_flag__Zn1 O1 1.948(2).?
Zn1 O2 1.974(2).?
Zn1 N2 2.062(3).?
Zn1 N1 2.079(3).?
Zn1 N6' 2.163(8).?
Zn1 N5 2.206(6).?
Zn2 O4 1.953(2).?
Zn2 O3 1.957(2).?
Zn2 N3 2.053(3).?
Zn2 N4 2.071(3).?
Zn2 N6 2.179(6).?
Zn2 N5' 2.189(9).?
N1 C6 1.284(4).?
N1 C7 1.416(4).?
N2 C13 1.301(4).?
N2 C12 1.415(4).?
N3 C38 1.294(4).?
N3 C39 1.417(4).?
N4 C45 1.302(5).?
N4 C44 1.423(5).?
O1 C1 1.293(4).?
O2 C19 1.300(4).?
O3 C32 1.301(4).?
O4 C47 1.289(4).?
C1 C5 1.427(5).?
C1 C2 1.437(4).?
C2 C3 1.375(5).?
C2 C20 1.542(4) . ?
C3 C4 1.399(5) . ?
C4 C70 1.376(5) . ?
C4 C24 1.541(5) . ?
C5 C70 1.414(5) . ?
C5 C6 1.437(4) . ?
C7 C8 1.388(5) . ?
C7 C12 1.408(5) . ?
C8 C9 1.390(5) . ?
C9 C10 1.389(6) . ?
C10 C11 1.374(5) . ?
C11 C12 1.393(5) . ?
C13 C14 1.429(5) . ?
C14 C19 1.420(5) . ?
C14 C15 1.423(5) . ?
C15 C16 1.351(6) . ?
C16 C17 1.404(6) . ?
C17 C18 1.384(5) . ?
C18 C19 1.437(5) . ?
C18 C28 1.540(5) . ?
C20 C23 1.529(4) . ?
C20 C22 1.530(5) . ?
C20 C21 1.538(4) . ?
C24 C27 1.527(6) . ?
C24 C25 1.530(7) . ?
C24 C26 1.534(7) . ?
C28 C31 1.522(7) . ?
C28 C30 1.533(6) . ?
C28 C29 1.536(6) . ?
C32 C37 1.420(5) . ?
C32 C33 1.448(5) . ?
C33 C34 1.368(5) . ?
C33 C52 1.529(5) . ?
C34 C35 1.411(5) . ?
C35 C36 1.369(5) . ?
C35 C56 1.527(5) . ?
C36 C37 1.409(5) . ?
C37 C38 1.431(5) . ?
C39 C40 1.385(5) . ?
C39 C44 1.414(5) . ?
C40 C41 1.383(5) . ?
C41 C42 1.393(6) . ?
C42 C43 1.376(6) . ?
C43 C44 1.396(5) . ?
C45 C46 1.420(6) . ?
C46 C51 1.419(5) . ?
C46 C47 1.424(6) . ?
C47 C48 1.444(5) . ?
C48 C49 1.390(6) . ?
C48 C60 1.534(6) . ?
C49 C50 1.371(7) . ?
C50 C51 1.381(6) . ?
C52 C55 1.522(6) . ?
C52 C53 1.538(6) . ?
C52 C54 1.551(6) . ?
C56 C58 1.522(6) . ?
C56 C59 1.527(6) . ?
C56 C57 1.546(6) . ?
C60 C62 1.532(5) . ?
C60 C61 1.538(6) . ?
C60 C63 1.539(6) . ?
P1 C68 1.840(4) . ?
P1 C67 1.841(4) . ?
P1 C69 1.851(4) . ?
N5 C67 1.477(4) . ?
N5 C64 1.480(4) . ?
N5 C66 1.481(4) . ?
N6 C64 1.480(4) . ?
N6 C68 1.481(5) . ?
N6 C65 1.486(5) . ?
N7 C69 1.467(4) . ?
N7 C66 1.485(4) . ?
N7 C65 1.498(5) . ?
P1' C69' 1.844(5) . ?
P1' C68' 1.850(5) . ?
P1' C67' 1.866(5) . ?
N5' C64' 1.480(5) . ?
N5' C66' 1.484(5) . ?
N5' C67' 1.490(5) . ?
N6' C68' 1.480(5) . ?
N6' C64' 1.480(5) . ?
N6' C65' 1.481(5) . ?
N7' C66' 1.474(5) . ?
N7' C65' 1.476(5) . ?
N7' C69' 1.486(5) . ?
C1X C11X 1.782(9) . ?
C1X C12X 1.794(9) . ?
C1Z C11Z 1.777(9) . ?
C1Z C12Z 1.794(10) . ?

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O1 Zn1 O2 97.58(10) . . ?
O1 Zn1 N2 149.29(11) . . ?
O2 Zn1 N2 89.35(10) . . ?
O1 Zn1 N1 89.19(10) . . ?
O2 Zn1 N1 166.69(10) . . ?
N2 Zn1 N1 79.14(11) . . ?
O1 Zn1 N6' 102.4(4) . . ?
O2 Zn1 N6' 93.4(3) . . ?
N2 Zn1 N6' 107.0(4) . . ?
N1 Zn1 N6' 96.3(3) . . ?
O1 Zn1 N5 102.1(3) . . ?
O2 Zn1 N5 92.7(2) . . ?
N2 Zn1 N5 107.4(3) . . ?
N1 Zn1 N5 97.1(2) . . ?
N6' Zn1 N5 0.8(4) . . ?
O4 Zn2 O3 94.46(11) . . ?
O4 Zn2 N3 152.37(11) . . ?
O3 Zn2 N3 90.69(10) . . ?
O4 Zn2 N4 88.78(12) . . ?
O3 Zn2 N4 165.13(11) . . ?
N3 Zn2 N4 79.97(12) . . ?
O4 Zn2 N6 102.8(3) . . ?
O3 Zn2 N6 93.9(2) . . ?
N3 Zn2 N6 103.9(2) . . ?
N4 Zn2 N6 99.5(2) . . ?
O4 Zn2 N5' 101.7(4) . . ?
O3 Zn2 N5' 93.3(4) . . ?
N3 Zn2 N5' 105.1(4) . . ?
N4 Zn2 N5' 100.3(3) . . ?
N6 Zn2 N5' 1.4(4) . . ?
C6 N1 C7 122.4(3) . . ?
C6 N1 Zn1 124.4(2) . . ?
C7 N1 Zn1 113.2(2) . . ?
C13 N2 C12 121.3(3) . . ?
C13 N2 Zn1 124.4(2) . . ?
C12 N2 Zn1 113.8(2) . . ?
C38 N3 C39 122.0(3) . . ?
C38 N3 Zn2 123.9(2) . . ?
C39 N3 Zn2 113.9(2) . . ?
C45 N4 C44 123.4(3) . . ?
C45 N4 Zn2 123.1(3) . . ?
C44 N4 Zn2 113.1(2) . . ?
C1 O1 Zn1 129.7(2) . . ?
C19 O2 Zn1 130.5(2) . . ?
C32 O3 Zn2 129.6(2) . . ?
C47 O4 Zn2 129.1(3) . . ?
O1 C1 C5 123.5(3) . . ?
O1 C1 C2 119.6(3) . . ?
C5 C1 C2 117.0(3) . . ?
C3 C2 C1 119.0(3) . . ?
C3 C2 C20 121.2(3) . . ?
C1 C2 C20 119.8(3) . . ?
C2 C3 C4 124.9(3) . . ?
C70 C4 C3 116.4(3) . . ?
C70 C4 C24 120.8(3) . . ?
C3 C4 C24 122.7(3) . . ?
C70 C5 C1 120.6(3) . . ?
C70 C5 C6 115.5(3) . . ?
C1 C5 C6 123.7(3) . . ?
N1 C6 C5 126.1(3) . . ?
C8 C7 C12 119.7(3) . . ?
C8 C7 N1 125.0(3) . . ?
C12 C7 N1 115.3(3) . . ?
C7 C8 C9 120.4(3) . . ?
C10 C9 C8 119.9(3) . . ?
C11 C10 C9 119.9(3)
C10 C11 C12 121.2(3)
C11 C12 C7 118.9(3)
C11 C12 N2 125.0(3)
C7 C12 N2 116.1(3)
N2 C13 C14 126.6(3)
C19 C14 C15 119.7(3)
C19 C14 C13 124.9(3)
C15 C14 C13 115.4(3)
C16 C15 C14 121.4(4)
C15 C16 C17 119.2(4)
C18 C17 C16 122.7(4)
C17 C18 C19 118.7(4)
C17 C18 C28 121.2(3)
C19 C18 C28 120.1(3)
O2 C19 C14 122.4(3)
O2 C19 C18 119.3(3)
C14 C19 C18 118.4(3)
C23 C20 C22 106.8(3)
C23 C20 C21 107.6(3)
C22 C20 C21 110.2(3)
C23 C20 C2 111.8(3)
C22 C20 C2 111.7(3)
C21 C20 C2 108.6(3)
C27 C24 C25 108.8(5)
C27 C24 C26 107.2(5)
C25 C24 C26 107.7(5)
C27 C24 C4 113.6(4)
C25 C24 C4 109.3(5)
C26 C24 C4 110.1(4)
C31 C28 C30 110.5(4)
C31 C28 C29 107.3(4)
C30 C28 C29 107.6(3)
C31 C28 C18 110.1(3)
C30 C28 C18 110.2(3)
C29 C28 C18 111.1(3)
O3 C32 C37 123.0(3)
O3 C32 C33 119.2(3)
C37 C32 C33 117.8(3)
C34 C33 C32 118.1(3)
C34 C33 C52 121.5(3)
C32 C33 C52 120.3(3)
C33 C34 C35 124.9(3)
C36 C35 C34 116.5(3)
C36 C35 C56 124.3(3)
C34 C35 C56 119.1(3)
C35 C36 C37 122.5(3)
C36 C37 C32 120.1(3)
C36 C37 C38 115.4(3)
C32 C37 C38 124.0(3)
N3 C38 C37 127.4(3)
C40 C39 C44 119.2(3)
C40 C39 N3 124.9(3)
C44 C39 N3 115.9(3)
C41 C40 C39 121.1(4) ...?
C40 C41 C42 119.8(4) ...?
C43 C42 C41 120.0(4) ...?
C42 C43 C44 120.8(4) ...?
C43 C44 N4 125.2(3) ...?
C39 C44 N4 115.7(3) ...?
N4 C45 C46 125.9(4) ...?
C51 C46 C45 115.9(4) ...?
C51 C46 C47 119.5(4) ...?
C45 C46 C47 124.4(3) ...?
O4 C47 C46 122.6(4) ...?
O4 C47 C48 118.5(4) ...?
C46 C47 C48 118.9(3) ...?
C49 C48 C47 117.7(4) ...?
C49 C48 C60 122.4(4) ...?
C47 C48 C60 119.9(3) ...?
C50 C49 C48 123.7(4) ...?
C49 C50 C51 119.4(4) ...?
C50 C51 C46 120.7(4) ...?
C55 C52 C33 112.0(3) ...?
C55 C52 C53 108.0(4) ...?
C33 C52 C53 109.7(3) ...?
C55 C52 C54 107.4(3) ...?
C33 C52 C54 109.6(3) ...?
C53 C52 C54 110.1(3) ...?
C58 C56 C59 107.7(4) ...?
C58 C56 C35 111.5(3) ...?
C59 C56 C35 111.0(3) ...?
C58 C56 C57 109.2(3) ...?
C59 C56 C57 109.5(4) ...?
C35 C56 C57 108.0(3) ...?
C62 C60 C48 109.7(3) ...?
C62 C60 C61 109.0(3) ...?
C48 C60 C61 111.9(3) ...?
C62 C60 C63 107.5(3) ...?
C48 C60 C63 112.0(4) ...?
C61 C60 C63 106.5(4) ...?
C68 P1 C67 95.4(3) ...?
C68 P1 C69 95.3(3) ...?
C67 P1 C69 95.9(3) ...?
C67 N5 C64 115.4(9) ...?
C67 N5 C66 110.0(6) ...?
C64 N5 C66 104.5(9) ...?
C67 N5 Zn1 115.3(5) ...?
C64 N5 Zn1 104.5(6) ...?
C66 N5 Zn1 106.3(4) ...?
C64 N6 C68 117.0(9) ...?
C64 N6 C65 112.2(10) ...?
C68 N6 C65 101.4(7) ...?
C64 N6 Zn2 106.6(5) ...?
C68 N6 Zn2 105.5(4) ...?
C65 N6 Zn2 114.3(5) ...?
C69 N7 C66 108.5(5) ...?
N6' Zn1 N1 C7 -92.2(4)
N5 Zn1 N1 C7 -92.5(3)
O1 Zn1 N2 C13 91.3(3)
O2 Zn1 N2 C13 -12.6(3)
N1 Zn1 N2 C13 160.7(3)
N6' Zn1 N2 C13 -106.0(4)
N5 Zn1 N2 C13 -105.2(3)
O1 Zn1 N2 C12 -81.1(3)
O2 Zn1 N2 C12 175.1(2)
N1 Zn1 N2 C12 -11.7(2)
N6' Zn1 N2 C12 81.7(4)
N5 Zn1 N2 C12 82.5(3)
O4 Zn2 N3 C38 97.9(3)
O3 Zn2 N3 C38 -3.1(3)
N4 Zn2 N3 C38 165.3(3)
N6 Zn2 N3 C38 -97.3(4)
N5' Zn2 N3 C38 -96.7(5)
O4 Zn2 N3 C39 -77.4(3)
O3 Zn2 N3 C39 -178.4(2)
N4 Zn2 N3 C39 -10.1(2)
N6 Zn2 N3 C39 87.4(3)
N5' Zn2 N3 C39 88.0(4)
O4 Zn2 N4 C45 -21.3(3)
O3 Zn2 N4 C45 -124.1(4)
N3 Zn2 N4 C45 -175.9(3)
N6 Zn2 N4 C45 81.5(4)
N5' Zn2 N4 C45 80.4(5)
O4 Zn2 N4 C44 165.3(2)
O3 Zn2 N4 C44 62.5(5)
N3 Zn2 N4 C44 10.7(2)
N6 Zn2 N4 C44 -91.9(3)
N5' Zn2 N4 C44 -93.0(5)
O2 Zn1 O1 C1 -171.5(3)
N2 Zn1 O1 C1 86.9(3)
N1 Zn1 O1 C1 20.0(3)
N6' Zn1 O1 C1 -76.3(4)
N5 Zn1 O1 C1 -77.1(3)
O1 Zn1 O2 C19 -134.6(3)
N2 Zn1 O2 C19 15.4(3)
N1 Zn1 O2 C19 -14.6(6)
N6' Zn1 O2 C19 122.4(4)
N5 Zn1 O2 C19 122.8(4)
O4 Zn2 O3 C32 -141.1(3)
N3 Zn2 O3 C32 11.7(3)
N4 Zn2 O3 C32 -38.9(6)
N6 Zn2 O3 C32 115.7(4)
N5' Zn2 O3 C32 116.9(5)
O3 Zn2 O4 C47 -168.3(3)
N3 Zn2 O4 C47 91.6(4)
N4 Zn2 O4 C47 26.2(3)
N6 Zn2 O4 C47 -73.2(4)
N5' Zn2 O4 C47 -74.0(5)
Zn1 O1 C1 C5 -13.9(5)
Zn1 O1 C1 C2 167.6(2)
C40 C39 C44 N4 -178.5(3) ?
N3 C39 C44 N4 1.4(4) ?
C45 N4 C44 C43 -1.8(6) ?
Zn2 N4 C44 C43 171.6(3) ?
C45 N4 C44 C39 176.8(3) ?
Zn2 N4 C44 C39 -9.8(4) ?
C44 N4 C45 C46 -177.8(3) ?
Zn2 N4 C45 C46 9.5(5) ?
N4 C45 C46 C51 -176.6(4) ?
N4 C45 C46 C47 8.6(6) ?
Zn2 O4 C47 C46 -17.7(5) ?
Zn2 O4 C47 C48 164.4(2) ?
C51 C46 C47 O4 -180.0(3) ?
C45 C46 C47 O4 -5.3(6) ?
C51 C46 C47 C48 172.5(3) ?
C45 C46 C47 C48 9.5(5) ?
C51 C46 C47 C48 -172.5(3) ?
O4 C47 C48 C49 -179.1(3) ?
C46 C47 C48 C49 2.9(5) ?
O4 C47 C48 C60 1.6(5) ?
C46 C47 C48 C60 -176.3(3) ?
C47 C48 C49 C50 -0.9(6) ?
C60 C48 C49 C50 178.3(4) ?
C48 C49 C50 C51 -2.0(6) ?
C49 C50 C51 C46 2.8(6) ?
C45 C46 C51 C50 -175.9(4) ?
C47 C46 C51 C50 -0.8(6) ?
C34 C33 C52 C55 -0.1(5) ?
C32 C33 C52 C55 -179.1(3) ?
C34 C33 C52 C53 -120.0(4) ?
C32 C33 C52 C53 61.0(4) ?
C34 C33 C52 C54 119.0(4) ?
C32 C33 C52 C54 -60.0(4) ?
C36 C35 C56 C58 -132.1(4) ?
C34 C35 C56 C58 52.0(5) ?
C36 C35 C56 C59 -12.1(6) ?
C34 C35 C56 C59 172.0(4) ?
C36 C35 C56 C57 108.0(4) ?
C34 C35 C56 C57 -67.9(4) ?
C49 C48 C60 C62 -116.4(4) ?
C47 C48 C60 C62 62.8(4) ?
C49 C48 C60 C61 122.4(4) ?
C47 C48 C60 C61 -58.4(4) ?
C49 C48 C60 C63 2.9(5) ?
C47 C48 C60 C63 -177.9(3) ?
O1 Zn1 N5 C67 78.3(6) ?
O2 Zn1 N5 C67 176.6(6) ?
N2 Zn1 N5 C67 -93.2(6) ?
N1 Zn1 N5 C67 -12.4(6) ?
N6' Zn1 N5 C67 -30(47) ?
O1 Zn1 N5 C64 -154.0(8) ?
O2 Zn1 N5 C64 -55.7(8) ?
N2 Zn1 N5 C64 34.5(8) ?
N1 Zn1 N5 C64 115.3(8) ?
N6' Zn1 N5 C64 98(47) ?
O1 Zn1 N5 C66 -43.8(6) ?
O2 Zn1 N5 C66 54.5(6) ?
N2 Zn1 N5 C66 144.7(5) ?
N1 Zn1 N5 C66 -134.5(5) ?
N6' Zn1 N5 C66 -152(48) ?
O4 Zn2 N6 C64 -151.8(8) ?
O3 Zn2 N6 C64 -56.3(8) ?
N3 Zn2 N6 C64 35.4(8) ?
N4 Zn2 N6 C64 117.3(8) ?
N5' Zn2 N6 C64 -118(31) ?
O4 Zn2 N6 C68 -26.8(6) ?
O3 Zn2 N6 C68 68.7(6) ?
N3 Zn2 N6 C68 160.4(6) ?
N4 Zn2 N6 C68 -117.7(6) ?
N5' Zn2 N6 C68 6(31) ?
O4 Zn2 N6 C65 83.7(6) ?
O3 Zn2 N6 C65 179.2(6) ?
N3 Zn2 N6 C65 -89.1(7) ?
N4 Zn2 N6 C65 -7.2(7) ?
N5' Zn2 N6 C65 117(32) ?
C68 N6 C64 N5 55.7(14) ?
C65 N6 C64 N5 -60.9(13) ?
Zn2 N6 C64 N5 173.3(9) ?
C67 N5 C64 N6 -56.1(14) ?
C66 N5 C64 N6 64.8(13) ?
Zn1 N5 C64 N6 176.3(10) ?
C64 N6 C65 N7 43.6(9) ?
C68 N6 C65 N7 -82.0(9) ?
Zn2 N6 C65 N7 165.0(5) ?
C69 N7 C65 N6 80.6(7) ?
C66 N7 C65 N6 -37.5(9) ?
C67 N5 C66 N7 67.7(8) ?
C64 N5 C66 N7 -56.7(8) ?
Zn1 N5 C66 N7 -166.9(5) ?
C69 N7 C66 N5 -68.3(7) ?
C65 N7 C66 N5 46.4(8) ?
C64 N5 C67 P1 58.7(9) ?
C66 N5 C67 P1 -59.1(8) ?
Zn1 N5 C67 P1 -179.2(3) ?
C68 P1 C67 N5 -49.2(6) ?
C69 P1 C67 N5 46.7(6) ?
C64 N6 C68 P1 -56.8(9) ?
C65 N6 C68 P1 65.5(8) ?
Zn2 N6 C68 P1 -175.0(4) ?
C67 P1 C68 N6 47.6(7) ?
C69 P1 C68 N6 -48.8(7) ?
C66 N7 C69 P1 61.0(6) ?
C65 N7 C69 P1 -62.7(6) ?
C68 P1 C69 N7 47.7(5) ?
C67 P1 C69 N7 -48.3(5) ?
O4 Zn2 N5' C64' -148.8(13) ?
O3 Zn2 N5' C64' -53.6(13) ?
N3 Zn2 N5' C64' 38.0(13) ?
N4 Zn2 N5' C64' 120.3(12) ?
C68' P1' C69' N7' 48.8(8) ?
C67' P1' C69' N7' -40.1(8) ?
C3 C4 C70 C5 0.3(5) ?
C24 C4 C70 C5 177.0(3) ?
C1 C5 C70 C4 0.0(5) ?
C6 C5 C70 C4 -175.3(3) ?

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>_diffrn_measured_fraction_theta_max</td>
<td>0.980</td>
</tr>
<tr>
<td>_diffrn_reflns_theta_full</td>
<td>25.00</td>
</tr>
<tr>
<td>_diffrn_measured_fraction_theta_full</td>
<td>0.991</td>
</tr>
<tr>
<td>_refine_diff_density_max</td>
<td>2.016</td>
</tr>
<tr>
<td>_refine_diff_density_min</td>
<td>-0.437</td>
</tr>
<tr>
<td>_refine_diff_density_rms</td>
<td>0.097</td>
</tr>
</tbody>
</table>